跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎芳玲
研究生(外文):Le Phuong Linh
論文名稱:應用 BIM 系統化規劃施工監測影像蒐集策略
論文名稱(外文):Systematic Visual Data Capture Plans for Construction Monitoring using BIM
指導教授:林之謙
指導教授(外文):Jacob J. Lin
口試委員:周建成紀乃文
口試委員(外文):Chien-Cheng ChouNai-Wen Chi
口試日期:2023-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:65
中文關鍵詞:工地數位化施工監測BIM施工規範
外文關鍵詞:Jobsite DigitalizationConstruction MonitoringBIMConstruction Documents
DOI:10.6342/NTU202302552
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
隨著人們對施工監控數位化轉型的期望增加,工地傳感器技術的使用越來越普及。沒有明確的使用策略,來自傳感器收集的視覺資料將無法得到充分利用,從而導致數據浪費。 為了改善此類問題,本研究提出了一個基於視覺化方法監測建築物施工的系統框架。 該框架可以提供工地數位化等級以及符合收集視覺化資料的技術給工程師參考。具體來說,從BIM模型中導出需要監控的構件,結合工地辨識的活動來創建基於視覺的監控計劃。 該計劃提供對於監控的構件、進行中的工作、資源以及最佳的視覺化資料收集方法的建議。最後,本文通過結合實際案例研究並與多位營建業領域相關的專家進行訪談,證實了本研究框架具有可行性, 有助於在工地管理和監測中應用新方法的規劃設計過程,為在施工現場實施數位化創造機會。
Sensing technology utilization in construction sites has grown exponentially due to the expectation of its impact on jobsite digital transformation for construction monitoring. However, without clear utilization strategies, the massive amount of visual data from various sensors often remains underutilized, resulting in wasted data. To address these problems, this study proposes a framework for adopting vision-based construction monitoring methods that utilize BIM and construction documents. The framework enables construction practitioners to define the digitalization level needed for their projects and then provide the appropriate techniques required through model-driven analysis. It involves extracting element information from BIM and activity information from progress taxonomy to generate a vision-based monitoring plan. The monitoring plan identifies the elements, work-in-progress, resources, and the most suitable data acquisition methods. We evaluated the method through a case study and conducted extensive interviews with experienced VDC managers. This study contributes to planning processes and creates opportunities for facilitating jobsite digitalization on the construction task level monitoring.
Verification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xv
Denotation xvii
Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 2 Related Works 7
2.1 Vision-based methods for monitoring construction sites . . . . . . . . 8
2.1.1 Task Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Operation Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Data Acquisition Methods . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3.1 Data Type . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . 15
2.2 Information Retrieval from Building Information Modeling (BIM) for Construction Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Framework for Applying Vision-based Monitoring Methods . . . . . 18
2.4 Digitalization Levels on Construction Sites . . . . . . . . . . . . . . 19
2.5 Gap of Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Chapter 3 Systematic Visual Data Capture Plans Generation Framework 21
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Jobsite Digitalization Level Identification . . . . . . . . . . . . . . . 22
3.2.1 Define Completeness Level . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Define Detail Level . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Define Monitoring Elements and Activities . . . . . . . . . . . . . 27
3.3 Element and Activity Taxonomy . . . . . . . . . . . . . . . . . . . . 28
3.4 Data Acquisition Requirements Identification . . . . . . . . . . . . . 30
3.5 Visual Data Capture Plans Generation . . . . . . . . . . . . . . . . . 33
3.5.1 Jobsite Digitalization Selection User Interface . . . . . . . . . . . . 34
3.5.2 Export Summary Report . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.3 Export Detail List . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Chapter 4 Implementation and Validation 39
4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 Pre-processing Model . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Jobsite Digitalization Levels Selection . . . . . . . . . . . . . . . . 42
4.1.3 Summary Report and Detail Report . . . . . . . . . . . . . . . . . . 45
4.1.4 Interact the results with BIM models . . . . . . . . . . . . . . . . . 48
4.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Chapter 5 Conclusion 55
5.1 Research Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Research Limitations and Future Works . . . . . . . . . . . . . . . . 57
References 59
[1] American Concrete Institute. Building code requirements for structural concrete: (ACI 318-19) ; and commentary (ACI 318R-19). American Concrete Institute, Farmington Hills, MI, USA, 2019.
[2] American Institute of Architects. Guide, instructions and commentary to the 2013 aia digital practice documents. In Project Building Information Modeling Protocol Form, 2013.
[3] J. Blankenbach and R. Becker. Bim and the digitalization in the construction industry. In Handbook Industry 4.0: Law, Technology, Society, pages 659–679. Springer, 2022.
[4] F. Boukamp and B. Akinci. Automated processing of construction specifications to support inspection and quality control. Automation in construction, 17(1):90–106, 2007.
[5] A. Braun, S. Tuttas, U. Stilla, and A. Borrmann. Towards automated construction progress monitoring using bim-based point cloud processing. eWork Ebus. Archit. Eng. Constr. ECPPM, 2014, 2014.
[6] C. H. Caldas, D. G. Torrent, and C. T. Haas. Using global positioning system to improve materials-locating processes on industrial projects. Journal of Construction Engineering and Management, 132(7):741–749, 2006.
[7] Construction Specifications Institute. Uniformat - a uniform classification of construction systems and assemblies. In UniFormat, 2010.
[8] Construction Specifications Institute, C. S. C. Masterformat numbers & titles. In MasterFormat, 2016.
[9] A. Dimitrov and M. Golparvar-Fard. Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections. Advanced Engineering Informatics, 28(1):37–49, 2014.
[10] S. El-Omari and O. Moselhi. Data acquisition from construction sites for tracking purposes. Engineering, Construction and Architectural Management, 16(5):490– 503, 2009.
[11] S. El-Omari and O. Moselhi. Integrating automated data acquisition technologies for progress reporting of construction projects. Automation in construction, 20(6):699– 705, 2011.
[12] M. Golparvar-Fard, F. Peña-Mora, C. A. Arboleda, and S. Lee. Visualization of construction progress monitoring with 4d simulation model overlaid on time-lapsed photographs. Journal of computing in civil engineering, 23(6):391–404, 2009.
[13] M. Golparvar-Fard, F. Peña-Mora, and S. Savarese. D4ar–a 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. Journal of information technology in construction, 14(13):129–153, 2009.
[14] M. Golparvar-Fard, F. Pena-Mora, and S. Savarese. Automated progress monitoring using unordered daily construction photographs and ifc-based building information models. Journal of Computing in Civil Engineering, 29(1):04014025, 2015.
[15] K. K. Han and M. Golparvar-Fard. Appearance-based material classification for monitoring of operation-level construction progress using 4d bim and site photologs. Automation in construction, 53:44–57, 2015.
[16] K. K. Han and M. Golparvar-Fard. Potential of big visual data and building information modeling for construction performance analytics: An exploratory study. Automation in Construction, 73:184–198, 2017.
[17] M. Hermann, T. Pentek, and B. Otto. Design principles for industrie 4.0 scenarios. In 2016 49th Hawaii International Conference on System Sciences (HICSS), pages 3928–3937, 2016.
[18] M. Kassem, N. Iqbal, and N. Dawood. A practice-oriented bim framework and workflows. In Computing in Civil Engineering (2013), pages 524–532. American Society of Civil Engineers, 2013.
[19] A. Khosrowpour, J. C. Niebles, and M. Golparvar-Fard. Vision-based workface assessment using depth images for activity analysis of interior construction operations. Automation in Construction, 48:74–87, 2014.
[20] J. Kim, Y. Ham, Y. Chung, and S. Chi. Systematic camera placement framework for operation-level visual monitoring on construction jobsites. Journal of Construction Engineering and Management, 145(4):04019019, 2019.
[21] S. Kim, S. Kim, and D.-E. Lee. Sustainable application of hybrid point cloud and bim method for tracking construction progress. Sustainability, 12(10):4106, 2020.
[22] C. Kropp, C. Koch, and M. König. Drywall state detection in image data for automatic indoor progress monitoring. In Computing in Civil and Building Engineering (2014), pages 347–354. American Society of Civil Engineers, 2014.
[23] D.-G. Lee, J.-Y. Park, and S.-H. Song. Bim-based construction information management framework for site information management. Advances in Civil Engineering, 2018:1–14, 2018.
[24] X. Li, J. Xu, and Q. Zhang. Research on construction schedule management based on bim technology. Procedia engineering, 174:657–667, 2017.
[25] J. J. Lin and M. Golparvar-Fard. Visual data and predictive analytics for proactive project controls on construction sites. In Advanced Computing Strategies for Engineering: 25th EG-ICE International Workshop 2018, Lausanne, Switzerland, June 10-13, 2018, Proceedings, Part I 25, pages 412–430. Springer, 2018.
[26] H. Mahami, F. Nasirzadeh, A. Hosseininaveh Ahmadabadian, and S. Nahavandi. Automated progress controlling and monitoring using daily site images and building information modelling. Buildings, 9(3):70, 2019.
[27] M. Mayouf, M. Gerges, and S. Cox. 5d bim: an investigation into the integration of quantity surveyors within the bim process. Journal of Engineering, Design and Technology, 17(3):537–553, 2019.
[28] J. McArthur. A building information management (bim) framework and supporting case study for existing building operations, maintenance and sustainability. Procedia engineering, 118:1104–1111, 2015.
[29] M. Memarzadeh, M. Golparvar-Fard, and J. C. Niebles. Automated 2d detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors. Automation in Construction, 32:24–37, 2013.
[30] H. Moragane, B. Perera, A. D. Palihakkara, and B. Ekanayake. Application of computer vision for construction progress monitoring: a qualitative investigation. Construction Innovation, ahead-of-print(ahead-of-print), 2022.
[31] T. Omar and M. L. Nehdi. Data acquisition technologies for construction progress tracking. Automation in Construction, 70:143–155, 2016.
[32] A. Pal, J. J. Lin, and S.-H. Hsieh. A framework for automated daily construction progress monitoring leveraging unordered site photographs. In Computing in Civil Engineering 2021, pages 538–545. American Society of Civil Engineers, 2021.
[33] S. Paneru and I. Jeelani. Computer vision applications in construction: Current state, opportunities & challenges. Automation in Construction, 132:103940, 2021.
[34] S. C. Plotner. RSMeans Building Construction Cost Data. R. S. Means Company, Incorporated, 2014.
[35] A. H. Qureshi, W. S. Alaloul, W. K. Wing, S. Saad, S. Ammad, and M. Altaf. Characteristics-based framework of effective automated monitoring parameters in construction projects. Arabian Journal for Science and Engineering, 48(4):4731– 4749, 2023.
[36] F. P. Rahimian, S. Seyedzadeh, S. Oliver, S. Rodriguez, and N. Dawood. On-demand monitoring of construction projects through a game-like hybrid application of bim and machine learning. Automation in Construction, 110:103012, 2020.
[37] V. K. Reja, K. Varghese, and Q. P. Ha. Computer vision-based construction progress monitoring. Automation in Construction, 138:104245, 2022.
[38] R. Ren and J. Zhang. Semantic rule-based construction procedural information extraction to guide jobsite sensing and monitoring. Journal of Computing in Civil Engineering, 35(6):04021026, 2021.
[39] E. Rezazadeh Azar, S. Dickinson, and B. McCabe. Server-customer interaction tracker: computer vision–based system to estimate dirt-loading cycles. Journal of Construction Engineering and Management, 139(7):785–794, 2013.
[40] L. Sanhudo, J. Poças Martins, N. M. Ramos, R. M. Almeida, A. Rocha, D. Pinto, E. Barreira, and M. L. Simoes. Bim framework for the specification of information requirements in energy-related projects. Engineering, Construction and Architectural Management, 28(10):3123–3143, 2021.
[41] L. Soibelman, J. Wu, C. Caldas, I. Brilakis, and K.-Y. Lin. Management and analysis of unstructured construction data types. Advanced Engineering Informatics, 22(1):15–27, 2008.
[42] K. Ullah, I. Lill, and E. Witt. An overview of bim adoption in the construction industry: Benefits and barriers. In 10th Nordic conference on construction economics and organization, volume 2, pages 297–303. Emerald Publishing Limited, 2019.
[43] A. Ustundag and E. Cevikcan. Industry 4.0: managing the digital transformation. Springer, 2018.
[44] W. Wei, Y. Lu, T. Zhong, P. Li, and B. Liu. Integrated vision-based automated progress monitoring of indoor construction using mask region-based convolutional neural networks and bim. Automation in Construction, 140:104327, 2022.
[45] Y. Wu, H. Kim, C. Kim, and S. H. Han. Object recognition in construction-site images using 3d cad-based filtering. Journal of Computing in Civil Engineering, 24(1):56–64, 2010.
[46] B. Xiao, H. Xiao, J. Wang, and Y. Chen. Vision-based method for tracking workers by integrating deep learning instance segmentation in off-site construction. Automation in Construction, 136:104148, 2022.
[47] B. Xiao, X. Yin, and S.-C. Kang. Vision-based method of automatically detecting construction video highlights by integrating machine tracking and cnn feature extraction. Automation in construction, 129:103817, 2021.
[48] J. Yang, M.-W. Park, P. A. Vela, and M. Golparvar-Fard. Construction performance monitoring via still images, time-lapse photos, and video streams: Now, tomorrow, and the future. Advanced Engineering Informatics, 29(2):211–224, 2015.
[49] J. Yang, Z. Shi, and Z. Wu. Vision-based action recognition of construction workers using dense trajectories. Advanced Engineering Informatics, 30(3):327–336, 2016.
[50] L.-R. Yang. Exploring the links between task-level automation usage and project satisfaction. Automation in construction, 17(4):450–458, 2008.
[51] J. Zhang and N. M. El-Gohary. Semantic nlp-based information extraction from construction regulatory documents for automated compliance checking. Journal of Computing in Civil Engineering, 30(2):04015014, 2016.
[52] Z. Zhu, X. Ren, and Z. Chen. Integrated detection and tracking of workforce and equipment from construction jobsite videos. Automation in Construction, 81:161– 171, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top