跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭媚方
研究生(外文):Mei-Fang Cheng
論文名稱:全身性IgG4相關疾病的炎症影像生物標記
論文名稱(外文):Inflammatory Imaging Biomarker in Systemic IgG4-related Disease
指導教授:郭育良郭育良引用關係
指導教授(外文):Yue-Liang Guo
口試委員:王秀伯鄭尊仁顏若芳陳保中
口試委員(外文):Hsiu-Po WangTsun-Jen ChengRuoh-Fang YenPau-Chung Chen
口試日期:2023-05-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:公共衛生碩士學位學程
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:124
中文關鍵詞:第四型免疫球蛋白G相關疾病2-脫氧-2-18F-氟葡萄糖正子斷層/電腦斷層掃描疾病無惡化存活期、治療
外文關鍵詞:Immunoglobulin-4 related disease18F-fluorodeoxyglucosepositron emission tomography/computed tomographyrelapse-free survivaltherapy
DOI:10.6342/NTU202301506
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景與目的:發炎反應是身體對外在刺激及病原體的既有防禦機制,同時也用於修復受損器官組織。然而,過度的發炎反應可能導致不良影響,造成不必要的傷害。2-脫氧-2-18F-氟葡萄糖(2-deoxy-2-18F-fluoro-D-glucose, FDG)正子斷層/電腦斷層掃描(positron emission tomography/computed tomography, PET/CT)在臨床上廣泛使用於非侵入性鑑別和定位癌症和與炎症相關疾病。本研究的目的是以FDG PET/CT具有炎症成像生物標記物的優勢,用於第四型免疫球蛋白G相關疾病(immunoglobulin G4-related disease, IgG4-RD)患者的診斷、病灶定位、識別疾病模式及預測復發相關因子。
方法: 本研究包括三個部分:(1) 以橫斷面研究,評估FDG PET的影像是否能夠區分IgG4-胰臟炎(自體免疫性胰臟炎)和胰腺癌;(2) 比較第四型免疫球蛋白G相關疾病患者和健康志願者的唾液腺特徵;(3) 進行前瞻性世代研究,分析FDG PET檢測出的發炎程度與第四型免疫球蛋白G相關疾病患者接受標準誘導類固醇治療後再復發時間之關係。以Cox比例風險模型分析,辨識顯著因素。
結果: 自2008年9月至2015年5月,將44名診斷為自體免疫性胰臟炎的患者與61名胰臟癌患者進行比較,發現結合四個PET參數(局部腫瘤形態、少於兩個胰臟外的FDG攝取點、原發腫瘤表現較高的最大標準化攝取值(maximum standardized uptake value, SUVmax)以及高灰度區域強調值分析)可將胰臟癌與自體免疫性胰臟炎清楚區分,其敏感性、特異性、陽性預測值和陰性預測值分別為90.2%、81.8%、87.3%和85.7%。(2) 無論是否存在唾液腺炎,第四型免疫球蛋白G相關疾病患者(n=52)唾液腺的SUVmax均比健康對照組(n=134)高。此外,與腮腺相比,IgG4-RD患者的血清IgG4數值和其他病灶的數量與頜下腺的SUVmax更為相關。(3) 世代研究中共分析了48位IgG4-RD患者的治療前FDG PET/CT影像(群體的中位觀察追蹤時間為1913天;分位差為803-2929天)。FDG PET顯示全身總病灶代謝數值(whole-body total lesion glycolysis) > 600為疾病復發的獨立預後分子(調整危險比為2.196 [95%信賴區間:1.080-4.374];p = 0.030)。
結論: FDG PET/CT 可透過結合形態、胰臟外病灶之數目、SUV 參數和影像特徵分析的方式,區分胰臟癌和自體免疫性胰臟炎。不論是否伴有唾液腺炎,第四型免疫球蛋白G相關疾病患者的唾液腺 FDG 攝取明顯高於健康對照組。此外,在 IgG4-RD 患者中,頜下腺 SUVmax 愈高,代表系統性發炎病灶愈多。接受標準類固醇誘導治療的第四型免疫球蛋白G相關疾病患者,治療後再復發時間唯一顯著因素為治療前FDG PET/CT的全身總病灶代謝數值。
Background and Objectives: Inflammation serves as a natural defense mechanism against external stimuli and pathogens and aids in repairing damaged tissues. However, excessive inflammatory responses can cause adverse effects and lead to unnecessary tissue damage. To non-invasively identify cancer and inflammation-related conditions, 2-deoxy-2-18F-fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely used. The objective of this study is to assess the potential of FDG PET/CT as an inflammatory imaging biomarker for the diagnosis, localization, and identification of patterns and predictors of relapse in individuals with immunoglobulin G4-related disease (IgG4-RD).
Methods: This study comprises three components: (1) a cross-sectional study that evaluates whether metabolic profiles observed in FDG PET can differentiate IgG4-related pancreatitis (autoimmune pancreatitis, AIP) from pancreatic cancer; (2) a comparison of salivary gland features between IgG4-RD patients and healthy volunteers; and (3) a prospective cohort study analyzing whether higher inflammatory levels (by FDG PET) are associated with shorter disease-free survival time before relapse in IgG4-RD patients who underwent standard induction steroid therapy, utilizing multivariable Cox proportional hazard models.
Results: (1) From September 2008 to May 2015, comparing 44 patients diagnosed with AIP and 61 patients with pancreatic cancer, combining four PET parameters (localized tumor morphology, less than two extrapancreatic sites of FDG uptake, primary tumor exhibiting a higher maximum standardized uptake value (SUVmax), and higher high-gray level zone emphasis value in texture analysis) could differentiate pancreatic cancer from AIP with sensitivity, specificity, positive predictive and negative predictive values of 90.2%, 81.8%, 87.3%, and 85.7%, respectively. (2) SUVmax of both salivary glands was greater in IgG4-RD patients (n=52) compared to healthy subjects (n=134) regardless of the presence of sialadenitis. Moreover, serum IgG4 levels and the number of extra-salivary gland lesions in patients with IgG4-RD showed a better correlation with the SUVmax of the submandibular glands than the parotid glands. (3) Pretherapy FDG PET/CT images from 48 IgG4-RD patients were analyzed (median follow-up time for the entire cohort was 1913 days; interquartile range, 803-2929 days). Whole-body total lesion glycolysis > 600 on FDG PET was an independent risk factor for disease relapse (adjusted hazard ratio, 2.196 [95% confidence interval: 1.080-4.374]; p=0.030).
Conclusions: FDG PET/CT can distinguish pancreatic cancer from AIP by using a combination of morphology, number of extrapancreatic lesions, SUV parameters, and texture analysis. Patients with IgG4-RD have significantly higher salivary gland FDG uptake than healthy subjects, regardless of the presence of sialadenitis. Moreover, a higher submandibular SUVmax in IgG4-RD patients indicates a greater number of systemic inflammatory foci. The sole significant factor related to relapse-free survival in patients with IgG4-RD receiving standard steroid induction therapy was the level of whole-body total lesion glycolysis, as observed on pretherapy FDG PET/CT. To assess how FDG PET/CT as an inflammatory imaging biomarker can affect patient care and treatment decisions for those with IgG4-RD, further studies are warranted.
TABLE OF CONTENTS
口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT v
TABLE OF CONTENTS viii
FIGURES xi
TABLES xiii
Chapter One Introduction 1
1.1 Inflammation 1
1.1.1 Inflammation is an important disease mechanism in diseases caused by immunological mechanisms and by environmental insults. 1
1.2 Immunoglobulin G4-related disease (IgG4-RD) is a systemic inflammatory disorder 2
1.2.1 Clinical features of Immunoglobulin G4-related disease 2
1.2.2 Diagnosis of Immunoglobulin G4-related disease 3
1.2.3 Treatment of Immunoglobulin G4-related disease 10
1.2.4 Long-term prognosis of Immunoglobulin G4-related disease 13
1.3 Positron Emission Tomography (PET) Imaging as an Inflammatory Biomarker: Using 2-deoxy-2-18F-fluoro-D-glucose (FDG) 14
1.3 Positron Emission Tomography (PET) Imaging as an Inflammatory Biomarker: Using 2-deoxy-2-18F-fluoro-D-glucose (FDG) 15
1.3.1 Glycolysis pathway elucidated by 2-deoxy-2-18F-fluoro-D-glucose (FDG) 15
1.3.2 Imaging protocol 17
1.3.3 Image interpretation 19
1.4 Research Gap 22
1.4.1 Differentiating malignant conditions from organs involved by Immunoglobulin G4-related disease 22
1.4.2 Salivary glands features in Immunoglobulin G4-related disease 23
1.4.3 Clinical useful biomarker to predict treatment response 24
Chapter Two Study Hypothesis 25
2.1 Differentiating malignant conditions from organs involved by Immunoglobulin G4-related disease 25
2.2 Salivary glands features in Immunoglobulin G4-related disease 25
2.3 Clinical useful biomarker to predict treatment response 25
Chapter Three Materials and Methods 26
3.1 Differentiating malignant conditions from organs involved by Immunoglobulin G4-related disease 26
3.1.1 Study design 26
3.1.2 Study population, inclusion and exclusion criteria 26
3.1.3 Imaging analysis 27
3.1.4 Statistical analysis 32
3.2 Salivary glands features in Immunoglobulin G4-related disease 33
3.2.1 Study population, inclusion and exclusion criteria 33
3.2.2 Imaging analysis 34
3.2.3 Statistical analysis 36
3.3 Clinical useful biomarker to predict treatment response 36
3.3.1 Study design 36
3.3.2 Study population, inclusion and exclusion criteria 37
3.3.3 Imaging analysis 39
3.3.4 Statistical analysis 40
Chapter Four Results 42
4.1 Differentiating malignant conditions from organs involved by Immunoglobulin G4-related disease 42
4.1.1 Patient characteristics 42
4.1.2 PET parameters 43
4.1.3 Univariable and multivariable analyses 44
4.1.4 Pancreatic Cancer Identified in Patients Initially Suspected of AIP 44
4.2 Salivary glands features in Immunoglobulin G4-related disease 45
4.2.1 Patient characteristics 45
4.2.2 Metabolic activity of the salivary glands 46
4.2.3 CT attenuation values 47
4.3 Clinical useful biomarker to predict treatment response 47
4.3.1 Patients 47
4.3.2 Univariable and multivariable analyses 48
4.3.3 The relationship between serum IgG4 levels and whole body total lesion glycolysis 49
Chapter Five Discussion 50
5.1 Differentiating malignant conditions from organs involved by Immunoglobulin G4-related disease 50
5.1.1 Main Findings 50
5.1.2 Relationships to findings of other studies 50
5.1.3 Strength 52
5.1.4 Clinical implications 53
5.1.5 Limitation 54
5.2 Salivary glands features in Immunoglobulin G4-related disease 56
5.2.1 Main Findings 56
5.2.2 Relationships to findings of other studies 57
5.2.3 Strength and clinical implications 58
5.2.4 Limitation 58
5.3 Clinical useful biomarker to predict treatment response 59
5.3.1 Main Findings 59
5.3.2 Relationships to findings of other studies 60
5.3.3 Strength 62
5.3.4 Clinical implications 63
5.3.5 Limitation 64
5.4 Summary and future perspective 65
REFERENCES 68
FIGURES 88
TABLES 106
APPENDIX 118
1.Wu C, Li F, Niu G, Chen X. PET imaging of inflammation biomarkers. Theranostics. 2013;3:448-66. doi:10.7150/thno.6592.
2Liu CH, Abrams ND, Carrick DM, Chander P, Dwyer J, Hamlet MRJ, et al. Biomarkers of chronic inflammation in disease development and prevention: challenges and opportunities. Nat Immunol. 2017;18:1175-80. doi:10.1038/ni.3828.
3Perugino CA, Stone JH. IgG4-related disease: an update on pathophysiology and implications for clinical care. Nat Rev Rheumatol. 2020;16:702-14. doi:10.1038/s41584-020-0500-7.
4Yoshida K, Toki F, Takeuchi T, Watanabe S, Shiratori K, Hayashi N. Chronic pancreatitis caused by an autoimmune abnormality. Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci. 1995;40:1561-8. doi:10.1007/BF02285209.
5Stone JH, Zen Y, Deshpande V. IgG4-related disease. N Engl J Med. 2012;366:539-51. doi:10.1056/NEJMra1104650.
6Umehara H, Okazaki K, Masaki Y, Kawano M, Yamamoto M, Saeki T, et al. A novel clinical entity, IgG4-related disease (IgG4RD): general concept and details. Mod Rheumatol. 2012;22:1-14. doi:10.1007/s10165-011-0508-6.
7Wallace ZS, Zhang Y, Perugino CA, Naden R, Choi HK, Stone JH, et al. Clinical phenotypes of IgG4-related disease: an analysis of two international cross-sectional cohorts. Ann Rheum Dis. 2019;78:406-12. doi:10.1136/annrheumdis-2018-214603.
8Watanabe T, Minaga K, Kamata K, Kudo M, Strober W. Mechanistic Insights into Autoimmune Pancreatitis and IgG4-Related Disease. Trends in immunology. 2018;39:874-89. doi:10.1016/j.it.2018.09.005.
9Yamamoto M. B cell targeted therapy for immunoglobulin G4-related disease. Immunol Med. 2021;44:216-22. doi:10.1080/25785826.2021.1886630.
10Kawa S. Immunoglobulin G4-related Disease: An Overview. JMA J. 2019;2:11-27. doi:10.31662/jmaj.2018-0017.
11Yamada K, Mizushima I, Kawano M. New insights into the pathophysiology of IgG4-related disease and markers of disease activity. Expert review of clinical immunology. 2019;15:231-9. doi:10.1080/1744666X.2019.1560268.
12Wallace ZS, Deshpande V, Mattoo H, Mahajan VS, Kulikova M, Pillai S, et al. IgG4-Related Disease: Clinical and Laboratory Features in One Hundred Twenty-Five Patients. Arthritis Rheumatol. 2015;67:2466-75. doi:10.1002/art.39205.
13Yamada K, Yamamoto M, Saeki T, Mizushima I, Matsui S, Fujisawa Y, et al. New clues to the nature of immunoglobulin G4-related disease: a retrospective Japanese multicenter study of baseline clinical features of 334 cases. Arthritis research & therapy. 2017;19:262. doi:10.1186/s13075-017-1467-x.
14Sasaki T, Akiyama M, Kaneko Y, Yasuoka H, Suzuki K, Yamaoka K, et al. Risk factors of relapse following glucocorticoid tapering in IgG4-related disease. Clin Exp Rheumatol. 2018;36 Suppl 112:186-9.
15Wallace ZS, Mattoo H, Mahajan VS, Kulikova M, Lu L, Deshpande V, et al. Predictors of disease relapse in IgG4-related disease following rituximab. Rheumatology (Oxford). 2016;55:1000-8. doi:10.1093/rheumatology/kev438.
16Umehara H, Okazaki K, Kawano M, Tanaka Y. The front line of research into immunoglobin G4-related disease - Do autoantibodies cause immunoglobin G4-related disease? Modern rheumatology / the Japan Rheumatism Association. 2019;29:214-8. doi:10.1080/14397595.2018.1558519.
17Iaccarino L, Talarico R, Bozzalla-Cassione E, Burmester GR, Culver EL, Doria A, et al. Blood biomarkers recommended for diagnosing and monitoring IgG4-related disease. Considerations from the ERN ReCONNET and collaborating partners. Clin Exp Rheumatol. 2022;40 Suppl 134:71-80. doi:10.55563/clinexprheumatol/qq9qup.
18Carruthers MN, Khosroshahi A, Augustin T, Deshpande V, Stone JH. The diagnostic utility of serum IgG4 concentrations in IgG4-related disease. Ann Rheum Dis. 2015;74:14-8. doi:10.1136/annrheumdis-2013-204907.
19Kawa S, Skold M, Ramsden DB, Parker A, Harding SJ. Serum IgG4 Concentration in IgG4-Related Disease. Clin Lab. 2017;63:1323-37. doi:10.7754/Clin.Lab.2017.170403.
20Tabata T, Kamisawa T, Takuma K, Egawa N, Setoguchi K, Tsuruta K, et al. Serial changes of elevated serum IgG4 levels in IgG4-related systemic disease. Intern Med. 2011;50:69-75. doi:10.2169/internalmedicine.50.4321.
21Xu WL, Ling YC, Wang ZK, Deng F. Diagnostic performance of serum IgG4 level for IgG4-related disease: a meta-analysis. Sci Rep. 2016;6:32035. doi:10.1038/srep32035.
22Ren H, Mori N, Sato S, Mugikura S, Masamune A, Takase K. American College of Rheumatology and the European League Against Rheumatism classification criteria for IgG4-related disease: an update for radiologists. Jpn J Radiol. 2022;40:876-93. doi:10.1007/s11604-022-01282-1.
23Kurowecki D, Patlas MN, Haider EA, Alabousi A. Cross-sectional pictorial review of IgG4-related disease. Br J Radiol. 2019;92:20190448. doi:10.1259/bjr.20190448.
24Fujinaga Y, Kadoya M, Kawa S, Hamano H, Ueda K, Momose M, et al. Characteristic findings in images of extra-pancreatic lesions associated with autoimmune pancreatitis. Eur J Radiol. 2010;76:228-38. doi:10.1016/j.ejrad.2009.06.010.
25Martinez-de-Alegria A, Baleato-Gonzalez S, Garcia-Figueiras R, Bermudez-Naveira A, Abdulkader-Nallib I, Diaz-Peromingo JA, et al. IgG4-related Disease from Head to Toe. Radiographics. 2015;35:2007-25. doi:10.1148/rg.357150066.
26Resende EA, Gomes NR, Abreu LG, Castro MAA, Aguiar MCF. The applicability of ultrasound in the diagnosis of inflammatory and obstructive diseases of the major salivary glands: a scoping review. Dentomaxillofac Radiol. 2022;51:20210361. doi:10.1259/dmfr.20210361.
27Kawa S. Current Concepts and Diagnosis of IgG4-Related Pancreatitis (Type 1 AIP). Semin Liver Dis. 2016;36:257-73. doi:10.1055/s-0036-1584318.
28Kim B, Kim JH, Byun JH, Kim HJ, Lee SS, Kim SY, et al. IgG4-related kidney disease: MRI findings with emphasis on the usefulness of diffusion-weighted imaging. Eur J Radiol. 2014;83:1057-62. doi:10.1016/j.ejrad.2014.03.033.
29Takahashi N, Kawashima A, Fletcher JG, Chari ST. Renal involvement in patients with autoimmune pancreatitis: CT and MR imaging findings. Radiology. 2007;242:791-801. doi:10.1148/radiol.2423060003.
30Deshpande V, Zen Y, Chan JK, Yi EE, Sato Y, Yoshino T, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 2012;25:1181-92. doi:10.1038/modpathol.2012.72.
31Notohara K, Kamisawa T, Fukushima N, Furukawa T, Tajiri T, Yamaguchi H, et al. Guidance for diagnosing autoimmune pancreatitis with biopsy tissues. Pathol Int. 2020;70:699-711. doi:10.1111/pin.12994.
32Wallace ZS, Mattoo H, Carruthers M, Mahajan VS, Della Torre E, Lee H, et al. Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Ann Rheum Dis. 2015;74:190-5. doi:10.1136/annrheumdis-2014-205233.
33Strehl JD, Hartmann A, Agaimy A. Numerous IgG4-positive plasma cells are ubiquitous in diverse localised non-specific chronic inflammatory conditions and need to be distinguished from IgG4-related systemic disorders. J Clin Pathol. 2011;64:237-43. doi:10.1136/jcp.2010.085613.
34Umehara H, Okazaki K, Masaki Y, Kawano M, Yamamoto M, Saeki T, et al. Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod Rheumatol. 2012;22:21-30. doi:10.1007/s10165-011-0571-z.
35Umehara H, Okazaki K, Kawa S, Takahashi H, Goto H, Matsui S, et al. The 2020 revised comprehensive diagnostic (RCD) criteria for IgG4-RD. Mod Rheumatol. 2021;31:529-33. doi:10.1080/14397595.2020.1859710.
36Wallace ZS, Naden RP, Chari S, Choi HK, Della-Torre E, Dicaire JF, et al. The 2019 American College of Rheumatology/European League Against Rheumatism classification criteria for IgG4-related disease. Ann Rheum Dis. 2020;79:77-87. doi:10.1136/annrheumdis-2019-216561.
37Wallace ZS, Naden RP, Chari S, Choi H, Della-Torre E, Dicaire JF, et al. The 2019 American College of Rheumatology/European League Against Rheumatism Classification Criteria for IgG4-Related Disease. Arthritis Rheumatol. 2020;72:7-19. doi:10.1002/art.41120.
38Umehara H, Okazaki K, Nakamura T, Satoh-Nakamura T, Nakajima A, Kawano M, et al. Current approach to the diagnosis of IgG4-related disease - Combination of comprehensive diagnostic and organ-specific criteria. Mod Rheumatol. 2017;27:381-91. doi:10.1080/14397595.2017.1290911.
39Orozco-Galvez O, Fernandez-Codina A, Lanzillotta M, Ebbo M, Schleinitz N, Culver EL, et al. Development of an algorithm for IgG4-related disease management. Autoimmun Rev. 2023;22:103273. doi:10.1016/j.autrev.2023.103273.
40Khosroshahi A, Wallace ZS, Crowe JL, Akamizu T, Azumi A, Carruthers MN, et al. International Consensus Guidance Statement on the Management and Treatment of IgG4-Related Disease. Arthritis Rheumatol. 2015;67:1688-99. doi:10.1002/art.39132.
41Yoshifuji H, Umehara H. Glucocorticoids in the treatment of IgG4-related disease-Prospects for new international treatment guidelines. Mod Rheumatol. 2023;33:252-7. doi:10.1093/mr/roac097.
42Masaki Y, Matsui S, Saeki T, Tsuboi H, Hirata S, Izumi Y, et al. A multicenter phase II prospective clinical trial of glucocorticoid for patients with untreated IgG4-related disease. Mod Rheumatol. 2017;27:849-54. doi:10.1080/14397595.2016.1259602.
43Kamisawa T, Shimosegawa T, Okazaki K, Nishino T, Watanabe H, Kanno A, et al. Standard steroid treatment for autoimmune pancreatitis. Gut. 2009;58:1504-7. doi:10.1136/gut.2008.172908.
44Yunyun F, Yu P, Panpan Z, Xia Z, Linyi P, Jiaxin Z, et al. Efficacy and safety of low dose Mycophenolate mofetil treatment for immunoglobulin G4-related disease: a randomized clinical trial. Rheumatology (Oxford). 2019;58:52-60. doi:10.1093/rheumatology/key227.
45Wang Y, Li K, Gao D, Luo G, Zhao Y, Wang X, et al. Combination therapy of leflunomide and glucocorticoids for the maintenance of remission in patients with IgG4-related disease: a retrospective study and literature review. Intern Med J. 2017;47:680-9. doi:10.1111/imj.13430.
46Hart PA, Topazian MD, Witzig TE, Clain JE, Gleeson FC, Klebig RR, et al. Treatment of relapsing autoimmune pancreatitis with immunomodulators and rituximab: the Mayo Clinic experience. Gut. 2013;62:1607-15. doi:10.1136/gutjnl-2012-302886.
47Campochiaro C, Della-Torre E, Lanzillotta M, Bozzolo E, Baldissera E, Milani R, et al. Long-term efficacy of maintenance therapy with Rituximab for IgG4-related disease. Eur J Intern Med. 2020;74:92-8. doi:10.1016/j.ejim.2019.12.029.
48Khosroshahi A, Bloch DB, Deshpande V, Stone JH. Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease. Arthritis Rheum. 2010;62:1755-62. doi:10.1002/art.27435.
49Carruthers MN, Topazian MD, Khosroshahi A, Witzig TE, Wallace ZS, Hart PA, et al. Rituximab for IgG4-related disease: a prospective, open-label trial. Ann Rheum Dis. 2015;74:1171-7. doi:10.1136/annrheumdis-2014-206605.
50Carruthers MN, Stone JH, Deshpande V, Khosroshahi A. Development of an IgG4-RD Responder Index. Int J Rheumatol. 2012;2012:259408. doi:10.1155/2012/259408.
51Ebbo M, Grados A, Samson M, Groh M, Loundou A, Rigolet A, et al. Long-term efficacy and safety of rituximab in IgG4-related disease: Data from a French nationwide study of thirty-three patients. PLoS One. 2017;12:e0183844. doi:10.1371/journal.pone.0183844.
52Martinez-Valle F, Fernandez-Codina A, Pinal-Fernandez I, Orozco-Galvez O, Vilardell-Tarres M. IgG4-related disease: Evidence from six recent cohorts. Autoimmun Rev. 2017;16:168-72. doi:10.1016/j.autrev.2016.12.008.
53Yamamoto M, Takano KI, Kamekura R, Suzuki C, Tabeya T, Murakami R, et al. Predicting therapeutic response in IgG4-related disease based on cluster analysis. Immunol Med. 2018;41:30-3. doi:10.1080/09114300.2018.1451613.
54Wallace ZS, Khosroshahi A, Carruthers MD, Perugino CA, Choi H, Campochiaro C, et al. An International Multispecialty Validation Study of the IgG4-Related Disease Responder Index. Arthritis Care Res (Hoboken). 2018;70:1671-8. doi:10.1002/acr.23543.
55Fernandez-Codina A, Pinilla B, Pinal-Fernandez I, Lopez C, Fraile-Rodriguez G, Fonseca-Aizpuru E, et al. Treatment and outcomes in patients with IgG4-related disease using the IgG4 responder index. Joint Bone Spine. 2018;85:721-6. doi:10.1016/j.jbspin.2018.01.014.
56Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42:419-30. doi:10.1016/j.immuni.2015.02.005.
57Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015;356:156-64. doi:10.1016/j.canlet.2014.04.001.
58Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. 2010;298:E141-5. doi:10.1152/ajpendo.00712.2009.
59Di Gialleonardo V, Wilson DM, Keshari KR. The Potential of Metabolic Imaging. Semin Nucl Med. 2016;46:28-39. doi:10.1053/j.semnuclmed.2015.09.004.
603.2 The Breakdown of Glucose/FDG from Injection to Cell Entry. In: Lin EC, Alavi A, editors. PET and PET/CT: A Clinical Guide. 3rd Edition ed: Thieme Medical Publishers, Inc.; 2019.
61Satomi T, Ogawa M, Mori I, Ishino S, Kubo K, Magata Y, et al. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J Nucl Med. 2013;54:999-1004. doi:10.2967/jnumed.112.110551.
62Kim MJ, Lee CH, Lee Y, Youn H, Kang KW, Kwon J, et al. Glucose-6-phosphatase Expression-Mediated [(18)F]FDG Efflux in Murine Inflammation and Cancer Models. Mol Imaging Biol. 2019;21:917-25. doi:10.1007/s11307-019-01316-7.
63Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33:1972-80.
64Matsui T, Nakata N, Nagai S, Nakatani A, Takahashi M, Momose T, et al. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2009;50:920-6. doi:10.2967/jnumed.108.060103.
65Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 1995;36:1301-6.
66Brewer S, McPherson M, Fujiwara D, Turovskaya O, Ziring D, Chen L, et al. Molecular imaging of murine intestinal inflammation with 2-deoxy-2-[18F]fluoro-D-glucose and positron emission tomography. Gastroenterology. 2008;135:744-55. doi:10.1053/j.gastro.2008.06.040.
67Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647-58. doi:10.2967/jnumed.112.112524.
687 Normal Variants and Benign Findings. In: Lin EC, Alavi A, editors. PET and PET/CT: A Clinical Guide. 3rd Edition ed: Thieme Medical Publishers, Inc.; 2019.
695 Standardized Uptake Value. In: Lin EC, Alavi A, editors. PET and PET/CT: A Clinical Guide. 3rd Edition ed: Thieme Medical Publishers, Inc.; 2019.
70Kostakoglu L, Chauvie S. Metabolic Tumor Volume Metrics in Lymphoma. Semin Nucl Med. 2018;48:50-66. doi:10.1053/j.semnuclmed.2017.09.005.
71Ramanathan RK, Goldstein D, Korn RL, Arena F, Moore M, Siena S, et al. Positron emission tomography response evaluation from a randomized phase III trial of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone for patients with metastatic adenocarcinoma of the pancreas. Ann Oncol. 2016;27:648-53. doi:10.1093/annonc/mdw020.
72Sahani DV, Bonaffini PA, Catalano OA, Guimaraes AR, Blake MA. State-of-the-art PET/CT of the pancreas: current role and emerging indications. Radiographics. 2012;32:1133-58; discussion 58-60. doi:10.1148/rg.324115143.
73Kamisawa T, Funata N, Hayashi Y, Eishi Y, Koike M, Tsuruta K, et al. A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol. 2003;38:982-4. doi:10.1007/s00535-003-1175-y.
74Nakazawa T, Ohara H, Sano H, Ando T, Imai H, Takada H, et al. Difficulty in diagnosing autoimmune pancreatitis by imaging findings. Gastrointest Endosc. 2007;65:99-108. doi:10.1016/j.gie.2006.03.929.
75Cheng MF, Guo YL, Yen RF, Chen YC, Ko CL, Tien YW, et al. Clinical Utility of FDG PET/CT in Patients with Autoimmune Pancreatitis: a Case-Control Study. Sci Rep. 2018;8:3651. doi:10.1038/s41598-018-21996-5.
76Nakajo M, Jinnouchi S, Fukukura Y, Tanabe H, Tateno R, Nakajo M. The efficacy of whole-body FDG-PET or PET/CT for autoimmune pancreatitis and associated extrapancreatic autoimmune lesions. Eur J Nucl Med Mol Imaging. 2007;34:2088-95. doi:10.1007/s00259-007-0562-7.
77Zhang J, Chen H, Ma Y, Xiao Y, Niu N, Lin W, et al. Characterizing IgG4-related disease with (1)(8)F-FDG PET/CT: a prospective cohort study. Eur J Nucl Med Mol Imaging. 2014;41:1624-34. doi:10.1007/s00259-014-2729-3.
78Chang MC, Liang PC, Jan S, Yang CY, Tien YW, Wei SC, et al. Increase diagnostic accuracy in differentiating focal type autoimmune pancreatitis from pancreatic cancer with combined serum IgG4 and CA19-9 levels. Pancreatology. 2014;14:366-72. doi:10.1016/j.pan.2014.07.010.
79Yamamoto M, Takahashi H, Tabeya T, Suzuki C, Naishiro Y, Ishigami K, et al. Risk of malignancies in IgG4-related disease. Mod Rheumatol. 2012;22:414-8. doi:10.1007/s10165-011-0520-x.
80Shiokawa M, Kodama Y, Yoshimura K, Kawanami C, Mimura J, Yamashita Y, et al. Risk of cancer in patients with autoimmune pancreatitis. Am J Gastroenterol. 2013;108:610-7. doi:10.1038/ajg.2012.465.
81Orlhac F, Theze B, Soussan M, Boisgard R, Buvat I. Multiscale Texture Analysis: From 18F-FDG PET Images to Histologic Images. J Nucl Med. 2016;57:1823-8. doi:10.2967/jnumed.116.173708.
82Otsuki M, Chung JB, Okazaki K, Kim MH, Kamisawa T, Kawa S, et al. Asian diagnostic criteria for autoimmune pancreatitis: consensus of the Japan-Korea Symposium on Autoimmune Pancreatitis. J Gastroenterol. 2008;43:403-8. doi:10.1007/s00535-008-2205-6.
83Wu YW, Tseng PH, Lee YC, Wang SY, Chiu HM, Tu CH, et al. Association of esophageal inflammation, obesity and gastroesophageal reflux disease: from FDG PET/CT perspective. PLoS One. 2014;9:e92001. doi:10.1371/journal.pone.0092001.
84Ito T, Nishimori I, Inoue N, Kawabe K, Gibo J, Arita Y, et al. Treatment for autoimmune pancreatitis: consensus on the treatment for patients with autoimmune pancreatitis in Japan. J Gastroenterol. 2007;42 Suppl 18:50-8. doi:10.1007/s00535-007-2051-y.
85Lee HW, Moon SH, Kim MH, Cho DH, Jun JH, Nam K, et al. Relapse rate and predictors of relapse in a large single center cohort of type 1 autoimmune pancreatitis: long-term follow-up results after steroid therapy with short-duration maintenance treatment. J Gastroenterol. 2018;53:967-77. doi:10.1007/s00535-018-1434-6.
86Park DH, Kim MH, Oh HB, Kwon OJ, Choi YJ, Lee SS, et al. Substitution of aspartic acid at position 57 of the DQbeta1 affects relapse of autoimmune pancreatitis. Gastroenterology. 2008;134:440-6. doi:10.1053/j.gastro.2007.11.023.
87Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl Med. 2015;56:1667-73. doi:10.2967/jnumed.115.156927.
88Berti A, Della-Torre E, Gallivanone F, Canevari C, Milani R, Lanzillotta M, et al. Quantitative measurement of 18F-FDG PET/CT uptake reflects the expansion of circulating plasmablasts in IgG4-related disease. Rheumatology (Oxford). 2017;56:2084-92. doi:10.1093/rheumatology/kex234.
89Orozco-Galvez O, Fernandez-Codina A, Simo-Perdigo M, Pinal-Fernandez I, Martinez-Valle F. Response to Treatment in IgG4-Related Disease Assessed by Quantitative PET/CT Scan. Clin Nucl Med. 2021;46:e307-e11. doi:10.1097/RLU.0000000000003537.
90EANM’16. European Journal of Nuclear Medicine and Molecular Imaging. 2016;43:1-734. doi:10.1007/s00259-016-3484-4.
91Khosroshahi A, Stone JH. IgG4-related systemic disease: the age of discovery. Curr Opin Rheumatol. 2011;23:72-3. doi:10.1097/BOR.0b013e328341a229.
92Raina A, Yadav D, Krasinskas AM, McGrath KM, Khalid A, Sanders M, et al. Evaluation and management of autoimmune pancreatitis: experience at a large US center. Am J Gastroenterol. 2009;104:2295-306. doi:10.1038/ajg.2009.325.
93Stone JH, Brito-Zeron P, Bosch X, Ramos-Casals M. Diagnostic Approach to the Complexity of IgG4-Related Disease. Mayo Clin Proc. 2015;90:927-39. doi:10.1016/j.mayocp.2015.03.020.
94Shimosegawa T, Chari ST, Frulloni L, Kamisawa T, Kawa S, Mino-Kenudson M, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas. 2011;40:352-8. doi:10.1097/MPA.0b013e3182142fd2.
95Ryu JH, Horie R, Sekiguchi H, Peikert T, Yi ES. Spectrum of Disorders Associated with Elevated Serum IgG4 Levels Encountered in Clinical Practice. Int J Rheumatol. 2012;2012:232960. doi:10.1155/2012/232960.
96Hirano K, Tada M, Sasahira N, Isayama H, Mizuno S, Takagi K, et al. Incidence of malignancies in patients with IgG4-related disease. Intern Med. 2014;53:171-6. doi:10.2169/internalmedicine.53.1342.
97Ebbo M, Grados A, Guedj E, Gobert D, Colavolpe C, Zaidan M, et al. Usefulness of 2-[18F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography for staging and evaluation of treatment response in IgG4-related disease: a retrospective multicenter study. Arthritis Care Res (Hoboken). 2014;66:86-96. doi:10.1002/acr.22058.
98Matsubayashi H, Furukawa H, Maeda A, Matsunaga K, Kanemoto H, Uesaka K, et al. Usefulness of positron emission tomography in the evaluation of distribution and activity of systemic lesions associated with autoimmune pancreatitis. Pancreatology. 2009;9:694-9. doi:10.1159/000199439.
99Chen H, Lin W, Wang Q, Wu Q, Wang L, Fei Y, et al. IgG4-related disease in a Chinese cohort: a prospective study. Scand J Rheumatol. 2014;43:70-4. doi:10.3109/03009742.2013.822094.
100Huggett MT, Culver EL, Kumar M, Hurst JM, Rodriguez-Justo M, Chapman MH, et al. Type 1 autoimmune pancreatitis and IgG4-related sclerosing cholangitis is associated with extrapancreatic organ failure, malignancy, and mortality in a prospective UK cohort. Am J Gastroenterol. 2014;109:1675-83. doi:10.1038/ajg.2014.223.
101Kamisawa T, Kim MH, Liao WC, Liu Q, Balakrishnan V, Okazaki K, et al. Clinical characteristics of 327 Asian patients with autoimmune pancreatitis based on Asian diagnostic criteria. Pancreas. 2011;40:200-5. doi:10.1097/mpa.0b013e3181fab696.
102Li W, Chen Y, Sun ZP, Cai ZG, Li TT, Zhang L, et al. Clinicopathological characteristics of immunoglobulin G4-related sialadenitis. Arthritis Res Ther. 2015;17:186. doi:10.1186/s13075-015-0698-y.
103Nabaa B, Takahashi K, Sasaki T, Okizaki A, Aburano T. Assessment of salivary gland dysfunction after radioiodine therapy for thyroid carcinoma using non-contrast-enhanced CT: the significance of changes in volume and attenuation of the glands. AJNR Am J Neuroradiol. 2012;33:1964-70. doi:10.3174/ajnr.A3063.
104Wang Z, Feng R, Chen Y, Duan M, Wang M, Jin Z, et al. CT features and pathologic characteristics of IgG4-related systemic disease of submandibular gland. Int J Clin Exp Pathol. 2015;8:16111-6.
105Ghazale AH, Chari ST, Vege SS. Update on the diagnosis and treatment of autoimmune pancreatitis. Curr Gastroenterol Rep. 2008;10:115-21. doi:10.1007/s11894-008-0031-x.
106Hart PA, Kamisawa T, Brugge WR, Chung JB, Culver EL, Czako L, et al. Long-term outcomes of autoimmune pancreatitis: a multicentre, international analysis. Gut. 2013;62:1771-6. doi:10.1136/gutjnl-2012-303617.
107Park SW, Chung JB, Otsuki M, Kim MH, Lim JH, Kawa S, et al. Conference report: Korea-Japan symposium on autoimmune pancreatitis. Gut Liver. 2008;2:81-7. doi:10.5009/gnl.2008.2.2.81.
108Peng Y, Li JQ, Zhang PP, Zhang X, Peng LY, Chen H, et al. Clinical outcomes and predictive relapse factors of IgG4-related disease following treatment: a long-term cohort study. J Intern Med. 2019;286:542-52. doi:10.1111/joim.12942.
109Sandanayake NS, Church NI, Chapman MH, Johnson GJ, Dhar DK, Amin Z, et al. Presentation and management of post-treatment relapse in autoimmune pancreatitis/immunoglobulin G4-associated cholangitis. Clin Gastroenterol Hepatol. 2009;7:1089-96. doi:10.1016/j.cgh.2009.03.021.
110Miki M, Fujimori N, Oono T, Kawabe K, Ohno A, Matsumoto K, et al. Relapse patterns and predictors of IgG4-related diseases involved with autoimmune pancreatitis: A single-center retrospective study of 115 patients. J Dig Dis. 2019;20:152-8. doi:10.1111/1751-2980.12708.
111Kubota K, Kamisawa T, Okazaki K, Kawa S, Hirano K, Hirooka Y, et al. Low-dose maintenance steroid treatment could reduce the relapse rate in patients with type 1 autoimmune pancreatitis: a long-term Japanese multicenter analysis of 510 patients. J Gastroenterol. 2017;52:955-64. doi:10.1007/s00535-016-1302-1.
112Culver EL, Sadler R, Simpson D, Cargill T, Makuch M, Bateman AC, et al. Elevated Serum IgG4 Levels in Diagnosis, Treatment Response, Organ Involvement, and Relapse in a Prospective IgG4-Related Disease UK Cohort. Am J Gastroenterol. 2016;111:733-43. doi:10.1038/ajg.2016.40.
113Parghane RV, Basu S. PET-CTBased Quantitative Parameters for Assessment of Treatment Response and Disease Activity in Cancer and Noncancerous Disorders. PET Clin. 2022;17:465-78. doi:10.1016/j.cpet.2022.03.006.
114Sarikaya I, Sarikaya A. Assessing PET Parameters in Oncologic (18)F-FDG Studies. J Nucl Med Technol. 2020;48:278-82. doi:10.2967/jnmt.119.236109.
115Nakatsuka Y, Handa T, Nakamoto Y, Nobashi T, Yoshihuji H, Tanizawa K, et al. Total lesion glycolysis as an IgG4-related disease activity marker. Mod Rheumatol. 2015;25:579-84. doi:10.3109/14397595.2014.990674.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top