( 您好!臺灣時間:2024/07/16 11:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yi-Chang Wu
論文名稱(外文):Hierarchical and Porous Carbon Structures Based on Vapor-Phase Polymerization and Pyrolysis Process
指導教授(外文):Hsien-Yeh Chen
口試委員(外文):Jia-Shing YuPo-Chun Chen
外文關鍵詞:Vapor-phase polymerizationcarbon materialhierarchical porous structurethermal insulation performance
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
As the issue of global warming grows more severe, the importance of green environmental consciousness is on the rise. Research fields such as energy storage, gas adsorption, and electrochemical catalysis are seeing rapid development, with carbon materials playing an essential role in these areas. In this study, a hierarchical porous polymer material was formed through gas-phase polymerization and carbonized at high temperature to yield a hierarchically porous carbon structure that maintained its morphology due to the addition of silicate. Differing from the encapsulation of solid materials using methods like the hard-template approach, this novel fabrication process provides a time-efficient and eco-friendly synthesis route for porous carbon with larger pore sizes. It was from the CVD process of temporal foam-like ice-template. The cell window was from the original occupied space of air volume, forming primary pore sizes from approximately 100 micrometers to centimeters. On the other hand, the strut underwent a freeze-drying process, resulting in the formation of a secondary pore structure with pore sizes around 10 micrometers. There is a conformal carbon film on the framework of laponite due to the carbonization of dense parylene film coating. To emphasize the characteristics of highly tunable morphology of this approach, we presented a sample with fractal structure, showing their potential for various application. Moreover, a straightforward thermal insulation test indicated the excellent thermal insulation performance of this foam-like carbon structure.
摘要 I
Abstract II
Content III
List of Figures V
Chapter 1 Introduction 1
1.1 Classification of Carbon-based materials 1
1.2 Porous Carbon 3
1.3 Hierarchical Porous Carbon 6
1.4 Chemical Vapor Polymerization 7
Chapter 2 Experimental 9
2.1 Characterizations 9
2.1.1 Thermogravimetric analysis (TGA) 9
2.1.2 Raman spectroscopy 9
2.1.3 X-ray diffraction 9
2.1.4 Scanning electron microscopy (SEM) 10
2.1.5 3D profile microscope 10
2.1.6 Nitrogen adsorption-desorption isotherm (BET) 10
2.1.7 Atomic force microscope (AFM) 10
2.2 Temporal bubble structures 11
2.3 Vapor phase polymerization and water sublimation process 12
Chapter 3 Results and Discussion 13
3.1 Carbonization process 13
3.1.1 Material characterizations 15
3.1.2 Morphology change 18
3.2 Structural integrity improvement 21
3.3 Hierarchical porous structure 23
3.3.1 Hierarchy structure 23
3.3.2 Tunable morphology of foam-like structure 26
3.3.3 Thermal insulation test 28
Chapter 4 Conclusion 31
4.1 Conclusion 31
4.2 Future work 32
Reference 34
Appendix 39
(1) Thapliyal, V.; Alabdulkarim, M. E.; Whelan, D. R.; Mainali, B.; Maxwell, J. L. A concise review of the Raman spectra of carbon allotropes. Diamond and Related Materials 2022, 127, 109180. DOI: 10.1016/j.diamond.2022.109180.
(2) Schwander, M.; Partes, K. A review of diamond synthesis by CVD processes. Diamond and Related Materials 2011, 20 (9), 1287-1301. DOI: 10.1016/j.diamond.2011.08.005.
(3) Mohan, V. B.; Lau, K.-t.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering 2018, 142, 200-220. DOI: 10.1016/j.compositesb.2018.01.013.
(4) Casari, C. S.; Milani, A. Carbyne: from the elusive allotrope to stable carbon atom wires. MRS Communications 2018, 8 (2), 207-219. DOI: 10.1557/mrc.2018.48 From Cambridge University Press Cambridge Core.
(5) Acquah, S. F. A.; Penkova, A. V.; Markelov, D. A.; Semisalova, A. S.; Leonhardt, B. E.; Magi, J. M. Review—The Beautiful Molecule: 30 Years of C60 and Its Derivatives. ECS Journal of Solid State Science and Technology 2017, 6 (6), M3155. DOI: 10.1149/2.0271706jss.
(6) Younis, M. R.; He, G.; Lin, J.; Huang, P. Recent Advances on Graphene Quantum Dots for Bioimaging Applications. Frontiers in Chemistry 2020, 8, Review. DOI: 10.3389/fchem.2020.00424.
(7) Xu, Q.; Li, W.; Ding, L.; Yang, W.; Xiao, H.; Ong, W.-J. Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale 2019, 11 (4), 1475-1504, 10.1039/C8NR08738E. DOI: 10.1039/C8NR08738E.
(8) Kirchner, E.-M.; Hirsch, T. Recent developments in carbon-based two-dimensional materials: synthesis and modification aspects for electrochemical sensors. Microchimica Acta 2020, 187 (8), 441. DOI: 10.1007/s00604-020-04415-3.
(9) Sun, Z.; Fang, S.; Hu, Y. H. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chemical Reviews 2020, 120 (18), 10336-10453. DOI: 10.1021/acs.chemrev.0c00083.
(10) Feng, J.; Zheng, D.; Gao, X.; Que, W.; Shi, W.; Liu, W.; Wu, F.; Cao, X. Three-Dimensional Ordered Porous Carbon for Energy Conversion and Storage Applications. Frontiers in Energy Research 2020, 8, Mini Review. DOI: 10.3389/fenrg.2020.00210.
(11) Bianco, A.; Cheng, H.-M.; Enoki, T.; Gogotsi, Y.; Hurt, R. H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C. R.; Tascon, J. M. D.; et al. All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon 2013, 65, 1-6. DOI: 10.1016/j.carbon.2013.08.038.
(12) Pavlenko, V.; Khosravi H, S.; Żółtowska, S.; Haruna, A. B.; Zahid, M.; Mansurov, Z.; Supiyeva, Z.; Galal, A.; Ozoemena, K. I.; Abbas, Q.; et al. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Materials Science and Engineering: R: Reports 2022, 149, 100682. DOI: 10.1016/j.mser.2022.100682.
(13) Wu, L.; Li, Y.; Fu, Z.; Su, B. L. Hierarchically structured porous materials: synthesis strategies and applications in energy storage. Natl Sci Rev 2020, 7 (11), 1667-1701. DOI: 10.1093/nsr/nwaa183 From NLM.
(14) Xia, Y.; Yang, Z.; Mokaya, R. Templated nanoscale porous carbons. Nanoscale 2010, 2 5, 639-659.
(15) Wang, C.; Yan, B.; Zheng, J.; Feng, L.; Chen, Z.; Zhang, Q.; Liao, T.; Chen, J.; Jiang, S.; Du, C.; et al. Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Advanced Powder Materials 2022, 1 (2), 100018. DOI: 10.1016/j.apmate.2021.11.005.
(16) Xiang, Y.; Lu, L.; Kottapalli, A. G. P.; Pei, Y. Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium–sulfur batteries. Carbon Energy 2022, 4 (3), 346-398. DOI: 10.1002/cey2.185.
(17) Luo, X.; Chen, S.; Hu, T.; Chen, Y.; Li, F. Renewable biomass-derived carbons for electrochemical capacitor applications. SusMat 2021, 1 (2), 211-240. DOI: 10.1002/sus2.8.
(18) Heidarinejad, Z.; Dehghani, M. H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters 2020, 18 (2), 393-415. DOI: 10.1007/s10311-019-00955-0.
(19) Lee, J.-H.; Park, S.-J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon 2020, 163, 1-18. DOI: 10.1016/j.carbon.2020.02.073.
(20) Enterría, M.; Figueiredo, J. L. Nanostructured mesoporous carbons: Tuning texture and surface chemistry. Carbon 2016, 108, 79-102. DOI: 10.1016/j.carbon.2016.06.108.
(21) Fu, R.-w.; Li, Z.-h.; Liang, Y.-r.; Li, F.; Xu, F.; Wu, D.-c. Hierarchical porous carbons: design, preparation, and performance in energy storage. New Carbon Materials 2011, 26 (3), 171-179. DOI: 10.1016/S1872-5805(11)60074-7.
(22) Zhang, L.; Yang, X.; Zhang, F.; Long, G.; Zhang, T.; Leng, K.; Zhang, Y.; Huang, Y.; Ma, Y.; Zhang, M.; et al. Controlling the Effective Surface Area and Pore Size Distribution of sp2 Carbon Materials and Their Impact on the Capacitance Performance of These Materials. Journal of the American Chemical Society 2013, 135 (15), 5921-5929. DOI: 10.1021/ja402552h.
(23) Seymour, J. P.; Elkasabi, Y. M.; Chen, H.-Y.; Lahann, J.; Kipke, D. R. The insulation performance of reactive parylene films in implantable electronic devices. Biomaterials 2009, 30 (31), 6158-6167. DOI: 10.1016/j.biomaterials.2009.07.061.
(24) Valle, J. d.; Oliva, N. d. l.; Müller, M.; Stieglitz, T.; Navarro, X. Biocompatibility evaluation of parylene C and polyimide as substrates for peripheral nerve interfaces. In 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 22-24 April 2015, 2015; pp 442-445. DOI: 10.1109/NER.2015.7146654.
(25) Humphrey, B. J. The Application of Parylene Conformal Coating Technology to Archival and Artifact Conservation. Studies in Conservation 1984, 29 (3), 117-123. DOI: 10.2307/1506013 (acccessed 2023/04/20/).JSTOR.
(26) Gorham, W. F. A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of Polymer Science Part A-1: Polymer Chemistry 1966, 4 (12), 3027-3039, DOI: 10.1002/pol.1966.150041209 (acccessed 2023/04/18).
(27) Fortin, J. B.; Lu, T. M. A Model for the Chemical Vapor Deposition of Poly(para-xylylene) (Parylene) Thin Films. Chemistry of Materials 2002, 14 (5), 1945-1949. DOI: 10.1021/cm010454a.
(28) Tung, H.-Y.; Sun, T.-P.; Sun, H.-Y.; Guan, Z.-Y.; Hu, S.-K.; Chao, L.; Chen, H.-Y. Construction and control of 3D porous structure based on vapor deposition on sublimation solids. Applied Materials Today 2017, 7, 77-81. DOI: 10.1016/j.apmt.2016.12.005.
(29) Chang, Y.-M.; Xiao, J.-Q.; Christy, J.; Wu, C.-Y.; Huang, C.-W.; Wu, T.-Y.; Chiang, Y.-C.; Lin, T.-H.; Chen, H.-Y. Ice-templated synthesis of multicomponent porous coatings via vapour sublimation and deposition polymerization. Materials Today Bio 2022, 16, 100403. DOI: 10.1016/j.mtbio.2022.100403.
(30) Liu, Y.; Kang, D.; Dai, W.; Li, H.; Wang, W.; Tai, Y.-C. Highly controllable and reliable ultra-thin Parylene deposition. Micro and Nano Systems Letters 2018, 6 (1), 5. DOI: 10.1186/s40486-018-0067-0.
(31) Ullah, S.; Yang, X.; Ta, H. Q.; Hasan, M.; Bachmatiuk, A.; Tokarska, K.; Trzebicka, B.; Fu, L.; Rummeli, M. H. Graphene transfer methods: A review. Nano Research 2021, 14 (11), 3756-3772. DOI: 10.1007/s12274-021-3345-8.
(32) Forouzanfar, S.; Pala, N.; Madou, M.; Wang, C. Perspectives on C-MEMS and C-NEMS biotech applications. Biosensors and Bioelectronics 2021, 180, 113119. DOI: 10.1016/j.bios.2021.113119.
(33) Richa, A.; Majid, B.; Wei, C.; Chunlei, W. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors. In Proc.SPIE, 2015; Vol. 9493, p 94930C. DOI: 10.1117/12.2180122.
(34) Oberlin, A. Carbonization and graphitization. Carbon 1984, 22 (6), 521-541. DOI: 10.1016/0008-6223(84)90086-1.
(35) Natu, R.; Islam, M.; Gilmore, J.; Martinez-Duarte, R. Shrinkage of SU-8 microstructures during carbonization. Journal of Analytical and Applied Pyrolysis 2018, 131, 17-27. DOI: 10.1016/j.jaap.2018.02.015.
(36) Jenkins, G. M.; Kawamura, K. Polymeric carbons: carbon fibre, glass and char; Cambridge University Press, 1976.
(37) Sharma, S. Glassy Carbon: A Promising Material for Micro- and Nanomanufacturing. In Materials, 2018; Vol. 11.
(38) Joesten, B. L. Thermogravimetry and differential scanning calorimetry of some poly-p-xylylenes containing halogen atoms. Journal of Applied Polymer Science 1974, 18 (2), 439-448. DOI: 10.1002/app.1974.070180211.
(39) Sharma, S.; Rostas, A. M.; Bordonali, L.; MacKinnon, N.; Weber, S.; Korvink, J. G. Micro and nano patternable magnetic carbon. Journal of Applied Physics 2016, 120 (23). DOI: 10.1063/1.4972476 (acccessed 4/21/2023).
(40) Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews 2018, 47 (5), 1822-1873, 10.1039/C6CS00915H. DOI: 10.1039/C6CS00915H.
(41) Yang, M.; Jeong, S. W.; Chang, S. J.; Kim, K. H.; Jang, M.; Kim, C. H.; Bae, N. H.; Sim, G. S.; Kang, T.; Lee, S. J.; et al. Flexible and Disposable Sensing Platforms Based on Newspaper. ACS Applied Materials & Interfaces 2016, 8 (51), 34978-34984. DOI: 10.1021/acsami.6b10298.
(42) Song, Z.; Park, J.-H.; Kim, H.-R.; Lee, G.-Y.; Kang, M.-J.; Kim, M.-H.; Pyun, J.-C. Carbon electrode obtained via pyrolysis of plasma-deposited parylene-C for electrochemical immunoassays. Analyst 2022, 147 (16), 3783-3794, 10.1039/D2AN00854H. DOI: 10.1039/D2AN00854H.
(43) Mathur, M. S.; Weir, N. A. Laser raman and infrared spectrum of poly-p-xylylene. Journal of Molecular Structure 1973, 15 (3), 459-463. DOI: 10.1016/0022-2860(73)80016-X.
(44) Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 2000, 61 (20), 14095-14107. DOI: 10.1103/PhysRevB.61.14095.
(45) Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nature Communications 2014, 5 (1), 5714. DOI: 10.1038/ncomms6714.
(46) Childres, I.; Jauregui, L. A.; Park, W.; Cao, H.; Chen, Y. P. Raman spectroscopy of graphene and related materials. New developments in photon and materials research 2013, 1.
(47) Hsu, J.-M.; Rieth, L. W.; Kammer, S.; Orthner, M. P.; Solzbacher, F. Effect of thermal and deposition processes on surface morphology, crystallinity, and adhesion of Parylene-C. Sensors and Materials 2008, 20, 87-102.
(48) Rajan, A. S.; Sampath, S.; Shukla, A. K. An in situ carbon-grafted alkaline iron electrode for iron-based accumulators. Energy & Environmental Science 2014, 7 (3), 1110-1116, 10.1039/C3EE42783H. DOI: 10.1039/C3EE42783H.
(49) Zakhurdaeva, A.; Dietrich, P.-I.; Hölscher, H.; Koos, C.; Korvink, J. G.; Sharma, S. Custom-Designed Glassy Carbon Tips for Atomic Force Microscopy. Micromachines 2017, 8 (9), 285.
(50) Tomás, H.; Alves, C. S.; Rodrigues, J. Laponite®: A key nanoplatform for biomedical applications? Nanomedicine 2018, 14 (7), 2407-2420. From NLM.
(51) Shao, G.; Hanaor, D. A. H.; Shen, X.; Gurlo, A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications. Advanced Materials 2020, 32 (17), 1907176. DOI: 10.1002/adma.201907176.
(52) Ghaedi, H.; Zhao, M. Review on Template Removal Techniques for Synthesis of Mesoporous Silica Materials. Energy & Fuels 2022, 36 (5), 2424-2446. DOI: 10.1021/acs.energyfuels.1c04435.
(53) Yu, X.; Lu, Z.; Zhai, W. Enhancing the flow resistance and sound absorption of open-cell metallic foams by creating partially-open windows. Acta Materialia 2021, 206, 116666. DOI: 10.1016/j.actamat.2021.116666.
(54) Chiu, Y.-R.; Hsu, Y.-T.; Wu, C.-Y.; Lin, T.-H.; Yang, Y.-Z.; Chen, H.-Y. Fabrication of Asymmetrical and Gradient Hierarchy Structures of Poly-p-xylylenes on Multiscale Regimes Based on a Vapor-Phase Sublimation and Deposition Process. Chemistry of Materials 2020, 32 (3), 1120-1130. DOI: 10.1021/acs.chemmater.9b04047.
(55) Lakes, R. Materials with structural hierarchy. Nature 1993, 361 (6412), 511-515. DOI: 10.1038/361511a0.
(56) Dalwadi, M. P.; Griffiths, I. M.; Bruna, M. Understanding how porosity gradients can make a better filter using homogenization theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 471 (2182), 20150464. DOI: 10.1098/rspa.2015.0464.
(57) Fu, Z.; Corker, J.; Papathanasiou, T.; Wang, Y.; Zhou, Y.; Madyan, O. A.; Liao, F.; Fan, M. Critical review on the thermal conductivity modelling of silica aerogel composites. Journal of Building Engineering 2022, 57, 104814. DOI: 10.1016/j.jobe.2022.104814.
(58) Abraham, E.; Cherpak, V.; Senyuk, B.; ten Hove, J. B.; Lee, T.; Liu, Q.; Smalyukh, I. I. Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nature Energy 2023, 8 (4), 381-396. DOI: 10.1038/s41560-023-01226-7.
(59) Wiener, M.; Reichenauer, G.; Braxmeier, S.; Hemberger, F.; Ebert, H. P. Carbon Aerogel-Based High-Temperature Thermal Insulation. International Journal of Thermophysics 2009, 30 (4), 1372-1385. DOI: 10.1007/s10765-009-0595-1.
(60) Zhang, H.; Feng, J.; Li, L.; Jiang, Y.; Feng, J. Preparation of a carbon fibre-reinforced carbon aerogel and its application as a high-temperature thermal insulator. RSC Advances 2022, 12 (22), 13783-13791, 10.1039/D2RA00276K. DOI: 10.1039/D2RA00276K.
(61) Wei, J.; Liao, M.; Ma, A.; Chen, Y.; Duan, Z.; Hou, X.; Li, M.; Jiang, N.; Yu, J. Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber. Composites Communications 2020, 17, 141-146. DOI: 10.1016/j.coco.2019.12.004.
(62) Giri, A.; Dionne, C. J.; Hopkins, P. E. Atomic coordination dictates vibrational characteristics and thermal conductivity in amorphous carbon. npj Computational Materials 2022, 8 (1), 55. DOI: 10.1038/s41524-022-00741-7.
電子全文 電子全文(網際網路公開日期:20250701)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top