|
(1) Godin, J.; Liu, W.; Ren, S.; Xu, C. C. Advances in recovery and utilization of carbon dioxide: A brief review. Journal of Environmental Chemical Engineering 2021, 9 (4), 105644. DOI: https://doi.org/10.1016/j.jece.2021.105644. (2) Kamkeng, A. D. N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem. Eng. J. 2021, 409, 128138. DOI: https://doi.org/10.1016/j.cej.2020.128138. (3) Alok, A.; Shrestha, R.; Ban, S.; Devkota, S.; Uprety, B.; Joshi, R. Technological advances in the transformative utilization of CO2 to value-added products. Journal of Environmental Chemical Engineering 2022, 10 (1), 106922. DOI: https://doi.org/10.1016/j.jece.2021.106922. (4) Desport, L.; Selosse, S. Perspectives of CO2 utilization as a negative emission technology. Sustainable Energy Technologies and Assessments 2022, 53, 102623. DOI: https://doi.org/10.1016/j.seta.2022.102623. (5) Change, I. C. Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change 2014, 1454, 147. (6) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science 2010, 3 (1), 43-81, 10.1039/B912904A. DOI: 10.1039/B912904A. (7) Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P. R. Global Warming of 1.5 C: IPCC special report on impacts of global warming of 1.5 C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty; Cambridge University Press, 2022. (8) Kim, C.; Yoo, C.-J.; Oh, H.-S.; Min, B. K.; Lee, U. Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization 2022, 65, 102239. DOI: https://doi.org/10.1016/j.jcou.2022.102239. (9) Pires, J. C. M. Negative emissions technologies: A complementary solution for climate change mitigation. Sci. Total Environ. 2019, 672, 502-514. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.004. (10) Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575 (7781), 87-97. DOI: 10.1038/s41586-019-1681-6. (11) Morgan, A.; Ampomah, W.; Grigg, R.; Dai, Z.; You, J.; Wang, S. Techno-economic life cycle assessment of CO2-EOR operations towards net negative emissions at farnsworth field unit. Fuel 2023, 342, 127897. (12) Valluri, S.; Claremboux, V.; Kawatra, S. Opportunities and challenges in CO2 utilization. Journal of Environmental Sciences 2022, 113, 322-344. DOI: https://doi.org/10.1016/j.jes.2021.05.043. (13) Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. In Green Chemistry, 2003; Vol. 5, pp 497-507. DOI: 10.1039/b304963a. (14) Desport, L.; Selosse, S. An overview of CO2 capture and utilization in energy models. Resources, Conservation and Recycling 2022, 180, 106150. DOI: https://doi.org/10.1016/j.resconrec.2021.106150. (15) Seifritz, W. CO2 disposal by means of silicates [12]. Nature 1990, 345 (6275), 486, Letter. DOI: 10.1038/345486b0 Scopus. (16) Chauvy, R.; Meunier, N.; Thomas, D.; De Weireld, G. Selecting emerging CO2 utilization products for short- to mid-term deployment. Applied Energy 2019, 236, 662-680. DOI: 10.1016/j.apenergy.2018.11.096. (17) Bansode, A.; Urakawa, A. Continuous DMC Synthesis from CO2 and Methanol over a CeO2 Catalyst in a Fixed Bed Reactor in the Presence of a Dehydrating Agent. ACS Catalysis 2014, 4 (11), 3877-3880. DOI: 10.1021/cs501221q. (18) Tomishige, K.; Tamura, M.; Nakagawa, Y. CO2 Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO2 Catalyst in the Presence and Absence of 2-Cyanopyridine. The Chemical Record 2019, 19 (7), 1354-1379. DOI: https://doi.org/10.1002/tcr.201800117. (19) Tomishige, K.; Gu, Y.; Nakagawa, Y.; Tamura, M. Reaction of CO2 With Alcohols to Linear-, Cyclic-, and Poly-Carbonates Using CeO2-Based Catalysts. Frontiers in Energy Research 2020, 8. DOI: 10.3389/fenrg.2020.00117. (20) Tomishige, K.; Gu, Y.; Chang, T.; Tamura, M.; Nakagawa, Y. Catalytic function of CeO2 in non-reductive conversion of CO2 with alcohols. Materials Today Sustainability 2020, 9. DOI: 10.1016/j.mtsust.2020.100035. (21) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. The Journal of chemical physics 1998, 109 (18), 7764-7776. (22) Klamt, A.; Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2 1993, (5), 799-805. (23) Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. W. Refinement and Parametrization of COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 5074-5085. DOI: 10.1021/jp980017s. (24) Peng, D.-Y.; Robinson, D. B. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals 1976, 15 (1), 59-64. (25) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. Gaussian‐2 theory for molecular energies of first‐and second‐row compounds. The Journal of chemical physics 1991, 94 (11), 7221-7230. (26) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. The Journal of Chemical Physics 1982, 77 (7), 3654-3665. (27) Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Physical Review 1934, 46 (7), 618-622. DOI: 10.1103/PhysRev.46.618. (28) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Gaussian-4 theory. The Journal of Chemical Physics 2007, 126 (8), 084108. DOI: 10.1063/1.2436888. (29) Slater, J. C. A Simplification of the Hartree-Fock Method. Physical Review 1951, 81 (3), 385-390. DOI: 10.1103/PhysRev.81.385. (30) Pople, J. A.; Schlegel, H. B.; Krishnan, R.; Defrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J. Molecular orbital studies of vibrational frequencies. Int. J. Quantum Chem 2009, 20 (S15), 269-278. DOI: 10.1002/qua.560200829. (31) Sandler, S. I. An introduction to applied statistical thermodynamics; John Wiley & Sons, 2010. (32) McQuarrie, D. A.; Simon, J. D. Molecular thermodynamics; Sterling Publishing Company, 1999. (33) Ochterski, J. W. Thermochemistry in gaussian. Gaussian Inc 2000, 1, 1-19. (34) Chase, M. W.; Organization, N. I. S. NIST-JANAF thermochemical tables; American Chemical Society Washington, DC, 1998. (35) Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27 (6), 1197-1203. (36) Ben-Naim, A. Y. Solvation thermodynamics; Springer Science & Business Media, 2013. (37) Lin, S.-T.; Hsieh, C.-M.; Lee, M.-T. Solvation and chemical engineering thermodynamics. J. Chin. Inst. Chem. Eng, 2007, 38 (5-6), 467-476. (38) Abbott, M. M.; Prausnitz, J. M. Generalized van der Waals theory: A classical perspective. Fluid Phase Equilib. 1987, 37, 29-62. (39) Liang, H.-H.; Li, J.-Y.; Wang, L.-H.; Lin, S.-T.; Hsieh, C.-M. Improvement to PR+ COSMOSAC EOS for predicting the vapor pressure of nonelectrolyte organic solids and liquids. Industrial & Engineering Chemistry Research 2019, 58 (12), 5030-5040. (40) Lin, S.-T.; Chang, J.; Wang, S.; Goddard, W. A.; Sandler, S. I. Prediction of Vapor Pressures and Enthalpies of Vaporization Using a COSMO Solvation Model. The Journal of Physical Chemistry A 2004, 108 (36), 7429-7439. DOI: 10.1021/jp048813n. (41) Hsieh, C.-M.; Lin, S.-T. Determination of Cubic Equation of State Parameters for Pure Fluids From First Principle Solvation Calculations. AIChE Journal 2008, 54, 2174-2181. DOI: 10.1002/aic.11552. (42) Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. The Journal of Physical Chemistry 1995, 99 (7), 2224-2235. DOI: 10.1021/j100007a062. (43) Lin, S.-T.; Sandler, S. I. A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & engineering chemistry research 2002, 41 (5), 899-913. (44) Hsieh, C.-M.; Lin, S.-T. Prediction of liquid–liquid equilibrium from the Peng–Robinson+COSMOSAC equation of state. Chem. Eng. Sci. 2010, 65 (6), 1955-1963. DOI: https://doi.org/10.1016/j.ces.2009.11.036. (45) Pitzer, K. S. The Volumetric and Thermodynamic Properties of Fluids. I. Theoretical Basis and Virial Coefficients1. Journal of the American Chemical Society 1955, 77 (13), 3427-3433. DOI: 10.1021/ja01618a001. (46) Hsieh, C.-M.; Sandler, S. I.; Lin, S.-T. Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilib. 2010, 297 (1), 90-97. DOI: https://doi.org/10.1016/j.fluid.2010.06.011. (47) Staverman, A. The entropy of high polymer solutions. Generalization of formulae. Recueil des Travaux Chimiques des Pays‐Bas 1950, 69 (2), 163-174. (48) Guggenheim, E. A. Mixtures: the theory of the equilibrium properties of some simple classes of mixtures solutions and alloys. (No Title) 1952. (49) 蔡昌哲. 建置適用於程序模擬器之第一原理熱力學性質計算平台 / 蔡昌哲[撰] = Development of first principle thermophysical property estimator for process simulators / Chang-Che Tsai. 國立臺灣大學化學工程學研究所, 2022. (50) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal 1968, 14 (1), 135-144. DOI: 10.1002/aic.690140124. (51) Luo, H.-P.; Xiao, W.-D.; Zhu, K.-H. Isobaric vapor–liquid equilibria of alkyl carbonates with alcohols. Fluid Phase Equilib. 2000, 175 (1), 91-105. DOI: https://doi.org/10.1016/S0378-3812(00)00444-1. (52) Camy, S.; Pic, J. S.; Badens, E.; Condoret, J. S. Fluid phase equilibria of the reacting mixture in the dimethyl carbonate synthesis from supercritical CO2. The Journal of Supercritical Fluids 2003, 25 (1), 19-32. DOI: https://doi.org/10.1016/S0896-8446(02)00087-6. (53) Ma, X.; Li, Z. H.; Wang, B. Effect of dimethyl oxalate on the vapor-liquid equilibria of the binary system of methanol-dimethyl carbonate. 2001, 30, 699-702. (54) Lee, C.-T.; Tsai, C.-C.; Wu, P.-J.; Yu, B.-Y.; Lin, S.-T. Screening of CO2 utilization routes from process simulation: Design, optimization, environmental and techno-economic analysis. Journal of CO2 Utilization 2021, 53, 101722. (55) Honda, M.; Tamura, M.; Nakagawa, Y.; Nakao, K.; Suzuki, K.; Tomishige, K. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. J. Catal. 2014, 318, 95-107. (56) Stoian, D.; Medina, F.; Urakawa, A. Improving the Stability of CeO2 Catalyst by Rare Earth Metal Promotion and Molecular Insights in the Dimethyl Carbonate Synthesis from CO2 and Methanol with 2-Cyanopyridine. ACS Catalysis 2018, 8 (4), 3181-3193. DOI: 10.1021/acscatal.7b04198. (57) Kuenen, H. J.; Mengers, H. J.; Nijmeijer, D. C.; van der Ham, A. G. J.; Kiss, A. A. Techno-economic evaluation of the direct conversion of CO2 to dimethyl carbonate using catalytic membrane reactors. Comput. Chem. Eng. 2016, 86, 136-147. DOI: https://doi.org/10.1016/j.compchemeng.2015.12.025.
|