跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙奕翔
研究生(外文):I-Hsiang Chao
論文名稱:透過表面改質工程提高二維錫鹵化物鈣鈦礦電晶體的性能和穩定性及其對光記憶行為的影響
論文名稱(外文):Enhancing Performance and Stability of Two-Dimension Tin Halide Perovskite Transistors Through Surface Engineering and Its Impact on Photomemory Characteristics
指導教授:闕居振
指導教授(外文):Chu-Chen Chueh
口試委員:陳蓉瑤李文亞林皓武陳嘉晉
口試委員(外文):Jung-Yao ChenWen-Ya LeeHao-Wu LinChia-Chin Chen
口試日期:2023-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:92
中文關鍵詞:二維錫鈣鈦礦表面鈍化介面工程場效應電晶體光記憶體
外文關鍵詞:Two dimension tin halide perovskiteSurface passivationSurface engineeringField effect transistorPhotomemory
DOI:10.6342/NTU202301660
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
近十年來,金屬鹵化物鈣鈦礦因其具高吸收係數、低激子結合能和長載流子壽命,在半導體領域引起了極大的關注。這些特性使其適用於電子元件發展,如鈣鈦礦太陽能電池(PVSC)、鈣鈦礦發光二極體(PeLED)、鈣鈦礦場效應電晶體(PeFET)等。然而,鉛基鈣鈦礦總是被批評具高環境毒性,同時,由於鉛具有相對高的有效載子質量,導致鉛基鈣鈦礦電晶體的載子遷移率普遍偏低。因此,有越來越多的研究將鉛替換成錫,並致力於開發二維錫基鹵化物鈣鈦礦電晶體,其中最著名的體系為苯乙基錫碘化铵 (PEA2SnI4),其具有適當的能隙並在室溫下可展現較高的載子遷移率。然而,錫基鹵化物鈣鈦礦具有較快的結晶速率,造成其製備薄膜質量較低,同時,Sn2+在含氧環境中容易氧化成Sn4+,限制了其廣泛應用性。在此,我們採用了界面工程改善二維錫基鈣鈦礦的膜況,減少缺陷並提高空氣穩定性,最終也證明這些改質可以同時提高電晶體元件的性能與穩定性。
在第二章中,我們使用了PEAI/FPEAI對PEA2SnI4薄膜進行表面鈍化處理,大大的提高了鈣鈦礦場效電晶體的性能和穩定性。鈍化過程中引起的表面再結晶增加了晶粒尺寸減少表面缺陷,同時,PEA+和FPEA+陽離子團上的氮原子可與Sn2+形成路易斯酸鹼對有效減少Sn空缺數量,進而改善膜況。此外,表面鈍化可以p型摻雜PEA2SnI4薄膜,促進鈣鈦礦與電極之間更好的能級匹配,實現高效的電荷傳輸。PEAI和FPEAI表面鈍化的元件測得的最大載子遷移率(μh)有明顯的增加,分別為2.15和2.96 cm2 V−1 s−1,遠高於對照組的μh (0.76 cm2 V−1 s−1)。此外,這些疏水的鈍化劑還能夠起到保護PEA2SnI4薄膜的作用,減緩空氣水氧引起的降解,這一個論點乃是透過XPS、UV和XRD等分析來證明。此外,鈣鈦礦薄膜中缺陷的減少間接提高了元件的閘極偏壓穩定性。最後,我們證明了鈣鈦礦場應效電晶體的非揮發性光記憶行為,並利用它們來製作鈣鈦礦場效應電晶體式的記憶體。總結來說,PEAI/FPEAI的表面鈍化不僅降低了鈣鈦礦薄膜的表面缺陷數量、提高環境穩定性,同時還增強了元件的光響應電流。我們的研究成果凸顯了表面鈍化在提高鈣鈦礦場效電晶體的性能和穩定性方面的幫助,這對於先進光電元件的發展有重要的影響。
在第三章中,我們通過旋塗法製備了TEA2SnI4的二維錫鹵化物鈣鈦礦薄膜。我們首先比較了PEA2SnI4和TEA2SnI4的光學性質、膜況和能階。接下來,我們將TEA2SnI4應用於場效應電晶體元件並發現其最大載子遷移率可達2.48 cm2 V-1 s-1,高於先前的PEA2SnI4體系,同時也是目前所有TEA2SnI4相關論文中最高的報導值。此結果可能來自於TEA2SnI4與金電極有更好能級匹配或是TEA+陽離子團較高之介電常數。我們目前正針對這個具有更高載子遷移率的二維錫基鹵化物鈣鈦礦體系進行添加劑與表面改質工程等,以期在未來達到更理想的性能。
Organic-inorganic metal halide perovskites have attracted a great deal of interest in the semiconductor field in the last decade due to their high absorption coefficients, low exciton binding energy, and long carrier lifetime. These properties make them suitable for electronic applications such as perovskite solar cells (PVSC), perovskite light emitting diodes (PeLED), perovskite field effect transistors (PeFET), etc. Among these, two-dimensional organic-inorganic metal halide perovskites are potential candidates for transistor applications because of their quantum effects and high structural stability. However, lead-based perovskites have long been criticized for their high toxicity to the environment. Meanwhile, the effective mass of the carriers is relatively large and their carrier mobility in transistors is low. Therefore, many studies have replaced lead with tin and worked on two-dimensional (2D) tin halide perovskites-based transistors, such as phenethylammonium iodide (PEA2SnI4). They have a suitable band gap and high mobility. However, excessively fast crystallization rate for tin-based perovskites contributes to low quality morphology. Also, the easy oxidation from Sn2+ to Sn4+ in the environment limits their wide applicability. Herein, we used an interfacial engineering approach to improve morphology, reduce defect density, and improve the air stability of 2D tin perovskites. The results further demonstrate that this modification method improves the performance of 2D tin perovskite transistors and enhances their air stability at the same time.
In Chapter 2, we have shown that surface passivation of PEA2SnI4 films with PEAI/FPEAI significantly improves the performance and stability of the derived perovskite transistors. Surface recrystallization induced by surface passivation further reduces surface defects and increases grain size. The electron-donating pairs of nitrogen atoms on PEA+ and FPEA+ form Lewis acid-base pairs with Sn2+ and reduce Sn vacancies, resulting in improve films. Additionally, these passivators are able to p-dope the PEA2SnI4 films, promoting better energy-level alignment with the electrodes and enabling efficient charge transfer. The PEAI- and FPEAI-passivated devices showed a significant increase in maximum hole mobility (μh) of 2.15 and 2.96 cm2 V−1 s−1, respectively, exceeding the value (0.76 cm2 V−1 s−1) of the control device. These hydrophobic passivators also provided protection against ambient air-induced degradation of PEA2SnI4 film, as evidenced by XPS, UV, and XRD analyses. Moreover, they enhanced the gate bias stability of the devices by reducing defects in the perovskite films. Ultimately, we demonstrate the non-volatile photomemory behavior of perovskite transistors and leverage them for perovskite-transistor-based memories. In conclusion, surface passivation with PEAI/FPEAI not only reduces surface defects and improves the air stability of perovskite films, but also improves the photoresponse of the devices. Overall, this work highlights the importance of surface passivation in enhancing the performance and stability of perovskite transistors, which is of great importance for the development of advanced optoelectronic devices.
In Chapter 3, we fabricated 2D tin halide perovskite films of TEA2SnI4 by spin-coating. And we first compared the optical properties, morphology, and energy level of PEA2SnI4 and TEA2SnI4. Next, we applied TEA2SnI4 to transistor devices with a maximum hole mobility of 2.48 cm2 V-1 s-1. This mobility is not only higher than that of PEA2SnI4 in our experiment, but also is the highest of all TEA2SnI4-related studies reported to date. This result could result from a better energy alignment or a higher dielectric constant of the TEA+ spacers. My group are currently working on additive and surface modification engineering for this 2D tin system with higher carrier mobility to achieve better performance in the future.
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
Contents viii
Table Captions x
Figure Captions xi
Chapter 1 Introduction 1
1.1 Introduction to Organic Inorganic Hybrid Perovskite 1
1.2 Two-Dimensional Tin based perovskite 3
1.3 Perovskite Field-Effect Transistors 5
1.3.1 PeFET Configuration 5
1.3.2 PeFET Working Principle 7
1.3.3 Two-Dimensional Tin Based Perovskite Transistor Historical Performance 9
1.4 Memory Device 12
1.4.1 Photomemory configuration 12
1.4.2 Photomemory working principle 13
1.5 Research Objectives 14
Figures 17
Chapter 2 Performance Enhancement of Lead-Free 2D Tin Halide Perovskite Transistors by Surface Passivation and Its Impact on Non-Volatile Photomemory Characteristics 27
2.1 Introduction 27
2.2 Experimental Section 33
2.2.1 Materials 33
2.2.2 Precursor Solution Preparation and Device Fabrication 33
2.2.3 Characterizations 34
2.3 Result and Discussion 36
2.3.1 Basic Properties of PEAI/FPEAI-Passivated PEA2SnI4 Films 36
2.3.2 Changes in Energy Levels and Ambient Stability 41
2.3.3 FET Performance, Ambient Stability, and Gate Bias Stability 45
2.3.4 Phototransistor Characteristics 50
2.4 Conclusion 54
Figures 56
Tables 71
Chapter 3 Improving Performance by Cation Spacer Substitution for Two-Dimension Tin Halide Perovskite Transistor and the Properties Comparison Between TEA2SnI4 and PEA2SnI4 72
3.1 Introduction 72
3.2 Experiment Section 74
3.2.1 Materials 74
3.2.2 Precursor Solution Preparation and Device Fabrication 74
3.2.3 Characteristic 76
3.3 Result and Discussion 76
3.3.1 Morphology and Optical properties 76
3.3.2 Energy Level Difference and Device Performance 77
Figures 79
Tables 82
Chapter 4 Conclusion and Future work 83
Reference 86
1.Wu, G., et al., Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Advanced Materials, 2022. 34(8): p. 2105635.
2Li, X., J.M. Hoffman, and M.G. Kanatzidis, The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chem Rev, 2021. 121(4): p. 2230-2291.
3Lee, W.-Y., J. Mei, and Z. Bao, OFETs: Basic concepts and material designs, in THE WSPC REFERENCE ON ORGANIC ELECTRONICS: ORGANIC SEMICONDUCTORS: Fundamental Aspects of Materials and Applications. 2016, World Scientific. p. 19-83.
4Gupta, D., M. Katiyar, and D. Gupta, An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation. Organic Electronics, 2009. 10(5): p. 775-784.
5Zaumseil, J. and H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors. Chemical reviews, 2007. 107(4): p. 1296-1323.
6Paulus, F., et al., Switched‐On: Progress, Challenges, and Opportunities in Metal Halide Perovskite Transistors. Advanced Functional Materials, 2021. 31(29).
7Lin, Y.-C., et al., Recent Advances in Organic Phototransistors: Nonvolatile Memory, Artificial Synapses, and Photodetectors. Small Science, 2022. 2(4).
8Prakoso, S.P., M.-N. Chen, and Y.-C. Chiu, A brief review on device operations and working mechanisms of organic transistor photomemories. Journal of Materials Chemistry C, 2022. 10(37): p. 13462-13482.
9Green, M.A., A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells. Nature photonics, 2014. 8(7): p. 506-514.
10Wu, X., et al., Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem Soc Rev, 2021. 50(23): p. 13090-13128.
11Pacchioni, G., Highly efficient perovskite LEDs. Nature Reviews Materials, 2021. 6(2): p. 108-108.
12Xie, C., et al., Perovskite‐based phototransistors and hybrid photodetectors. Advanced Functional Materials, 2020. 30(20): p. 1903907.
13Chao, I.H., et al., Performance Enhancement of Lead‐Free 2D Tin Halide Perovskite Transistors by Surface Passivation and Its Impact on Non‐Volatile Photomemory Characteristics. Small, 2023: p. 2207734.
14Rong, Y., et al., Challenges for commercializing perovskite solar cells. Science, 2018. 361(6408): p. eaat8235.
15Ju, Y., et al., The Evolution of Photoluminescence Properties of PEA2SnI4 Upon Oxygen Exposure: Insight into Concentration Effects. Advanced Functional Materials, 2022. 32(2): p. 2108296.
16Calado, P., et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nature communications, 2016. 7(1): p. 13831.
17Gao, Y., et al., Highly stable lead-free perovskite field-effect transistors incorporating linear π-conjugated organic ligands. Journal of the American Chemical Society, 2019. 141(39): p. 15577-15585.
18Yao, H., et al., Strategies for improving the stability of tin‐based perovskite (ASnX3) solar cells. Advanced Science, 2020. 7(10): p. 1903540.
19Liu, X., et al., Two-Dimensional Layered Simple Aliphatic Monoammonium Tin Perovskite Thin Films and Potential Applications in Field-Effect Transistors. ACS Applied Materials & Interfaces, 2022. 14(44): p. 50401-50413.
20Yan, L., et al., Charge‐carrier transport in quasi‐2D Ruddlesden–Popper perovskite solar cells. Advanced Materials, 2022. 34(7): p. 2106822.
21Dong, H., et al., Crystallization Dynamics of Sn‐Based Perovskite Thin Films: Toward Efficient and Stable Photovoltaic Devices. Advanced Energy Materials, 2022. 12(1): p. 2102213.
22Zhu, H., et al., High‐performance and reliable lead‐free layered‐perovskite transistors. Advanced Materials, 2020. 32(31): p. 2002717.
23Dong, J., et al., Mechanism of Crystal Formation in Ruddlesden–Popper Sn‐Based Perovskites. Advanced Functional Materials, 2020. 30(24).
24Zhu, H., et al., High-performance hysteresis-free perovskite transistors through anion engineering. Nature Communications, 2022. 13(1): p. 1741.
25Chowdhury, T.H., et al., Sn-Based Perovskite Halides for Electronic Devices. Adv Sci (Weinh), 2022. 9(33): p. e2203749.
26Cosseddu, P. and A. Bonfiglio, A comparison between bottom contact and top contact all organic field effect transistors assembled by soft lithography. Thin Solid Films, 2007. 515(19): p. 7551-7555.
27Li, L., et al., Low-Operating-Voltage Two-Dimensional Tin Perovskite Field-Effect Transistors with Multilayer Gate Dielectrics Based on a Fluorinated Copolymer. The Journal of Physical Chemistry Letters, 2023. 14(8): p. 2223-2233.
28Matsushima, T., et al., Solution‐processed organic–inorganic perovskite field‐effect transistors with high hole mobilities. Advanced Materials, 2016. 28(46): p. 10275-10281.
29Kagan, C.R., D.B. Mitzi, and C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 1999. 286(5441): p. 945-947.
30Mitzi, D.B., C.D. Dimitrakopoulos, and L.L. Kosbar, Structurally tailored organic− inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors. Chemistry of materials, 2001. 13(10): p. 3728-3740.
31Mitzi, D.B., et al., Hybrid field‐effect transistor based on a low‐temperature melt‐processed channel layer. Advanced Materials, 2002. 14(23): p. 1772-1776.
32Matsushima, T., K. Fujita, and T. Tsutsui, High field-effect hole mobility in organic-inorganic hybrid thin films prepared by vacuum vapor deposition technique. Japanese journal of applied physics, 2004. 43(9A): p. L1199.
33Matsushima, T., et al., Solution-Processed Organic-Inorganic Perovskite Field-Effect Transistors with High Hole Mobilities. Adv Mater, 2016. 28(46): p. 10275-10281.
34Matsushima, T., et al., Intrinsic carrier transport properties of solution-processed organic–inorganic perovskite films. Applied Physics Express, 2017. 10(2): p. 024103.
35Chen, C., et al., Visible‐Light Ultrasensitive Solution‐Prepared Layered Organic–Inorganic Hybrid Perovskite Field‐Effect Transistor. Advanced Optical Materials, 2017. 5(2): p. 1600539.
36Wang, H., et al., High-performance lead-free two-dimensional perovskite photo transistors assisted by ferroelectric dielectrics. Journal of Materials Chemistry C, 2018. 6(46): p. 12714-12720.
37Zhu, H., et al., A Lewis base and boundary passivation bifunctional additive for high performance lead-free layered-perovskite transistors and phototransistors. Materials Today Energy, 2021. 21: p. 100722.
38Zhu, H., et al., High-performance layered perovskite transistors and phototransistors by binary solvent engineering. Chemistry of Materials, 2020. 33(4): p. 1174-1181.
39Reo, Y., et al., Effect of monovalent metal iodide additives on the optoelectric properties of two-dimensional Sn-based perovskite films. Chemistry of Materials, 2021. 33(7): p. 2498-2505.
40Liu, A., et al., High-performance inorganic metal halide perovskite transistors. Nature Electronics, 2022. 5(2): p. 78-83.
41Roh, T., et al., Ion Migration Induced Unusual Charge Transport in Tin Halide Perovskites. ACS Energy Letters, 2023. 8(2): p. 957-962.
42Qin, C., et al., Charge Transport in 2D Layered Mixed Sn–Pb Perovskite Thin Films for Field‐Effect Transistors. Advanced Electronic Materials, 2021. 7(10): p. 2100384.
43Zhang, F., et al., Two-dimensional organic–inorganic hybrid perovskite field-effect transistors with polymers as bottom-gate dielectrics. Journal of Materials Chemistry C, 2019. 7(14): p. 4004-4012.
44Wang, S., et al., Grain engineering for improved charge carrier transport in two-dimensional lead-free perovskite field-effect transistors. Materials Horizons, 2022. 9(10): p. 2633-2643.
45Wang, S., et al., Modification of Two‐Dimensional Tin‐Based Perovskites by Pentanoic Acid for Improved Performance of Field‐Effect Transistors. Small, 2023: p. 2207426.
46Wang, Z., et al., Efficient Two-Dimensional Tin Halide Perovskite Light-Emitting Diodes via a Spacer Cation Substitution Strategy. J Phys Chem Lett, 2020. 11(3): p. 1120-1127.
47Ji, H., et al., Two-dimensional layered Dion–Jacobson phase organic–inorganic tin iodide perovskite field-effect transistors. Journal of Materials Chemistry A, 2023. 11(14): p. 7767-7779.
48Jena, A.K., A. Kulkarni, and T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chemical reviews, 2019. 119(5): p. 3036-3103.
49Song, T.-B., et al., Perovskite solar cells: film formation and properties. Journal of Materials Chemistry A, 2015. 3(17): p. 9032-9050.
50Van Le, Q., H.W. Jang, and S.Y. Kim, Recent advances toward high‐efficiency halide perovskite light‐emitting diodes: review and perspective. Small Methods, 2018. 2(10): p. 1700419.
51Ricciardulli, A.G., et al., Emerging perovskite monolayers. Nature Materials, 2021. 20(10): p. 1325-1336.
52Lin, Y.H., P. Pattanasattayavong, and T.D. Anthopoulos, Metal‐halide perovskite transistors for printed electronics: challenges and opportunities. Advanced Materials, 2017. 29(46): p. 1702838.
53Liu, X.-K., et al., Metal halide perovskites for light-emitting diodes. Nature Materials, 2021. 20(1): p. 10-21.
54Wu, X., et al., Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021. 50(23): p. 13090-13128.
55Lee, Y., et al., High‐performance perovskite–graphene hybrid photodetector. Advanced materials, 2015. 27(1): p. 41-46.
56Lee, Y.J., et al., High Hole Mobility Inorganic Halide Perovskite Field‐Effect Transistors with Enhanced Phase Stability and Interfacial Defect Tolerance. Advanced Electronic Materials, 2022. 8(1): p. 2100624.
57Choi, J., et al., Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Advanced materials, 2018. 30(42): p. 1704002.
58She, X.-J., et al., A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nature Electronics, 2020. 3(11): p. 694-703.
59Jana, S., et al., Toward stable solution-processed high-mobility p-type thin film transistors based on halide perovskites. ACS nano, 2020. 14(11): p. 14790-14797.
60Labram, J.G., et al., Temperature-dependent polarization in field-effect transport and photovoltaic measurements of methylammonium lead iodide. The Journal of Physical Chemistry Letters, 2015. 6(18): p. 3565-3571.
61Wang, J., et al., Investigation of Electrode Electrochemical Reactions in CH3NH3PbBr3 Perovskite Single‐Crystal Field‐Effect Transistors. Advanced Materials, 2019. 31(35): p. 1902618.
62Wang, K., et al., Lead replacement in CH3NH3PbI3 perovskites. Advanced Electronic Materials, 2015. 1(10): p. 1500089.
63Herz, L.M., Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Letters, 2017. 2(7): p. 1539-1548.
64Zhu, H., A. Liu, and Y.-Y. Noh, Recent progress on metal halide perovskite field-effect transistors. Journal of Information Display, 2021. 22(4): p. 257-268.
65Cho, J., et al., Suppressed halide ion migration in 2D lead halide perovskites. ACS Materials Letters, 2020. 2(6): p. 565-570.
66Chen, Y., et al., 2D Ruddlesden–Popper perovskites for optoelectronics. Advanced Materials, 2018. 30(2): p. 1703487.
67Zhu, H., et al., Perovskite and conjugated polymer wrapped semiconducting carbon nanotube hybrid films for high-performance transistors and phototransistors. ACS nano, 2019. 13(4): p. 3971-3981.
68Liang, A., et al., Ligand-driven grain engineering of high mobility two-dimensional perovskite thin-film transistors. Journal of the American Chemical Society, 2021. 143(37): p. 15215-15223.
69Mitzi, D.B., et al., Conducting tin halides with a layered organic-based perovskite structure. Nature, 1994. 369(6480): p. 467-469.
70Shao, S., et al., Field‐effect transistors based on formamidinium tin triiodide perovskite. Advanced Functional Materials, 2021. 31(11): p. 2008478.
71Dong, J., et al., Mechanism of crystal formation in Ruddlesden–Popper Sn‐based perovskites. Advanced Functional Materials, 2020. 30(24): p. 2001294.
72Go, J.-Y., et al., Sodium Incorporation for Enhanced Performance of Two-Dimensional Sn-Based Perovskite Transistors. ACS Applied Materials & Interfaces, 2022. 14(7): p. 9363-9367.
73Jiang, Q., et al., Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019. 13(7): p. 460-466.
74Yang, X., et al., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature communications, 2018. 9(1): p. 570.
75Ouedraogo, N.A.N., et al., Influence of fluorinated components on perovskite solar cells performance and stability. Small, 2021. 17(8): p. 2004081.
76Heo, Y.J., et al., Enhancing performance and stability of tin halide perovskite light emitting diodes via coordination engineering of lewis acid–base adducts. Advanced Functional Materials, 2021. 31(51): p. 2106974.
77Huang, Y., et al., Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering. Journal of the American Chemical Society, 2021. 143(10): p. 3911-3917.
78Zhang, T., et al., Regulation of the luminescence mechanism of two-dimensional tin halide perovskites. Nature Communications, 2022. 13(1): p. 60.
79Park, I.H., et al., Highly Stable Two‐Dimensional Tin (II) Iodide Hybrid Organic–Inorganic Perovskite Based on Stilbene Derivative. Advanced Functional Materials, 2019. 29(39): p. 1904810.
80Chen, S., et al., Light illumination induced photoluminescence enhancement and quenching in lead halide perovskite. Solar Rrl, 2017. 1(1): p. 1600001.
81Kamarudin, M.A., et al., Suppression of charge carrier recombination in lead-free tin halide perovskite via Lewis base post-treatment. The journal of physical chemistry letters, 2019. 10(17): p. 5277-5283.
82Kaiser, M., et al., How free exciton–exciton annihilation lets bound exciton emission dominate the photoluminescence of 2D-perovskites under high-fluence pulsed excitation at cryogenic temperatures. Journal of Applied Physics, 2021. 129(12): p. 123101.
83Stolterfoht, M., et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nature Energy, 2018. 3(10): p. 847-854.
84Ren, A., et al., Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses. Joule, 2020. 4(6): p. 1263-1277.
85Reo, Y., et al., Molecular Doping Enabling Mobility Boosting of 2D Sn2+‐Based Perovskites. Advanced Functional Materials, 2022. 32(38): p. 2204870.
86Amat, A., et al., Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano letters, 2014. 14(6): p. 3608-3616.
87Euvrard, J., et al., p-Type molecular doping by charge transfer in halide perovskite. Materials Advances, 2021. 2(9): p. 2956-2965.
88Na Quan, L., et al., Edge stabilization in reduced-dimensional perovskites. Nature communications, 2020. 11(1): p. 170.
89Krishna, A., et al., Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells? Advanced Functional Materials, 2019. 29(8): p. 1806482.
90Yang, S., et al., Functionalization of perovskite thin films with moisture-tolerant molecules. Nature Energy, 2016. 1(2): p. 1-7.
91Mundt, L.E., et al., Surface-activated corrosion in tin–lead halide perovskite solar cells. ACS Energy Letters, 2020. 5(11): p. 3344-3351.
92Kim, J., et al., High‐Performance P‐Channel Tin Halide Perovskite Thin Film Transistor Utilizing a 2D–3D Core–Shell Structure. Advanced Science, 2022. 9(5): p. 2104993.
93Chen, J.Y., et al., Nonvolatile perovskite‐based photomemory with a multilevel memory behavior. Advanced Materials, 2017. 29(33): p. 1702217.
94Liu, F., et al., 2D ruddlesden–popper perovskite single crystal field‐effect transistors. Advanced Functional Materials, 2021. 31(1): p. 2005662.
95Wang, Z., et al., Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy. The Journal of Physical Chemistry Letters, 2020. 11(3): p. 1120-1127.
96Cai, S., et al., Fast‐Response Oxygen Optical Fiber Sensor based on PEA2SnI4 Perovskite with Extremely Low Limit of Detection. Advanced Science, 2022. 9(8): p. 2104708.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top