跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 19:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪瑋晟
研究生(外文):Wei-Cheng Hung
論文名稱:酵素抑制及抗體藥物複合體的研究
論文名稱(外文):A Study of Enzyme Inhibition and Antibody−Drug Conjugation
指導教授:方俊民方俊民引用關係
指導教授(外文):Jim-Min Fang
口試委員:王宗興陳平羅禮強謝俊結
口試委員(外文):Tsung-Shing WangPing ChengLee-Chiang LoJiun-Jie Shie
口試日期:2022-11-14
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
論文頁數:286
中文關鍵詞:結核病麥芽糖轉醣酶類雙醣抑制劑抗體藥物複合體雙硫鍵–炔基反應雙硫鍵–重氮鹽反應
外文關鍵詞:tuberculosismaltosyl transferasepseudo-disaccharide inhibitorantibody-drug conjugatedisulfide–yne reactiondisulfide–diazonium reaction
DOI:10.6342/NTU202210081
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在論文的第一部分中,我們合成一系列有潛力的抑制劑,其結構與 GlgE催化的起始物以及過渡型態相似,GlgE 是結核分枝桿菌的重要酵素。然而,我們合出來的化合物,包括文獻報導最有效的兩個分子,沒有展現出對分枝桿菌 GlgE的抑制作用。到目前為止,我們依然還不確定哪些因素產生了這樣的問題。
在第二部分中,我們開發了一種利用雙硫化物-炔反應的新方法來修飾含有雙硫鍵的蛋白質。一開始,我們著重於抗體的修飾。儘管小分子雙硫化合物進行的很順利,胱胺酸衍生物卻完全沒有反應。我們接著將注意力轉向利用芳基重氮鹽。藉由甲酸鈉以及藍光發光二極體的引發,產生芳基自由基,進而和包含胱胺酸衍生物的雙硫化合物反應。將其運用於抗體分子中,只有重氮鹽基團無法完全捕獲雙硫鍵的兩個硫原子。
因此,我們合成了另一個新的重氮鹽,其鄰位含有炔丙基醚,以捕獲雙硫鍵的兩個硫原子。我們證明了這個利用新的重氮鹽的方法可用於修飾曲妥珠單抗(賀癌平),一種人源化單株抗體,儘管由於兩對鏈間的雙硫鍵距離較短而產生半抗體。最後,我們也提出了一種芳基重氮鹽,含有炔丙基醯胺基團,可經由銅催化炔烴-疊氮化物環加成反應來安裝藥物分子。
In the first part of thesis, we synthesized a series of potential inhibitors, which share similar structure with the substrate or transition-state of GlgE, a crucial enzyme for Mycobacterium tuberculosis. However, our synthesized compounds including the two of the most potent molecules reported in literature did not show any inhibitory effect against M. smegmatis GlgE. So far, we have not identified which factors that caused the problem.
In the second part of thesis, we developed a new method using disulfide-yne reaction for modification of proteins containing disulfide bonds. At first, we focused on the decoration of an antibody. Although disulfide-yne reaction proceeded smoothly with small disulfide molecules, the reaction of cystine derivatives did not give any yield. We then turned our attention to using aryl diazonium salts. Upon initiation by sodium formate and blue LED light, aryl radicals were generated and reacted with disulfide compounds including cystine derivatives. In application to antibody, the diazonium group alone could not fully trap both sulfur atoms of disulfide bonds.
Therefore, we prepared a new aryl diazonium salt with a propargyl ether at the ortho position to catch both sulfur atoms in a disulfide bond. We proved that the method using this new diazonium salt could be applied to modify the disulfide bonds in trastuzumab (Herceptin), a humanized monoclonal antibody, although the half antibody was obtained due to the short distance between two pairs of interchain disulfide bonds. Finally, we proposed an aryl diazonium salt containing a propargyl amide group, which can be utilized for installation of a drug molecule via the copper-catalyzed alkyne-azide cycloaddition reaction.
摘要 I
Abstract II
Table of Contents IV
Index of Schemes IX
Index of Figures XI
Index of Tables XV
Abbreviation XVI
Part 1. GlgE Inhibitors against Tuberculosis
Chapter 1. Introduction 1
1.1 History of tuberculosis 1
1.2 Pathology and immunology of Mtb infection 5
1.2.1 Phagocytosis and survival of Mtb inside macrophages 5
1.2.2 Development of tuberculosis granuloma 9
1.3 Mycobacterial cell envelope 11
1.3.1 Cell wall core and mAGP complex 11
1.3.2 Capsular layer 13
1.4 α-D-Glucan 15
1.4.1 Rv3032 pathway 17
1.4.2 GlgE pathway 19
1.5 Maltosyltransferase GlgE 22
1.5.1 Structure of GlgE 22
1.5.2 Structural comparison of Mtb GlgE and Sco GlgEI 24
1.5.3 Mechanism of GlgE catalysis 27
1.6 Recent investigation of potential GlgE inhibitors 28
Chapter 2. Results and Discussion 31
2.1 Design concepts of GlgE inhibitor 31
2.2 Shikimic acid and polyhydroxybenzene derivatives 34
2.2.1 Synthesis of shikimate core structure 35
2.2.2 Synthesis of polyhydroxybenzenes 37
2.2.3 Coupling reactions of shikimate derivatives and polyhydroxybenzenes 39
2.2.4 Bioassay of shikimate and polyhydroxybenzene derivatives 45
2.3 Carbohydrate derivatives 48
2.3.1 Synthesis of glycosyl donor 49
2.3.2 Glycosylation with shikimic acid and global deprotection 51
2.3.3 Synthesis of reported inhibitors 54
2.3.4 Bioassay 57
2.4 Conclusion 59
Part 2. Direct Protein Modification via Disulfide−Yne and Disulfide−Diazonium Reaction
Chapter 3. Introduction 63
3.1 Property of thiyl radical 63
3.2 Generation of thiyl radical 65
3.2.1 Bond dissociation energy of S‒H and S‒S bonds 65
3.2.2 Classical methods for generation of thiyl radicals 66
3.3 Thiyl radical in organic chemistry 71
3.3.1 Small molecules 71
3.3.2 Biomolecules 75
3.4 Antibody drug conjugation 79
3.4.1 Anticancer 79
3.4.2 Components of ADCs 82
3.4.3 Traditional methods for construction of ADCs 87
Chapter 4. Results and Discussion 93
4.1 Optimization of disulfide-ene/yne reactions 93
4.1.1 Free radical initiators 95
4.1.2 Initiation by photo-irradiation 97
4.2 Diazonium compound 105
4.2.1 Synthesis of aryl diazonium compounds 106
4.2.2 Reaction of diazonium compound and disulfide molecules 107
4.3 Application S-arylation of diazonium salt to antibody 112
4.3.1 HER2 and trastuzumab 112
4.3.2 Labeling of trastuzumab with diazonium salt 114
4.3.3 Trypsin digestion and LC−MS/MS analysis 123
4.3.4 Rebridging 128
4.4 Conclusion 139
Chapter 5. Experimental Section 144
5.1 General part 144
5.2 Instrumentation 144
5.3 Bioassays 145
5.3.1 Inhibition studies 146
5.3.2 Determination of minimal inhibition concentration (MIC) 146
5.4 Synthetic procedure and characterization of compounds 147
5.5 Conjugation of diazonium salts with trastuzumab 203
5.6 Deglycosylation of antibodies with PNGase F 204
5.7 LC-ESI-MS experiments 204
5.8 Protein digestion 205
5.9 LC−MS/MS experiments 206
References 208
Appendix 245
Daniel, T. M. The history of tuberculosis. Resp. Med. 2006, 100, 1862‒1870
Barberis, I.; Bragazzi, N. L.; Galluzzo, L.; Martini, M. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J. Prev. Med. Hyg. 2017, 58, E9‒E12
Cave, A. J. E. The evidence for the incidence of tuberculosis in ancient Egypt. Br. J. Tuberc. 1939, 33, 142‒152
Koch, R. Die aetiologie der tuberculose, a translation by Berna Pinner and Max Pinner with an introduction by Allen K. Krause. Am. Rev. Tuberc. 1932, 25, 285‒323
Daniel, T. M. Robert Koch and the pathogenesis of tuberculosis. Int. J. Tuberc. Lung. Dis. 2005, 9, 1181‒1182
Sakula, A. BCG: Who were Calmette and Guérin? Thorax, 1983, 38, 806‒812
Daniel, T. M. Leon Charles Albert Calmette and BCG vaccine. Int. J. Tuberc. Lung Dis. 2005, 9, 205‒206
Calmette, A. On preventive vaccination of the new-born against tuberculosis by B.C.G. Br. J. Tuberc. 1928, 22, 161‒165
Schatz, A.; Bugie, E.; Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Exp. Biol. Med. 1944, 55, 66‒69
Robitzek, E. H.; Selikoff, I. J.; Ornstein, G. G. Chemotherapy of human tuberculosis with hydrazine derivatives of isonicotinic acid; preliminary report of representative cases. Q. Bull. Sea View Hosp. 1952, 13, 27‒51
Robitzek, E. H.; Selikoff, I. J. Hydrazine derivatives of isonicotinic acid (Rimifon, Marsilid) in the treatment of active progressive caseous-pneumonic tuberculosis; a preliminary report. Am. Rev. Tuberc. 1952, 65, 402‒428
McKenzie, D; Malone, L.; Kushner, S.; Oleson, J. J. The effect of nicotinic acid amide on experimental tuberculosis of white mice. J. Lab. Clin. Med. 1948, 33, 1249‒1253
Muschenheim, C.; Organick, A.; Mucune, R. M. Jr.; Batten, J. Deuschle, K.; Tompsett, R.; McDermott, W. Pyrazinamide-isoniazid in tuberculosis. III. Observations with reduced dosage of pyrazinamide. Am. Rev. Tuberc. 1955, 72, 851‒855
Thomas, J. P.; Baughn, C. O.; Wilkinson, R. G.; Shepherd, R. G. A new synthetic compound with antituberculous activity in mice: ethambutol (dextro-2,2’-(ethylenediimino)-di-1-butanol). Am. Rev. Respir. Dis. 1961, 83, 891‒893
Ferebee, S. H.; Doster, B. E.; Murray, F. J. Ethambutol: a substitute for para-aminosalicyclic acid in regimens for pulmonary tuberculosis. Ann. N. Y. Acad. Sci. 1966, 135, 910‒920
Doster, B.; Murray, F. J.; Newman, R.; Woolpert, S. F. Ethambutol in the initial treatment of pulmonary tuberculosis. U.S. Public Health Service tuberculosis therapy trials. Am. Rev. Respir. Dis. 1973, 107, 177‒190
Maggi, N.; Pasqualucci, C. R.; Ballota, R.; Sensi, P. Rifampicin: a new orally active rifamycin. Chemotherapy, 1966, 11, 285‒292
Sensi, P. History of the development of rifampin. Rev. Infect. Dis., 1983, 5, S402‒S406
Global tuberculosis report 2020. Geneva: World Health Organization; 2020
Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature, 2011, 469, 483‒490
Russell, D. G. Who puts the tubercle in tuberculosis? Nat. Rev. Micobiol. 2007, 5, 39‒47
Pieters, J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host & Microbe 2008, 3, 399‒407
Gatfield, J.; Pieters, J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 2000, 288, 1647‒1651
Daffé, M.; Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 1998, 39, 131‒203
Daffé, M.; Etienne, G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber. Lung Dis. 1999, 79, 153‒169
Hett, E. C.; Rubin, E. J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 2008, 72, 126‒156
Takayama, K.; Wang, C.; Besra, G. S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 2005, 18, 81‒101
Chapman, G. B.; Hanks, J. H.; Wallace, J. H. An electron microscope study of the disposition and fine structure of Mycobacterium lepraemurium in mouse spleen. J. Bacteriol. 1959, 77, 205‒211
Hanks, J.H. Capsules in electron micrographs of Mycobacterium leprue. Int. J. Lepr.1961, 29, 84‒87
Hanks, J.H. The problem of preserving internal structures in pathogenic mycobacteria by conventional methods of fixation. Int. J. Lepr. 1961, 29, 175‒178
Hanks, J. H. Demonstration of capsules on M. leprae during carbol-fuchsin staining mechanism of the Ziehl-Neelsen stain. Int. J. Lepr. 1961, 26, 179‒182.
Hanks, J. H. The origin of the capsules on Mycobacterium leprae and other tissue-grown mycobacteria. Int. J. Lepr. 1961, 26, 172‒174
Hanks, J. H.; Moore, J. T.; Michaels, J. E. Significance of capsular components of Mycobacterium leprae and other mycobacteria. Int. J. Lepr. 1961, 26, 74‒83
Ortalo-Magné, A.; Dupont, M.-A.; Lemassu, A.; Andersen, A. B.; Gounon, P.; Daffé, M. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiol. 1995, 141, 1609‒1620
Chandra, G.; Chater, K. F.; Bornemann, S. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology, 2011, 157, 1565‒1572
Stadthagen, G.; Sambou, T.; Guerin, M.; Barilone, N.; Boudou, F.; Korduláková, J.; Charles, P.; Alzari, P. M.; Lemassu, A.; Daffé, M.; Puzo, G.; Gicquel, B.; Rivière, M.; Jackson, M. Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J. Biol. Chem. 2007, 282, 27270‒27276
Lee, Y. C. Isolation and characterization of lipopolysaccharides containing 6-O-methyl-D-glucose from Mycobacterium species. J. Biol. Chem. 1966, 241, 1899‒1908
Kaur, D.; Pham, H.; Larrouy-Maumus G.; Rivière M.; Vissa, V.; Guerin, M. E.; Puzo, G.; Brennan, P. J.; Jackson, M. Initiation of methylglucose lipopolysaccharide biosynthesis in mycobacteria. PLoS One. 2009, 4, e5447
Mendes, V.; Maranha, A.; Alarico, S.; da Costa, M. S.; Empadinhas, N. Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis. Sci. Rep. 2011, 1, 1‒8
Sambou, T.; Dinadayala, P.; Stadthagen, G.; Barilone, N.; Bordat, Y.; Constant, P.; Levillain, F.; Neyrolles, O.; Gicquel, B.; Lemassu, A.; Daffé, M.; Jackson, M. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol. Microbiol. 2008, 70, 762‒774
Elbein, A. D.; Pastuszak, I.; Tackett, A. J.; Wilson, T.; Pan, Y. T. Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen. J. Biol. Chem. 2010, 285, 9803‒9812
Kalscheuer, R.; Syson, K.; Veeraraghavan, U.; Weinrick, B.; Biermann, K. E.; Liu, Z.; Sacchettini, J. C.; Besra, G.; Bornemann, S.; Jacobs, W. R., Jr. Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha glucan pathway. Nat. Chem. Biol. 2010, 6, 376‒384
Caner, S.; Nguyen, N.; Aguda, A.; Zhang, R.; Pan, Y. T.; Withers, S. G.; Brayer, G. D. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology, 2013, 23, 1075‒1083
Li, J.; Guan, X.; Shaw, N.; Chen, W.; Dong, Y.; Xu, X.; Li, X.; Rao, Z. Homotypic dimerization of a maltose kinase for molecular scaffolding. Sci. Rep. 2014, 4, 1‒8
Pal, K.; Kumar, S.; Sharma, S.; Garg, S. K.; Alam, M. S.; Xu, H. E.; Agrawal, P.; Swaminathan, K. Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal β-sandwich in substrate specificity and enzymatic activity. J. Biol. Chem. 2010, 285, 20897‒20903
Syson, K.; Stevenson, C. E. M.; Rejzek, M.; Fairhurst, S. A.; Nair, A.; Bruton, C. J.; Field, R. A.; Chater, K. F.; Lawson, D. M.; Bornemann, S. Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target. J. Biol. Chem. 2011, 286, 38298‒38310
Lindenberger, J. J.; Veleti, S. K.; Wilson, B. N.; Sucheck, S. J.; Ronning, D. R. Crystal structures of Mycobacterium tuberculosis GlgE and complexes with non-covalent inhibitors. Sci. Rep. 2015, 5, 12830
Veleti, S. K.; Lindenberger, J. J.; Ronning, D. R.; Sucheck, S. J. Synthesis of a C-phosphonate mimic of maltose-1-phosphate and inhibition studies on Mycobacterium tuberculosis GlgE. Bioorg. Med. Chem. 2014, 22, 1404‒1411
Veleti, S. K.; Lindenberger, J. J.; Thanna, S.; Ronning, D. R.; Sucheck, S. J. Synthesis of a poly-hydroxypyrolidine-based inhibitor of Mycobacterium tuberculosis GlgE. J. Org. Chem. 2014, 79, 9444‒9450
Veleti, S. K.; Petit, C.; Lindenberger, J. J.; Ronning, D. R.; Sucheck, S. J. Zwitterionic pyrrolidene-phosphonates: inhibitors of glycoside hydrolase-like phosphorylase Streptomyces coelicolor GlgEI-V279S. Org. Biomol. Chem. 2017, 15, 3884‒3891
Syson, K.;Stevenson, C. E. M.; Rashid, A. M.; Saalbach, G.; Tang, M.; Tuukkanen, A.; Svegun, D. I.; Withers, S. G.; Lawson, D. M.; Bornemann, S. Structural insight into how Streptomyces coelicolor maltosyl transferase GlgE binds α-maltose 1-phosphate and forms a maltosyl-enzyme intermediate. Biochemistry, 2014, 53, 2494‒2504
Billones, J. B.; Valle, A. M. F. Structure-based design of inhibitors against maltosyltransferase GlgE. Orient. J. Chem. 2014, 30, 1137‒1145
Sengupta, S.; Roy, D.; Bandyopadhyay, S. Modeling of a new tuberculosis maltosyl tranferase, GlgE, study of its binding sites and virtual screening. Mol. Biol. Rep. 2014, 41, 3549‒3560
Sengupta, S.; Roy, D.; Bandyopadhyay, S. Structural insight into Mycobacterium tuberculosis maltosyl transferase inhibitors: pharmacophore-based virtual screening, docking, and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2015, 33, 2655‒2666
Ishida, N.; Kumagai, K.; Niida, T.; Tsuruoka, T.; Yumoto, H. Nojirimycin, a new antibiotic. II. Isolation, characterization and biological activity. J. Antibiot. 1967, 20, 66‒71
Inouye, S.; Tsuruoka, T.; Ito, T.; Niida, T. Structure and synthesis of nojirimycin. Tetrahedron 1968, 24, 2125‒2144
Fleet, G. W.; Smith, P. W.; Evans, S. V.; Fellows, L. E. Design, synthesis and preliminary evaluation of a potent α-mannosidase inhibitor: 1,4-dideoxy-1,4-imino-D-mannitol. J. Chem. Soc. Chem. Commun. 1984, 1240‒1241
Karpf, M.; Trussardi, R. Efficient access to oseltamivir phosphate (Tamiflu) via the O-trimesylated of shikimic acid ethyl ester. Angew. Chem. Int. Ed. 2009, 48, 5760‒5762
Nie, L. D.; Shi, X. X.; Ko, K. H.; Lu, W. D. A short and practical synthesis of oseltamivir phosphate (Tamiflu) from (‒)-shikimic acid. J. Org. Chem. 2009, 74, 3970‒3973
Nie, L. D.; Shi, X. X. A novel asymmetric synthesis of oseltamivir phosphate (Tamiflu) from (‒)-shikimic acid. Tetrahedron: Asymmetry 2009, 20, 124‒129
Nie, L. D.; Shi, X. X.; Quan, N.; Wang, F. F.; Lu, X. Novel asymmetric synthesis of oseltamivir phosphate (Tamiflu) from (‒)-shikimic acid via cyclic sulfite intermediates. Tetrahedron: Asymmetry 2011, 22, 1692‒1699
Nie, L. D.; Ding, W; Shi, X. X.; Quan, N.; Lu, X. A novel and high-yielding asymmetric synthesis of oseltamivir phosphate (Tamiflu) starting from (‒)-shikimic acid. Tetrahedron: Asymmetry 2012, 23, 742‒747
Abdel-Magid, A. F.; Carson, K. G.; Harris, D. H.; Maryanoff, C. A.; Shah, R. D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures. J. Org. Chem. 1996, 61, 3849‒3862
Adams, H.; Bailey, N. A.; Brettle, R.; Cross, R.; Frederickson, M.; Haslam, E.; MacBeath, F. S.; Davies, G. M. The shikimate pathway. Part 8. Synthesis of (‒)-3(R)-amino-4(R), 5(R)-dihydroxy-1-cyclohexene-1-carboxylic acid: The 3(R)-amino analogue of (‒)-shikimic acid. Tetrahedron 1996, 52, 8565‒8580
Webb, M. R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 4884‒4887
Ueda, S.; Sakasegawa, S.-I. Development of an enzyme cycling method by a purine nucleoside phosphorylase for assaying inorganic phosphate. Anal. Methods, 2017, 9, 6235‒6239
Chao, C.-S.; Chen, M.-C.; Lin, S.-C.; Mong, K.-K. T. Versatile acetylation of carbohydrate substrates with bench-top sulfonic acids and application to one-pot syntheses of peracetylated thioglycosides. Carbohydr. Res. 2008, 343, 957‒964
Chao, C.-S.; Lin, C.-Y.; Mulani, S.; Hung, W.-C.; Mong, K.-K. T. Neighboring-group participation by C-2 ether functions in glycosylations directed by nitrile solvents. Chem. Eur. J. 2011, 17, 12193−12202
Ren, B.; Wang, M.; Liu, J.; Ge, J.; Zhang, X.; Dong, H. Zemplen transesterifciation: a name reaction that has misled us for 90 years. Green Chem. 2015, 17, 1390‒1394
Ziegler, T.; Kováč, P.; Glaudemans, C. P. J. Transesterification during glycosylation promoted by silver trifluoromethanesulfonate. Liebigs Ann. Chem. 1990, 613‒615
Simao, A. C.; Tatibouët, A.; Rauter, A. P.; Rollin, P. Selective iodination of vicinal cis-diols on ketopyranose templates. Tetrahedron Lett. 2010, 51, 4602‒4604
Simao, A.-C.; Silva, S.; Rauter, A. P.; Rollin, P.; Tatibouët, A. Controlled Garegg conditions for selective iodination on pyranose templates. Eur. J. Org. Chem. 2011, 2286‒2292
Vogensen, S. B.; Strømgaard, K.; Shindou, H.; Jaracz, S.; Suehiro, M.; Ishii, S.; Shimizu, T.; Nakanishi, K. Preparation of 7-substituted ginkgolide derivatives: potent platelet activating factor (PAF) receptor antagonists. J. Med. Chem. 2003, 46, 601‒608
Choubdar, N.; Bhat, R. G.; Stubbs, K. A.; Yuzwa, S.; Pinto, B. M. Synthesis of 2-amido, 2-amino, and 2-azido derivatives ofthe nitrogen analogue of the naturally occurring glycosidase inhibitor salacinol and their inhibitory activities against O-GlcNAcase and NagZ enzymes. Carbohydr. Res. 2008, 343, 1766‒1777
Fields, E. K. The synthesis of esters of substituted amino phosphonic acids. J. Am. Chem. Soc. 1952, 74, 1528‒1531
Cherkasov, R. A.; Galkin, V. I. The Kabachnik-Fields reaction: synthetic potential and the problem of the mechanism. Russ. Chem. Rev. 1998, 67, 857‒882
Unruh, D. A.; Pastine, S. J.; Moreton, J. C.; Frechét, M. J. Thermally activated, single component epoxy systems. Macromolecules, 2011, 44, 6318‒6325
Jayaprakash, S. H.; Krishna, B. S.; Prasad, S. S.; Sudha, S. S.; Reddy, C. S. Sodium perborate: a facile catalyst allylation for active centers. Synth. Commun. 2015, 45, 355‒362
Tam, P.-H.; Lowary, T. L. Synthesis of deoxy and methoxy analogs of octyl α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside as probes for mycobacterial lipoarabinomannan biosynthesis. Carbohydr. Res. 2007, 342, 1741‒1772
Meng, S.; Zhong, W.; Yao, W.; Li, Z. Stereoselective phenylselenoglycosylation of glycals bearing a fused carbonate moiety toward the synthesis of 2‑deoxy-β-galactosides and β‑mannosides. Org. Lett. 2020, 22, 2981‒2986
Spicer, C. D.; Davis, B. G. Rewriting the bacterial glycocalyx via Suzuki–Miyaura cross-coupling. Chem. Commun. 2013, 49, 2747‒2749
Voronkov, M. G.; Deryagina, E. N. Thermal reactions of thiyl radicals. Russ. Chem. Rev. 1990, 59, 778‒791
Torrents, E.; Aloy, P.; Gibert, I.; Rodríguez-Trelles, F. Ribonucleotide reductases: divergent evolution of an ancient enzyme. J. Mol. Evol. 2002, 55, 138‒152
Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 2014, 114, 2587‒2693
Baldock, R. W.; Hudson, P.; Katritzky, A. R.; Soti, F. Stable free radicals. part I. a new principle governing the stability of organic free radicals. J. Chem. Soc., Perkin Trans. 1 1974, 1422‒1427
Walter, R. J. Substituent effects on the properties of stable aromatic free radicals. The criterion for non-Hammett behavior. J. Am. Chem. Soc. 1966, 88, 1923‒1930
Tanaseichuk, B. S.; Tomilin, O. B.; Butin, K. P. The effect of substituents on the relative stability of free-radicals. Zh. Org. Khim. 1982, 18, 241‒246
Borges dos Santos, R. M.; Muralha, V. S. F.; Correia, C. F.; Guedes, R. C.; Costa Cabral, B. J.; Martinho Simões, J. A. S−H bond dissociation enthalpies in thiophenols:  a time-resolved photoacoustic calorimetry and quantum chemistry study. J. Phys. Chem. A 2002, 106, 9883−9889
Mulder, P.; Mozenson, O.; Lin, S.; Bernardes, C. E. S.; Minas da Piedade, M. E.; Santos, A. F. L. O. M.; Ribeiro da Silva, M. A. V.; DiLabio, G. A.; Korth, H.-G.; Ingold, K. U. Effect of ring substitution on the S−H bond dissociation enthalpies of thiophenols. An experimental and computational study. J. Phys. Chem. A 2006, 110, 9949‒9958
Ollivier, C.; Renaud, P. Organoboranes as a source of radicals. Chem. Rev. 2001, 101, 3415‒3434
Pryor, W. A.; Stanley, J. P. Reactions of the hydrogen atom in solution. IV. photolysis of deuterated thiols. J. Am. Chem. Soc. 1971, 93, 1412‒1418
Ito, O. Flash photolysis study on reversible addition reactions of thiyl radicals. Res. Chem. Intermed. 1995, 21, 69‒93
Zepp, R. G.; Wagner, P. J. Slow quenching of triplet ketones by alkyl thiols. J. Chem. Soc., Chem. Commun. 1972, 167b‒168
Tyson, E. L.; Ament, M. S.; Yoon, T. P. Transition metal photoredox catalysis of radical thiol-ene reactions. J. Org. Chem. 2013, 78, 2046‒2050
Keylor, M. H.; Park, J. E.; Wallentin, C.-J.; Stephenson, C. R. J. Photocatalytic initiation of thiol–ene reactions: synthesis of thiomorpholin-3-ones. Tetrahedron, 2014, 70, 4264‒4269
Zalesskiy, S. S.; Shlapakov, N. S.; Ananikov, V. P. Visible light mediated metal-free thiol-yne click reaction. Chem. Sci. 2016, 7, 6740–6745
Kaur, S.; Zhao, G.; Busch, E.; Wang, T. Metal-free photocatalytic thiol-ene/thiol-yne reactions. Org. Biomol. Chem. 2019, 17, 1955‒1961
Xi, Y.; Yi, Hong; Lei, A. Synthetic application of photoredox catalysis with visible light. Org. Biomol. Chem. 2013, 11, 2387‒2403
Griesbaum, K. Problems and possibilities of the free-radical addition of thiols to unsaturated compounds. Angew. Chem. Int. Ed. 1970, 9, 273‒287
Skell, P.S.; Allen, R.G. Conditions for stereospecific olefin-mercaptan radical additions. J. Am. Chem. Soc. 1960, 82, 1511‒1512
Wille, U. Radical cascades initiated by intermolecular radical addition to alkynes and related triple bond systems. Chem. Rev. 2013, 113, 813‒853
Majumdar, K. C.; Maji, P. K.; Ray, K.; Debnath, P. Thiol mediated 8-endo-trig radical cyclization: an easy access to medium-sized cyclic ethers. Tetrahedron Lett. 2007, 48, 9124‒9127
Alcaide, B.; Almendros, P.; Aragoncillo, C. Straightforward asymmetric entry to highly functionalized medium-sized rings fused to β-lactams via chemo- and stereocontrolled divergent radical cyclization of Baylis−Hillman adducts derived from 4-oxoazetidine-2-carbaldehydes. J. Org. Chem. 2001, 66, 1612‒1620
Dondoni, A.; Marra, A. Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem. Soc. Rev. 2012, 41, 573‒586
Lacombe, J. M.; Rakotomanomana, N.; Pavia, A. A. Free-radical addition of 1-thiosugars to alkenes a new general approach to the synthesis of 1-thioglycosides. Tetrahedron Lett. 1988, 29, 4293–4296
Seeventer, P. B. van; Dorst, J. A. L. M. van; Siemerink, J. F.; Kamerling, J. P.; Vliegenthart, J. F. G. Thiol addition to protected allyl glycosides: an improved method for the preparation of spacer-arm glycosides. Carbohydr. Res. 1997, 300, 369–373
Buskas, T.; Söderberg, E.; Konradsson, P.; Fraser-Reid, B. Use of n-pentenyl glycosides as precursors to various spacer functionalities. J. Org. Chem. 2000, 65, 958–963
Fiore, M.; Marra, A.; Dondoni, A. Photoinduced thiol-ene coupling as a click ligation tool for thiodisaccharide synthesis. J. Org. Chem. 2009, 74, 4422–4425
Pachamuthu, K.; Schmidt, R. R. Synthetic routes to thiooligosaccharides and thioglycopeptides. Chem. Rev. 2006, 106,160–187
Fiore, M.; Lo Conte, M.; Pacifico, S.; Marra, A.; Dondoni, A. Synthesis of S-glycosyl amino acids and S-glycopeptides via photoinduced click thiol–ene coupling. Tetrahedron Lett. 2011, 52, 444–447
Marcaurelle, L. A.; Bertozzi, C. R. New directions in the synthesis of glycopeptide mimetics. Chem. Eur. J.1999, 5, 1384–1390
Floyd,N.; Vijayakrishnan, B.; Koeppe, J. R.; Davis, B. G. Thiyl glycosylation of olefinic proteins: S-linked glycoconjugate synthesis. Angew. Chem., Int. Ed. 2009, 48, 7798–7802
Lo Conte, M.; Pacifico, S.; Chambery, A.; Marra, A.; Dondoni, A. Photoinduced addition of glycosyl thiols to alkynyl peptides: use of free-radical thiol-yne coupling for post-translational double-glycosylation of peptides. J. Org. Chem. 2010, 75, 4644‒4647
Lo Conte, M.; Staderini, S.; Marra, A.; Sanchez-Navarro, M.; Davis, B. G.; Dondoni, A. Multi-molecule reaction of serum albumin can occur through thiol-yne coupling. Chem. Commun. 2011, 47, 11086‒11088
WHO Report on Cancer: setting priorities, investing wisely and providing care for all. World Health Organization; 2020
DeVita, V. T. Jr.; Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653
Loadman, P. Anticancer drug development. Br. J. Cancer 2002, 86, 1665–1666
Gordon, M.R.; Canakci, M.; Li, L.; Zhuang, J.; Osborne, B.; Thayumanavan, S. Field guide to challenges and opportunities in antibody-drug conjugates for chemists. Bioconjug. Chem. 2015, 26, 2198–2215
Strebhardt, K.; Ullrich, A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nat. Rev. Cancer 2008, 8, 473–480
Ford, C. H.; Newman, C. E.; Johnson, J. R.; Woodhouse, C. S.; Reeder, T. A.; Rowland, G. F.; Simmonds, R. G. Localisation and toxicity study of a vindesine-anti-CEA conjugate in patients with advanced cancer. Br. J. Cancer 1983, 47, 35–42
Trail, P. A.; Willner, D.; Lasch, S. J.; Henderson, A.J.; Hofstead, S.; Casazza A. M.; Firestone, R. A.; Hellström, I.; Hellström, K. E. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 1993, 261, 212–215
Khongorzul, P.; Ling, C. J.; Khan, F. U.; Ihsan, A. U.; Zhang, J. Antibody-drug conjugates: a comprehensive review. Mol. Cancer Res. 2020, 18, 3‒19
Chen, H.; Lin, Z.; Arnst, K. E.; Miller, D. D.; Li, W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecule, 2017, 22, 1281
Strohl, W.R. Current progress in innovative engineered antibodies. Protein Cell 2018, 9, 86–120
Damelin, M.; Zhong, W.; Myers, J.; Sapra, P. Evolving strategies for target selection for antibody-drug conjugates. Pharm. Res. 2015, 32, 3494–3507
Tipton, T. R.; Roghanian, A.; Oldham, R. J.; Carter, M. J.; Cox, K. L.; Mockridge, C. I.; Frech, R. R.; Dahal, L. N.; Duriez, P. J.; Hargreaves, P. G.; Cragg, M. S.; Beers, S. A. Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies. Blood 2015, 125, 1901–1909
Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. mAbs. 2016, 8, 659–671
Peters, C.; Brown, S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 2015, 35, e00225
Hughes, B. Antibody-drug conjugates for cancer: poised to deliver? Nat. Rev. Drug Discov. 2010, 9, 665–667
Mehrling, T.; Soltis, D. Challenges in optimising the successful construction of antibody drug conjugates in cancer therapy. Antibodies 2018, 7, 11
Payés, C. J.; DanielsWells, T. R.; Maffía, P. C.; Penichet, M. L.; Morrison, S. L.; Helguera, G. Genetic engineering of antibody molecules. Rev. Cell Biol. Mol. Med. 2015, 1, 1–52
Maynard, J.; Georgiou, G. Antibody engineering. Annu. Rev. Biomed. Eng. 2000, 2, 339–376
Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J. R. Site-specific antibody drug conjugates for cancer therapy. mAbs. 2014, 6, 34–45
Carter, P. J. Potent antibody therapeutics by design. Nat. Rev. Immunol. 2006, 6, 343–357
Chalouni, C.; Doll, S. Fate of antibody-drug conjugates in cancer cells. J. Exp. Clin. Cancer Res. 2018, 37, 20
Alley, S. C.; Benjamin, D. R.; Jeffrey, S. C.; Okeley, N. M.; Meyer, D. L.; Sanderson, R. J.; Senter, P. D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem. 2008, 19, 759–765
Nagayama, A.; Ellisen, L. W.; Chabner, B.; Bardia, A. Antibody-drug conjugates for the treatment of solid tumors: clinical experience and latest developments. Target. Oncol. 2017, 12, 719–739
Tsuchikama, K.; An, Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 2018, 9, 33–46
Ducry, L.; Stump, B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem. 2010, 21, 5–13
McCombs, J. R.; Owen, S. C. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS. J. 2015, 17, 339–351
Betella, I.; Birrer, M. J.; Moore, K. N.; Bates, R. C. Antibody-drug conjugate-based therapeutics: state of the science. J. Natl. Cancer Inst. 2019, 111, 538–549
van de Donk, N. W.; Dhimolea, E. Brentuximab vedotin. mAbs. 2012, 4, 458–465
Balendiran, G. K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct. 2004, 22, 343–352
Turell, L.; Carballal, S.; Botti, H.; Radi, R.; Alvarez, B. Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment. Brazilian J. Med. Biol. Res. 2009, 42, 305–311
Sapra, P.; Hooper, A. T.; O'Donnell, C. J.; Gerber, H. P. Investigational antibody drug conjugates for solid tumors. Expert Opin. Investig. Drugs 2011, 20, 1131–1149
Shefet-Carasso, L.; Benhar, I. Antibody-targeted drugs and drug resistance-challenges and solutions. Drug Resist. Updat. 2015, 18, 36–46
Nasiri, H.; Valedkarimi, Z.; Aghebati-Maleki, L.; Majidi, J. Antibody-drug conjugates: promising and efficient tools for targeted cancer therapy. J. Cell Physiol. 2018, 233, 6441–6457
Li, F.; Emmerton, K. K.; Jonas, M.; Zhang, X.; Miyamoto, J. B.; Setter, J. R.; Nicholas, N. D.; Okeley, N. M.; Lyon, R. P.; Benjamine, D. R.; Law, C. -L. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 2016, 76, 2710–2719
Bouchard, H.; Viskov, C.; Garcia-Echeverria, C. Antibody-drug conjugates - a new wave of cancer drugs. Bioorg. Med. Chem. Lett. 2014, 24, 5357–5363
Walsh, S. J.; Bargh, J. D.; Dannheim, F. M.; Hanby, A. R.; Seki, H.; Counsell, A. J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; Isidro-Llobet, A.; Parker, J. S. Carroll, J. S.; Spring, D. R. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev. 2021, 50, 1305‒1353
Wang,L.; Amphlett, G.; Blättler, W. A.; Lambert, J. M.; Zhang, W. Protein Sci. 2005, 14, 2436–2446
Wilbur, D. S.; Chyan, M. K.; Nakamae, H.; Chen, Y.; Hamlin, D. K.; Santos, E. B.; Kornblit, B. T.; Sandmaier, B. M. Reagents for astatination of biomolecules. 6. An intact antibody conjugated with a maleimido-closo-decaborate(2‒) reagent via sulfhydryl groups had considerably higher kidney concentrations than the same antibody conjugated with an isothiocyanato-closo-decaborate(2‒) reagent via lysine amines. Bioconjugate Chem. 2012, 23, 409–420
Hayakawa, M.; Toda, N.; Carrillo, N.; Thornburg, N. J.; Crowe, J. E.; Barbas, C. F. A chemically programmed antibody is a long-lasting and potent inhibitor of influenza neuraminidase. ChemBioChem 2012, 13, 2191–2195
Dovgan, I.; Ursuegui, S.; Erb, S.; Michel, C.; Kolodych, S.; Cianférani, S.; Wagner, A. Acyl fluorides: fast, efficient, and versatile lysine-based protein conjugation via plug-and-play strategy. Bioconjug. Chem. 2017, 28, 1452–1457
Moreau, M.; Raguin, O.; Vrigneaud, J. M.; Collin, B.; Bernhard, C.; Tizon, X.; Boschetti, F.; Duchamp, O.; Brunotte, F.; Denat, F. DOTAGA-Trastuzumab. A new antibody conjugate targeting HER2/Neu antigen for diagnostic purposes. Bioconjug. Chem. 2012, 23, 1181–1188
Cao, M.; Mel, N. D.; Howard, J.; Parthemore, C.; Korman, S.; Thompson, C.; Wendeler, M.; Liu,D. Site-specific antibody-drug conjugate heterogeneity characterization and heterogeneity root cause analysis. mAbs. 2019, 11, 1064‒1076
Sun, M. M.; Beam, K. S.; Cerveny, C. G.; Hamblett, K. J.; Blackmore, R.S.; Torgov, M. Y.; Handley, F. G.; Ihle, N.C.; Senter, P. D.; Alley, S. C. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug. Chem. 2005, 16, 1282–1290
Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute B. L.; Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 2015, 526, 687–691
Kasper, M. -A.; Glanz, M.; Stengl, A.; Penkert, M.; Klenk, S.; Sauer, T.; Schumacher, D.; Helma, J.; Krause, E.; Cardoso, M. C.; Leonhardt, H.; Hackenberger, C. P. R. Cysteine-selective phosphonamidate electrophiles for modular protein bioconjugations. Angew. Chem., Int. Ed. 2019, 58, 11625–11630
Kasper, M.; Stengl, A.; Ochtrop, P.; Gerlach, M.; Stoschek, T.; Schumacher, D.; Helma, J.; Penkert, M.; Krause, E.; Leonhardt, H.; Hackenberger, C. P. R. Ethynylphosphonamidates for the rapid and cysteine-selective generation of efficacious antibody-drug conjugates. Angew. Chem., Int. Ed. 2019, 58, 11631–11636
Kasper, M. A.; Glanz, M.; Oder, A.; Schmieder, P.; von Kries, J. P.; Hackenberger, C. P. R. Vinylphosphonites for Staudinger-induced chemoselective peptide cyclization and functionalization. Chem. Sci. 2019, 10, 6322–6329
Tessier, R.; Nandi, R. K.; Dwyer, B. G.; Abegg, D.; Sornay, C.; Ceballos, J.; Erb S.; Cianférani, S.; Wagner, A.; Chaubet, G.; Adibekian, A.; Waser, J. Ethynylation of cysteine residues: from peptides to proteins in vitro and in living cells. Angew. Chem., Int. Ed. 2020, 59, 10961–10970
Hamblett, K. J.; Senter, P. D.; Chace, D. F.; Sun, M. M. C.; Lenox, J.; Cerveny, C. G.; Kissler, K. M.; Bernhardt, S. X.; Kopcha, A. K.; Zabinski, R. F.; Meyer, D. L.; Francisco, J. A. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 2004, 10, 7063‒7070
Beckley, N. S.; Lazzareschi, K. P.; Chih, H. W.; Sharma, V. K.; Flores, H. L. Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjug. Chem. 2013, 24, 1674–1683
Adem, Y. T.; Schwarz, K. A.; Duenas, E.; Patapoff, T. W.; Galush, W. J.; Esue, O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug. Chem. 2014, 25, 656–664
Junutula, J. R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D. D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S. P.; Dennis, M. S.; Lu, Y.; Meng, Y. G.; Ng, C.; Yang, J.; Lee, C. C.; Duenas, E.; Gorrell, J.; Katta, V.; Kim, A.; McDorman, K.; Flagella, K.; Venook, R.; Ross, S.; Spencer, S. D.; Wong, W. L.; Lowman, H. B.; Vandlen, R.; Sliwkowski, M. X.; Scheller, R. H.; Polakis, P.; Mallet, W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26, 925–932
Axup, J. Y.; Bajjuri, K. M.; Ritland, M.; Hutchins, B. M.; Kim, C. H.; Kazane, S. A.; Halder, R.; Forsyth, J. S.; Santidrian, A. F.; Stafin, K.; Lu, Y. C.; Tran, H.; Seller, A. J.; Biroc, S. L.; Szydlik, A.; Pinkstaff, J. K.; Tian, F.; Sinha, S. C.; Felding-Habermann, B.; Smider, V. V.; Schultz, P. G. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. USA 2012, 109, 16101–16106
Zeglis, B. M.; Davis, C. B.; Aggeler, R.; Kang, H. C.; Chen, A.; Agnew, B. J.; Lewis, J. S. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug. Chem. 2013, 24, 1057–1067
Jeger, S.; Zimmermann, K.; Blanc, A.; Grunberg, J.; Honer, M.; Hunziker, P.; Struthers, H.; Schibli, R. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. 2010, 49, 9995–9997
Mao, H.; Hart, S. A.; Schink, A.; Pollok, B. A. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 2004, 126, 2670–2671
Qasba, P. K. Glycans of antibodies as a specific site for drug conjugation using glycosyltransferases. Bioconjug. Chem. 2015, 26, 2170–2175
Usugi, S.-I.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Disulfidation of alkynes and alkenes with gallium trichloride. Org. Lett. 2004, 6, 601‒603
Caserio, M. C.; Fisher, C. L.; Kim, J. K. Boron trifluoride catalyzed addition of disulfides to alkenes. J. Org. Chem. 1985, 50, 4390‒4393
Kitamura, T.; Matsuyuki, J.-I.; Taniguchi, H. 1,2-disulphenylation of alkenes induced by a hypervalent iodine(III) reagent [PhlO–TfOH]. J. Chem. Soc., Perkin Trans. 1 1991, 1607‒1608
Takashiro, N.; Tomoaki, Y.; Sakae, U. Metal cation-exchanged montmorillonite-catalyzed addition of organic disulfides to alkenes. Bull. Chem. Soc. Jpn. 2005, 78, 1138–1141
Yamagiwa, N.; Suto, Y.; Torisawa, Y. Convenient method for the addition of disulfides to alkenes. Bioorg. Med. Chem. Lett. 2007, 17, 6197−6201
Wang, X. R.; Chen, F. Iodine-catalyzed disulfidation of alkenes. Tetrahedron 2011, 67, 4547−4551
Matsumoto, K.; Shimazaki, H.; Sanada, T.; Shimada, K.; Hagiwara, S.; Suga, S.; Kashimura, S.; Yoshida, J.-I. Electrogenerated acid (EGA)-catalyzed addition of diaryl disulfides to carbon–carbon multiple bonds. Chem. Lett. 2013, 42, 843−845
Kondo, T.; Uenoyama, S.; Fujita, K.; Mitsudo, T. First transition-metal complex catalyzed addition of organic disulfides to alkenes enables the rapid synthesis of vicinal-dithioethers. J. Am. Chem. Soc. 1999, 121, 482−483
Kondo, T.; Uenoyama, S.; Fujita, K.; Mitsudo, T. First transition-metal complex catalyzed addition of organic disulfides to alkenes enables the rapid synthesis of vicinal-dithioethers. J. Am. Chem. Soc. 1999, 121, 482−483
Gareau, Y.; Tremblay, M.; Gauvreau, D.; Juteau, H. Preparation and reactivity studies of 1,2-bis-triisopropylsilanylsulfanyl-alkenes. Tetrahedron 2001, 57, 5739–5750
Kuniyasu, H.; Ogawa, A.; Miyazaki, S.; Ryu, I.; Kambe, N.; Sonoda, N. Palladium-catalyzed addition and carbonylative addition of diaryl disulfides and diselenides to terminal acetylenes. J. Am. Chem. Soc. 1991, 113, 9796–9803
Heiba, E. I.; Dessau, R. M. Free-radical addition of organic disulfides to acetylenes. J. Org. Chem. 1967, 32, 3837–3840
Galli, C. Radical reactions of arenediazonium ions: an easy entry into the chemistry of the aryl radical. Chem. Rev. 1988, 88, 765–792
Lampard, C.; Murphy, J. A.; Lewis, N. Tetrathiafulvalene as a catalyst for radical-polar crossover reactions. J. Chem. Soc., Chem. Commun. 1993, 295–297
Mahesh, M.; Murphy, J. A.; LeStrat, F.; Wessel, H. P. Reduction of arenediazonium salts by tetrakis(dimethylamino)ethylene (TDAE): efficient formation of products derived from aryl radicals. Beilstein J. Org. Chem. 2009, 5, 1
Murphy, J. A. Discovery and development of organic super-electron-donors. J. Org. Chem. 2014, 79, 3731–3746
Lampard, C.; Murphy, J. A.; Rasheed, F.; Lewis, N.; Hursthouse; M. B.; Hibbs, D. E. Organic electron donors as powerful single-electron transfer reducing agents in organic synthesis. Tetrahedron Lett. 1994, 35, 8675–8678
Tatunashvili, E.; Chan, B.; Nashar, P. E.; McErlean, C. S. P. σ-Bond initiated generation of aryl radicals from aryl diazonium salts. Org. Biomol. Chem. 2020, 18, 1812‒1819
Koziakov, D.; Wu, G.; Jacobi von Wangelin, A. Aromatic substitutions of arenediazonium salts via metal catalysis, single electron transfer, and weak base mediation. Org. Biomol. Chem. 2018, 16, 4942–4953
Griefs, P. Vorläufige notiz über die einwirkung von salpetriger Säure auf amidinitro- und aminitrophenylsäure. Liebigs Ann. Chem. 1858, 106, 123‒125
Koziakov, D.; Majek, M.; Jacobi von Wangelin, A. Metal-free radical thiolations mediated by very weak bases. Org. Biomol. Chem. 2016, 14, 11347‒11352
Bu, M.-J.; Lu, G.-P.; Cai, C. Ascorbic acid promoted metal-free synthesis of aryl sulfides with anilines nitrosated in situ by tert-butyl nitrite. Synlett 2015, 26, 1841−1846
Altmann, L.-M.; Zantop, V.; Wenisch, P.; Diesendorf, N.; Heinrich, M. R. Visible light promoted, catalyst-free radical carbohydroxylation and carboetherification under mild biomimetic conditions. Chem. Eur. J. 2021, 27, 2452–2462
Sunner, S. Strain in 6,8-thioctic acid. Nature 1955, 176, 217
Hoffman, M. Z.; Hayon, E. One-electron reduction of the disulfide linkage in aqueous solution. Formation, protonation, and decay kinetics of the RSSR– radical. J. Am. Chem. Soc. 1972, 94, 7950–7957
Sliwkowski, M. X.; Lofgren, J. A.; Lewis, G. D.; Hotaling, T.E.; Fendly, B. M.; Fox, J.A. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 1999, 26, 60–70
Baselga, J.; Albanell, J.; Molina, M. A.; Arribas, J. Mechanism of action of trastuzumab and scientific update. Semin. Oncol. 2001, 28, 4–11
Molina, M. A.; Codony-Servat, J.; Albanell, J.; Rojo, F.; Arribas, J.; Baselga, J. Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001, 61, 4744–4749
Nahta, R.; Esteva, F. J. Trastuzumab: triumphs and tribulations. Oncogene. 2007, 26, 3637−3643
Lane, H. A.; Beuvink, I.; Motoyama, A. B.; Daly, J. M.; Neve, R. M.; Hynes, N.bE. ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol. Cell Biol. 2000, 20, 3210–3223
Neve, R. M.; Sutterluty, H.; Pullen, N.; Lane, H. A.; Daly, J. M.; Krek, W.; Hynes, N. E. Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. Oncogene 2000, 19, 1647–1656
Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rutgers, E.; Zackrisson, S.; Cardoso, F.; ESMO Guidenlines Committee. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v8‒30
Eisen, A.; Fletcher, G. G.; Gandhi, S.; Mates, M.; Freedman, O. C.; Dent, S. F.; Trudeau, M. E.; members of the Early Breast Cancer Systemic Therapy Consensus Panel. Optimal systemic therapy for early breast cancer in women: a clinical practice guideline. Curr. Oncol. 2015, 22, S67–81
Denduluri, N.; Somerfield, M. R.; Eisen, A.; Holloway, J. N.; Hurria, A.; King, T. A.; Lyman, G. H.; Partridge, A. H.; Telli, M. L.; Trudeau, M. E.; Wolff, A. C. Selection of optimal adjuvant chemotherapy regimens for human epidermal growth factor receptor 2 (HER2)-negative and adjuvant targeted therapy for HER2-positive breast cancers: an American Society of Clinical Oncology guideline adaptation of the Cancer Care Ontario clinical practice guideline. J. Clin. Oncol. 2016, 34, 2416–2427
Wilson, F. R.; Coombes, M. E.; Brezden-Masley, C.; Yurchenko, M.; Wylie, Q.; Douma, R.; Varu, A.; Hutton, B.; Skidmore, B.; Cameron, C. Herceptin® (trastuzumab) in HER2-positive early breast cancer: a systematic review and cumulative network meta-analysis. Syst. Rev. 2018, 7, 191
Ross, J. S.; Slodkowska, E. A.; Symmans, W. F.; Pusztai, L.; Ravdin, P. M.; Hortobagyi, G. N. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009, 14, 320–368
Slamon, D. J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792
Liu, J.; Chumsae, C.; Gaza-Bulseco, G.; Hurkmans, K.; Radziejewski, C. H. Ranking the susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential alkylation, and LC-MS analysis. Anal. Chem. 2010, 82, 5219-5226
Marty, M. T. A universal score for deconvolution of intact protein and native electrospray mass spectra. Anal. Chem. 2020, 92, 4395‒4401
Meyer, J. G.; Kim, S.; Maltby, D. A.; Ghassemian, M.; Bandeira, N.; Komives E. A. Expanding proteome coverage with orthogonal-specificity α-lytic proteases. Mol. Cell Proteomics 2014, 13, 823−835
Dorta, D. A.; Deniaud, D.; Mével, M.; Gouin, S. G. Tyrosine conjugation methods for protein labeling. Chem. Eur. J. 2020, 26, 14257−14269
Alekminskaya, O. V.; Russaavskaya, N. V.; Korchevin, N. A.; Deryagina, E. N.; Trofimov, B. A. Reduction of thiokols in the system hydrazine hydrate-base as a new route to alkanedithiols. Russ. J. Gen. Chem. 2000, 70, 732‒737
Hullaert, J.; Winne, J. M. (5,6-Dihydro-1,4-dithiin-2-yl)methanol as a versatile allyl-cation equivalent in (3+2) cycloaddition reactions. Angew. Chem. Int. Ed. 2016, 55, 13254‒13258
Gosset, C.; Pellegrini, S.; Jooris, R.; Bousquet, T.; Pelinski, L. Visible-light-mediated hydroxycarbonylation of diazonium salts. Adv. Synth. Catal. 2018, 360, 3401‒3405
Krouzelka, J.; Linhart, I. Preparation of arylmercapturic acids by S-arylation of N,N'-diacetylcystine. Eur. J. Org. Chem. 2009, 36, 6336−6340
Albert, S. K.; Sivakumar, I.; Golla, M.; Thelu, H. V. P.; Krishnan, N. Joseph, L.; Ashish; Varghese, R. DNA-decorated two-dimensional crystalline nanosheets. J. Am. Chem. Soc. 2017, 139, 17799−17802
Sauer, C.; Kockenberger, J.; Heinrich, M. R. Oxidative formation of disulfide bonds by a chemiluminescent 1,2-dioxetane under mild conditions. J. Org. Chem. 2020, 85, 9331‒9338
Capperucci, A.; Petrucci, A.; Faggi, C.; Tanini, D. Click reaction of selenols with isocyanates: rapid access to selenocarbamates as peroxide-switchable reservoir of thiol-peroxidase-like catalysts. Adv. Synth. Catal. 2021, 363, 4256‒4263
Schmidt, B.; Elizarov, N. Selective arene functionalization through sequential oxidative and non-oxidative Heck reactions. Chem. Commun. 2012, 48, 4350‒4352
Dagade, S. P.; Kadam, V. S.; Dongare, M. K. Regioselective nitration of phenol over solid acid catalyst. Catal. Commun. 2002, 3, 67−70
Dagade, S. P.; Kadam, V. S.; Dongare, M. K. Regioselective nitration of phenol over solid acid catalyst. Catal. Commun. 2002, 3, 67−70
Li,W.-P.; Cheng, G.; Li, S-Y.; Lin, C.-Z.; Guan, X.-Y.; Bing, D.-X.; Cao, J.; Zhu, D.; Deng, Q.-H. Acid-free copper-catalyzed electrophilic nitration of electron-rich arenes with guanidine nitrate. J. Org. Chem. 2022, 87, 3834−3840
Temussi, P. A.; Tancredi, T.; Quadrifoglio, F. Conformational rigidity of the amide bond. A variable-temperature nuclear magnetic resonance study of the system Ag+-N,N-dimethylacetamide. J. Phys. Chem. 1969, 73, 4227–4232
Kumari, S.; Carmona, A. V. Amide bond bioisosteres: strategies, synthesis, and successes. J. Med. Chem. 2020, 63, 12290–12358
Gabriele, B.; Salerno, G.; Veltri, L.; Mancuso, R.; Li, Z.; Crispini, A.; Bellusci, A. A new synthesis of 2,3-dihydrobenzo[1,4]dioxine and 3,4-dihydro-2H-benzo[1,4]oxazine derivatives by tandem palladium-catalyzed oxidative aminocarbonylation−cyclization of 2-prop-2-ynyloxyphenols and 2-prop-2-ynyloxyanilines. J. Org. Chem. 2006, 71, 7895−7898
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top