|
1.Herz, L. M., Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Letters 2017, 2 (7), 1539-1548. 2Biewald, A.; Giesbrecht, N.; Bein, T.; Docampo, P.; Hartschuh, A.; Ciesielski, R., Temperature-Dependent Ambipolar Charge Carrier Mobility in Large-Crystal Hybrid Halide Perovskite Thin Films. ACS Appl Mater Interfaces 2019, 11 (23), 20838-20844. 3Lin, J. T.; Liao, C. C.; Hsu, C. S.; Chen, D. G.; Chen, H. M.; Tsai, M. K.; Chou, P. T.; Chiu, C. W., Harnessing Dielectric Confinement on Tin Perovskites to Achieve Emission Quantum Yield up to 21. J. Am. Chem, Soc. 2019, 141 (26), 10324-10330. 4Ming, W.; Shi, H.; Du, M. H., Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3. J. Mater. Chem. A 2016, 4 (36), 13852-13858. 5Febriansyah, B.; Koh, T. M.; John, R. A.; Ganguly, R.; Li, Y.; Bruno, A.; Mhaisalkar, S. G.; England, J., Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through π-Stacked Viologens. Chem. Mater. 2018, 30 (17), 5827-5830. 6Lin, J. T.; Chen, D. G.; Wu, C. H.; Hsu, C. S.; Chien, C. Y.; Chen, H. M.; Chou, P. T.; Chiu, C. W., A Universal Approach for Controllable Synthesis of n-Specific Layered 2D Perovskite Nanoplates. Angew. Chem. Int. Ed. Engl. 2021, 60 (14), 7866-7872. 7Huang, H.; Raith, J.; Kershaw, S. V.; Kalytchuk, S.; Tomanec, O.; Jing, L.; Susha, A. S.; Zboril, R.; Rogach, A. L., Growth mechanism of strongly emitting CH(3)NH(3)PbBr(3) perovskite nanocrystals with a tunable bandgap. Nat. Commun. 2017, 8 (1), 996. 8Huang, H. H.; Liu, Q. H.; Tsai, H.; Shrestha, S.; Su, L. Y.; Chen, P. T.; Chen, Y. T.; Yang, T. A.; Lu, H.; Chuang, C. H.; Lin, K.-F.; Rwei, S. P.; Nie, W.; Wang, L., A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication. Joule 2021, 5 (4), 958-974. 9Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25 (27), 3727-3732. 10Chen, S.; Dai, X.; Xu, S.; Jiao, H.; Zhao, L.; Huang, J., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373 (6557), 902-907. 11Lin, X.; Cui, D.; Luo, X.; Zhang, C.; Han, Q.; Wang, Y.; Han, L., Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 2020, 13 (11), 3823-3847. 12Yin, X.; Han, J.; Zhou, Y.; Gu, Y.; Tai, M.; Nan, H.; Zhou, Y.; Li, J.; Lin, H., Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. J. Mater. Chem. A 2019, 7 (10), 5666-5676. 13Chen, G. S.; Chen, Y. C.; Lee, C. T.; Lee, H. Y., Performance improvement of perovskite solar cells using electron and hole transport layers. Sol. Energy 2018, 174, 897-900. 14Pan, H.; Zhao, X.; Gong, X.; Li, H.; Ladi, N. H.; Zhang, X. L.; Huang, W.; Ahmad, S.; Ding, L.; Shen, Y.; Wang, M.; Fu, Y., Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Mater. Horiz. 2020, 7 (9), 2276-2291. 15Li, S.; Cao, Y. L.; Li, W. H.; Bo, Z. S., A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 2021, 40 (10), 2712-2729. 16Han, X.; Wang, Y.; Zhu, L., The performance and long-term stability of silicon concentrator solar cells immersed in dielectric liquids. Energy Convers. Manag. 2013, 66, 189-198. 17Holzhey, P.; Saliba, M., A full overview of international standards assessing the long-term stability of perovskite solar cells. J. Mater. Chem. A 2018, 6 (44), 21794-21808. 18Chi, W.; Banerjee, S. K., Stability Improvement of Perovskite Solar Cells by Compositional and Interfacial Engineering. Chem. Mater. 2021, 33 (5), 1540-1570. 19Liang, M.; Ali, A.; Belaidi, A.; Hossain, M. I.; Ronan, O.; Downing, C.; Tabet, N.; Sanvito, S.; Ei-Mellouhi, F.; Nicolosi, V., Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides. npj 2D Mater. Appl. 2020, 4, 40. 20Tiep, N. H.; Ku, Z.; Fan, H. J., Recent Advances in Improving the Stability of Perovskite Solar Cells. Adv. Energy Mater. 2016, 6 (3), 1501420. 21Hu, Q.; Chen, W.; Yang, W.; Li, Y.; Zhou, Y.; Larson, B. W.; Johnson, J. C.; Lu, Y. H.; Zhong, W.; Xu, J.; Klivansky, L.; Wang, C.; Salmeron, M.; Djurišić, A. B.; Liu, F.; He, Z.; Zhu, R.; Russell, T. P., Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. Joule 2020, 4 (7), 1575-1593. 22Nair, S.; Patel, S. B.; Gohel, J. V., Recent trends in efficiency-stability improvement in perovskite solar cells. Mater. Today Energy 2020, 17. 23Diau, E. W. G.; Jokar, E.; Rameez, M., Strategies To Improve Performance and Stability for Tin-Based Perovskite Solar Cells. ACS Energy Lett. 2019, 4 (8), 1930-1937. 24Gil-Escrig, L.; Dreessen, C.; Kaya, I. C.; Kim, B. S.; Palazon, F.; Sessolo, M.; Bolink, H. J., Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA1–xMAxPbI3. ACS Energy Lett. 2020, 5 (9), 3053-3061. 25Huang, Y.; Li, Y.; Lim, E. L.; Kong, T.; Zhang, Y.; Song, J.; Hagfeldt, A.; Bi, D., Stable Layered 2D Perovskite Solar Cells with an Efficiency of over 19% via Multifunctional Interfacial Engineering. J. Am. Chem. Soc. 2021, 143 (10), 3911-3917. 26Xie, L.; Lin, K.; Lu, J.; Feng, W.; Song, P.; Yan, C.; Liu, K.; Shen, L.; Tian, C.; Wei, Z., Efficient and Stable Low-Bandgap Perovskite Solar Cells Enabled by a CsPbBr(3)-Cluster Assisted Bottom-up Crystallization Approach. J. Am. Chem. Soc. 2019, 141 (51), 20537-20546. 27He, Q.; Worku, M.; Liu, H.; Lochner, E.; Robb, A. J.; Lteif, S.; Vellore Winfred, J. S. R.; Hanson, K.; Schlenoff, J. B.; Kim, B. J.; Ma, B., Highly Efficient and Stable Perovskite Solar Cells Enabled by Low-Cost Industrial Organic Pigment Coating. Angew. Chem. Int. Ed. Engl. 2021, 60 (5), 2485-2492. 28Ma, K.; Atapattu, H. R.; Zhao, Q.; Gao, Y.; Finkenauer, B. P.; Wang, K.; Chen, K.; Park, S. M.; Coffey, A. H.; Zhu, C.; Huang, L.; Graham, K. R.; Mei, J.; Dou, L., Multifunctional Conjugated Ligand Engineering for Stable and Efficient Perovskite Solar Cells. Adv. Mater. 2021, 33 (32), e2100791. 29Lin, J. T.; Hu, Y. K.; Hou, C. H.; Liao, C. C.; Chuang, W. T.; Chiu, C. W.; Tsai, M. K.; Shyue, J. J.; Chou, P. T., Superior Stability and Emission Quantum Yield (23% +/- 3%) of Single-Layer 2D Tin Perovskite TEA(2) SnI(4) via Thiocyanate Passivation. Small 2020, 16 (19), e2000903. 30Zuo, X.; Kim, B.; Liu, B.; He, D.; Bai, L.; Wang, W.; Xu, C.; Song, Q.; Jia, C.; Zang, Z.; Lee, D.; Li, X.; Chen, J., Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells. Chem. Eng. J. 2022, 431,133209. 31Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V., Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137 (4), 1530-1538. 32Kundu, S.; Kelly, T. L., In situ studies of the degradation mechanisms of perovskite solar cells. Eco. Mat. 2020, 2 (2), 1-22. 33Chen, B. A.; Lin, J. T.; Suen, N. T.; Tsao, C. W.; Chu, T. C.; Hsu, Y. Y.; Chan, T. S.; Chan, Y. T.; Yang, J. S.; Chiu, C. W.; Chen, H. M., In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. ACS Energy Lett. 2017, 2 (2), 342-348. 34Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J., Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48 (14), 3842-3867. 35Lei, Y.; Xu, Y.; Wang, M.; Zhu, G.; Jin, Z., Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small 2021, 17 (26), e2005495. 36Chen, Y.; Zhou, H., Defects chemistry in high-efficiency and stable perovskite solar cells. J. Appl. Phys. 2020, 128 (6), 060903. 37Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Na.t Commun. 2017, 8, 15218. 38Lee, H.; Lee, C., Analysis of Ion-Diffusion-Induced Interface Degradation in Inverted Perovskite Solar Cells via Restoration of the Ag Electrode. Adv. Energy Mater. 2018, 8 (11),1702197. 39Lee, J. W.; Kim, S. G.; Yang, J.-M.; Yang, Y.; Park, N. G., Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 2019, 7, 041111. 40Li, C.; Guerrero, A.; Huettner, S.; Bisquert, J., Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 2018, 9, 5113. 41Wang, X.; Rakstys, K.; Jack, K.; Jin, H.; Lai, J.; Li, H.; Ranasinghe, C. S. K.; Saghaei, J.; Zhang, G.; Burn, P. L.; Gentle, I. R.; Shaw, P. E., Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 2021, 12 (1), 52. 42Xi, J.; Wu, Y.; Chen, W.; Li, Q.; Li, J.; Shen, Y.; Chen, H.; Xu, G.; Yang, H.; Chen, Z.; Li, N.; Zhu, J.; Li, Y.; Li, Y., Cross-linkable molecule in spatial dimension boosting water-stable and high-efficiency perovskite solar cells. Nano Energy 2022, 93, 106846. 43Jiang, J.; Wang, Q.; Jin, Z.; Zhang, X.; Lei, J.; Bin, H.; Zhang, Z. G.; Li, Y.; Liu, S. F., Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability. Adv. Energy Mater. 2018, 8 (3), 1701757. 44Cao, Q.; Li, Y.; Zhang, H.; Yang, J.; Han, J.; Xu, T.; Wang, S.; Wang, Z.; Gao, B.; Zhao, J.; Li, X.; Ma, X.; Zakeeruddin, S. M.; Sha, W. E. I.; Li, X.; Grätzel, M., Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 2021, 7 (28), eabg0633. 45Hou, Y.; Wang, K.; Yang, D.; Jiang, Y.; Yennawar, N.; Wang, K.; Sanghadasa, M.; Wu, C.; Priya, S., Enhanced Performance and Stability in DNA-Perovskite Heterostructure-Based Solar Cells. ACS Energy Lett. 2019, 4 (11), 2646-2655. 46Li, F.; Deng, X.; Qi, F.; Li, Z.; Liu, D.; Shen, D.; Qin, M.; Wu, S.; Lin, F.; Jang, S. H.; Zhang, J.; Lu, X.; Lei, D.; Lee, C. S.; Zhu, Z.; Jen, A. K., Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. J. Am. Chem. Soc. 2020, 142 (47), 20134-20142. 47Zhou, Y.; Zhong, H.; Han, J.; Tai, M.; Yin, X.; Zhang, M.; Wu, Z.; Lin, H., Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. J. Mater. Chem. A 2019, 7 (46), 26334-26341. 48Zheng, X.; Deng, Y.; Chen, B.; Wei, H.; Xiao, X.; Fang, Y.; Lin, Y.; Yu, Z.; Liu, Y.; Wang, Q.; Huang, J., Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells. Adv. Mater. 2018, 30 (52), e1803428. 49Wang, R.; Xue, J.; Meng, L.; Lee, J. W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z. K.; Duan, Y.; Yang, J. L.; Tan, S.; Yuan, Y.; Huang, Y.; Yang, Y., Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule 2019, 3 (6), 1464-1477. 50Wang, K.; Liu, C.; Du, P.; Zheng, J.; Gong, X., Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ. Sc. 2015, 8 (4), 1245-1255. 51Pan, H.; Shao, H.; Zhang, X. L.; Shen, Y.; Wang, M., Interface engineering for high-efficiency perovskite solar cells. J. Appl. Phys. 2021, 129 (13), 130904. 52Handbook of Bond Dissociation Energies in Organic Compounds By Yu-Ran Luo (University of South Florida, St. Petersburg). CRC Press LLC: Boca Raton. 2003. xii + 380 pp. $159.95. ISBN 0-8493-1589-1. J. Am. Chem. Soc.2004, 126, 978-982. 53Belcher, W. J.; Fabre, M.; Farhan, T.; Steed, J. W., Pyridinium CH...anion and pi-stacking interactions in modular tripodal anion binding hosts: ATP binding and solid-state chiral induction. Org. Biomol. Chem. 2006, 4 (5), 781-786. 54Nguyen, W. H.; Bailie, C. D.; Unger, E. L.; McGehee, M. D., Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)(2) in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136 (31), 10996-1001. 55Hashimoto, R.; Anh Truong, M.; Gopal, A.; Imanah Rafieh, A.; Nakamura, T.; Murdey, R.; Wakamiya, A., Hole-Transporting Polymers Containing Partially Oxygen-Bridged Triphenylamine Units and Their Application for Perovskite Solar Cells. J. Photopolym. Sci. Technol. 2020, 33, 505– 516. 56Bader, A. N.; V.G., P.; Demchenko, A. P.; Ariese, F.; Gooijer, C., Excited State and Ground State Proton Transfer Rates of 3-Hydroxyflavone and Its Derivatives Studied by Shpol'skii Spectroscopy: The Influence of Redistribution of Electron Density. J. Phys. Chem. B 2004, 108 (29), 10589–10595. 57Zhang, M.; Yang, D.; Ren, B.; Wang, D., A TDDFT study on the excited-state intramolecular proton transfer (ESIPT): excited-state equilibrium induced by electron density swing. J. Fluoresc. 2013, 23 (4), 761-766. 58Wilbraham, L.; Savarese, M.; Rega, N.; Adamo, C.; Ciofini, I., Describing excited state intramolecular proton transfer in dual emissive systems: a density functional theory based analysis. J. Phys. Chem. B 2015, 119 (6), 2459-66. 59Doroshenko, A. O.; Posokhov, E. A.; Verezubova, A. A.; Ptyagina, L. M., Excited state intramolecular proton transfer reaction and luminescent properties of theortho-hydroxy derivatives of 2,5-diphenyl-1,3,4-oxadiazole. J.Phys. Org. Chem. 2000, 13 (5), 253-265. 60Benelhadj, K.; Muzuzu, W.; Massue, J.; Retailleau, P.; Charaf-Eddin, A.; Laurent, A. D.; Jacquemin, D.; Ulrich, G.; Ziessel, R., White emitters by tuning the excited-state intramolecular proton-transfer fluorescence emission in 2-(2'-hydroxybenzofuran)benzoxazole dyes. Chemistry 2014, 20 (40), 12843-12857. 61Yang, Y.; Zhao, J.; Li, Y., Theoretical Study of the ESIPT Process for a New Natural Product Quercetin. Sci. Rep. 2016, 6, 32152. 62Chou, P. T., The observation of solvent-dependent proton-transfer charge-transfer lasers from 4' -diethylamino-3-hydroxyflavone. Chem. Phys. Lett. 1993, 204 (5-6), 395-399. 63Chou, P. T., Reversal of excitation behavior of proton-transfer vs. charge-transfer by dielectric perturbation of electronic manifolds. J. Phys. Chem. 1993, 97 (11), 2618-2622. 64Swinney, T. C.; Kelley, D. F., Proton transfer dynamics in substituted 3-hydroxyflavones: Solvent polarization effects. J. Chem. Phys. 1993, 99 (1), 211-221. 65Kimura, Y.; Fukuda, M.; Suda, K.; Terazima, M., Excited State Intramolecular Proton Transfer Reaction of 4′-N,N-Diethylamino-3-hydroxyflavone and Solvation Dynamics in Room Temperature Ionic Liquids Studied by Optical Kerr Gate Fluorescence Measurement. J. Phys. Chem. B 2010, 114 (36), 11847–11858. 66Yang, D.; Yang, G.; Jia, M.; Song, X.; Zhang, Q.; Zhang, T.; Gao, H., Theoretical research on excited-state intramolecular proton coupled charge transfer modulated by molecular structure. RSC Adv. 2018, 8 (52), 29662-29669. 67Klymchenko, A. S.; Pivovarenko, V. G.; Demchenko, A. P., Elimination of the Hydrogen Bonding Effect on the Solvatochromism of 3-Hydroxyflavones. J. Phys. Chem. A 2003, 107 (21), 4211–4216. 68Klymchenko, A. S.; Demchenko, A. P., Electrochromic Modulation of Excited-State Intramolecular Proton Transfer: The New Principle in Design of Fluorescence Sensors. J. Am. Chem. Soc. 2002, 124 (41), 12372–12379. 69Sytnik, A.; Gormin, D.; Kasha, M., Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes. Proc. Natl. Acad. Sci. USA 1994, 91 (25), 11968-11972. 70Furukawa, K.; Yamamoto, N.; Hino, K.; Sekiya, H., Excited-state intramolecular proton transfer and conformational relaxation in 4'-N,N-dimethylamino-3-hydroxyflavone doped in acetonitrile crystals. Phys Chem Chem Phys 2016, 18 (41), 28564-28575. 71Chou, P. T.; Huang; Pu, S. C.; Cheng, Y. M.; Liu, Y. H.; Wang, Y.; Chen, C. T., Tuning Excited-State Charge/Proton Transfer Coupled Reaction via the Dipolar Functionality J. Phys. Chem. A, 2004, 108 (31), 6452–6454. 72Hsieh, C. C.; Cheng, Y. M.; Hsu, C. J.; Chen, K. Y.; Chou, P. T., Spectroscopy and Femtosecond Dynamics of Excited-State Proton Transfer Induced Charge Transfer Reaction. J. Phys. Chem. A 2008, 112 (36), 8323–8332. 73Chou, P. T.; Yu, W. S.; Cheng, Y. M.; Pu, S. C.; Yu, Y. C.; Lin, Y. C.; Huang, C. H.; Chen, C. T., Solvent-Polarity Tuning Excited-State Charge Coupled Proton-Transfer Reaction in p-N,N-Ditolylaminosalicylaldehydes. J. Phys. Chem. A 2004, 108 (31), 6487–6498. 74Cheng, Y. M.; Pu, S. C.; Hsu, C. J.; Lai, C. H.; Chou, P. T., Femtosecond dynamics on 2-(2'-hydroxy-4'-diethylaminophenyl)benzothiazole: solvent polarity in the excited-state proton transfer. Chemphyschem 2006, 7 (6), 1372-81. 75Tseng, H. W.; Shen, J. Y.; Kuo, T. Y.; Tu, T. S.; Chen, Y. A.; Demchenko, A. P.; Chou, P. T., Excited-state intramolecular proton-transfer reaction demonstrating anti-Kasha behavior. Chem. Sci. 2016, 7 (1), 655-665. 76Hsieh, C. C.; Cheng, Y. M.; Hsu, C. J.; Chen, K. Y.; Chou, P. T., Spectroscopy and femtosecond dynamics of excited-state proton transfer induced charge transfer reaction. J. Phys. Chem. A 2008, 112 (36), 8323-8332. 77Chou, P. T.; Pu, S. C.; Cheng, Y. M.; Yu, W. S.; Yu, Y. C.; Hung, F. T.; Hu, W. P., Femtosecond Dynamics on Excited-State Proton Charge-Transfer Reaction in 4‘-N,N-Diethylamino-3-hydroxyflavone. The Role of Dipolar Vectors in Constructing a Rational Mechanism. J. Phys. Chem. A 2005, 109 (17), 3777-3787. 78Suda, K.; Terazima, M.; Kimura, Y., Anomalous ground-state proton transfer of 4'-N,N-diethylamino-3-hydroxyflavone in ionic liquids of imidazolium-based cations with tetrafluoroborate. Chem. Commun. (Camb) 2013, 49 (38), 3976-8. 79Rumble, C. A.; Breffke, J.; Maroncelli, M., Solvation Dynamics and Proton Transfer in Diethylaminohydroxyflavone. J. Phys. Chem. B 2017, 121 (3), 630-637. 80Jana, S.; Dalapati, S.; Guchhait, N., Excited state intramolecular charge transfer suppressed proton transfer process in 4-(diethylamino)-2-hydroxybenzaldehyde. J. Phys. Chem. A 2013, 117 (21), 4367-4376. 81Behera, S. K.; Karak, A.; Krishnamoorthy, G., Photophysics of 2-(4'-amino-2'-hydroxyphenyl)-1H-imidazo-[4,5-c]pyridine and its analogues: intramolecular proton transfer versus intramolecular charge transfer. J. Phys. Chem. B 2015, 119 (6), 2330-2344. 82Hsieh, C. C.; Chou, P. T.; Shih, C. W.; Chuang, W. T.; Chung, M. W.; Lee, J.; Joo, T., Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore. J. Am. Chem. Soc. 2011, 133 (9), 2932-2943. 83Zhang, Z.; Chen, Y. A.; Hung, W. Y.; Tang, W. F.; Hsu, Y. H.; Chen, C. L.; Meng, F. Y.; Chou, P. T., Control of the Reversibility of Excited-State Intramolecular Proton Transfer (ESIPT) Reaction: Host-Polarity Tuning White Organic Light Emitting Diode on a New Thiazolo[5,4-d]thiazole ESIPT System. Chem. Mater. 2016, 28 (23), 8815-8824. 84Chen, C. L.; Tseng, H. W.; Chen, Y. A.; Liu, J. Q.; Chao, C. M.; Liu, K. M.; Lin, T. C.; Hung, C. H.; Chou, Y. L.; Lin, T. C.; Chou, P. T., Insight into the Amino-Type Excited-State Intramolecular Proton Transfer Cycle Using N-Tosyl Derivatives of 2-(2'-Aminophenyl)benzothiazole. J. Phys. Chem. A 2016, 120 (7), 1020-1028. 85Wang, C. H.; Liu, Z. Y.; Huang, C. H.; Chen, C. T.; Meng, F. Y.; Liao, Y. C.; Liu, Y. H.; Chang, C. C.; Li, E. Y.; Chou, P. T., Chapter Open for the Excited-State Intramolecular Thiol Proton Transfer in the Room-Temperature Solution. J. Am. Chem. Soc. 2021, 143 (32), 12715-12724. 86Seo, J.; Kim, S.; Park, S. Y., Strong Solvatochromic Fluorescence from the Intramolecular Charge-Transfer State Created by Excited-State Intramolecular Proton Transfer. J. Am. Chem. Soc. 2004, 126 (36), 11154–11155. 87Johns, V. K.; Wang, Z. Z.; Li, X. X.; Liao, Y., Physicochemical Study of a Metastable-State Photoacid. J. Phys. Chem. A 2013, 117 (49), 13101-13104. 88Shi, Z.; Peng, P.; Strohecker, D.; Liao, Y., Long-Lived Photoacid Based upon a Photochromic Reaction. J. Am. Chem. Soc. 2011, 133 (37), 14699-14703. 89Tolbert, L. M.; Solntsev, K. M., Excited-state proton transfer: From constrained systems to "super" photoacids to superfast proton transfer. Acc. Chem. Res. 2002, 35 (1), 19-27. 90Tolbert, L. M.; Haubrich, J. E., Photoexcited Proton-Transfer from Enhanced Photoacids. J. Am. Chem. Soc. 1994, 116 (23), 10593-10600. 91Demchenko, A. P.; Tang, K. C.; Chou, P. T., Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 2013, 42 (3), 1379-1408. 92Hsieh, C. C.; Jiang, C. M.; Chou, P. T., Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction. Acc. Chem. Res. 2010, 43 (10), 1364-1374. 93Chou, P. T.; Martinez, M. L.; Clements, J. H., Reversal of Excitation Behavior of Proton-Transfer Vs Charge-Transfer by Dielectric Perturbation of Electronic Manifolds. J. Phys. Chem. 1993, 97 (11), 2618-2622. 94Vardhan, H.; Hou, L.; Yee, E.; Nafady, A.; Al-Abdrabalnabi, M. A.; Al-Enizi, A. M.; Pan, Y.; Yang, Z.; Ma, S., Vanadium Docked Covalent-Organic Frameworks: An Effective Heterogeneous Catalyst for Modified Mannich-Type Reaction. ACS Sustain. Chem. & Eng. 2019, 7 (5), 4878-4888. 95Mech, P.; Bogunia, M.; Nowacki, A.; Makowski, M., Calculations of pK(a) Values of Selected Pyridinium and Its N-Oxide Ions in Water and Acetonitrile. J. Phys. Chem. A 2020, 124 (3), 538-551. 96Jung, G. Y.;Kim, T. H.; Lim, H. B., Separation of Morpholine, N-Methylmorpholine and N-Methylmorpholine-N-oxide by Indirect UV Absorption Capillary Electrophoresis. ANAL. SCI. 1996, 12, 367–370. 97Zlatic, K.; Antol, I.; Uzelac, L.; Mikecin Drazic, A. M.; Kralj, M.; Bohne, C.; Basaric, N., Labeling of Proteins by BODIPY-Quinone Methides Utilizing Anti-Kasha Photochemistry. ACS Appl. Mater. Interfaces 2020, 12 (1), 347-351. 98Schneider, C.; Hofmann, F.; Gärtner, C.; Kretzschmar, M., Asymmetric Synthesis of Fused Tetrahydroquinolines via Intramolecular Aza-Diels–Alder Reaction of ortho-Quinone Methide Imines. Synthesis 2021, 54 (04), 1055-1080. 99Lin, T. C.; Liu, Z. Y.; Liu, S. H.; Koshevoy, I. O.; Chou, P. T., Counterion Migration Driven by Light-Induced Intramolecular Charge Transfer. JACS Au 2021, 1 (3), 282-293. 100Belyaev, A.; Su, B. K.; Cheng, Y. H.; Liu, Z. Y.; Khan, N. M.; Karttunen, A. J.; Chou, P. T.; Koshevoy, I. O., Multiple Emission of Phosphonium Fluorophores Harnessed by the Pathways of Photoinduced Counterion Migration. Angew. Chem. Int. Ed. Engl. 2022, 61 (19), e202115690. 101Davis, A. P.; Wareham, R. S., Carbohydrate Recognition through Noncovalent Interactions: A Challenge for Biomimetic and Supramolecular Chemistry. Angew. Chem. Int. Ed. 1999, 38 (20), 2978-2996. 102Mizutani, T.; Kurahashi, T.; Murakami, T.; Matsumi, N.; Ogoshi, H., Molecular Recognition of Carbohydrates by Zinc Porphyrins: Lewis Acid/Lewis Base Combinations as a Dominant Factor for Their Selectivity. J. Am. Chem. Soc. 1997, 119 (38), 8991–9001. 103Davis, A. P.; Wareham, R. S., A Tricyclic Polyamide Receptor for Carbohydrates in Organic Media. Angew. Chem. Int. Ed. 1998, 37 (16), 2270-2273. 104Endo, N.; Kanaura, M.; Iwasawa, T., Elucidation of reaction process through β-halogen elimination in CuCN-mediated cyanation of (E)-1-bromo-2-iodoalkene. Tetrahedron Lett. 2016, 57 (4), 483-486. 105Robson, R. N.; Hay, B. P.; Pfeffer, F. M., To Cooperate or Not: The Role of Central Functionality in Bisthiourea [6]polynorbornane Hosts. Eur. J. O. Chem. 2019, (39), 6720-6727. 106Chou, P. T.; Wei, C. Y.; Wu, G. R.; Chen, W. S., Excited-State Double Proton Transfer in 7-Azaindole Analogues: Observation of Molecular-Based Tuning Proton-Transfer Tautomerism. J. Am. Chem. Soc. 1999, 121 (51), 12186–12187. 107Reddy, S. K.; Balasubramanian, S., Carbonic acid: molecule, crystal and aqueous solution. Chem. Commun. (Camb.) 2014, 50 (5), 503-514. 108Maren, T. H., Carbonic anhydrase chemistry, physiology, and inhibition. Physiol. Rev. 1967, 47 (4), 595-781. 109Loerting, T.; Tautermann, C.; Kroemer, R. T.; Kohl, I.; Hallbrucker, A.; Mayer, E.; Liedl, K. R., On the Surprising Kinetic Stability of Carbonic Acid (H2CO3). Angew. Chem. Int. Ed. 2000, 39 (5), 891-894. 110Hegde, V.; Madhukar, P.; Madura, J. D.; Thummel, R. P., Fischer route to pyrido[3,2-g]indoles. A novel receptor for urea derivatives. J. Am. Chem. Soc. 1990, 112 (11), 4549–4550. 111Chou, H. C.; Hsu, C. H.; Cheng, Y. M.; Cheng, C. C.; Liu, H. W.; Pu, S. C.; Chou, P. T., Multiple Hydrogen Bonds Tuning Guest/Host Excited-State Proton Transfer Reaction: Its Application in Molecular Recognition. J. Am. Chem. Soc. 2004, 126 (6), 1650–1651. 112Yang, Z.; Mao, Z.; Xie, Z. Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P., Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017, 46 (3), 915-1016. 113Dias, F. B.; Penfold, T. J.; Monkman, A. P., Photophysics of thermally activated delayed fluorescence molecules. Methods Appl. Fluoresc. 2017, 5 (1), 012001. 114Wong, M. Y.; Zysman-Colman, E., Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29 (22),1605444. 115Liu, H.; Liu, Z.; Li, G.; Huang, H.; Zhou, C.; Wang, Z.; Yang, C., Versatile Direct Cyclization Constructs Spiro-acridan Derivatives for Highly Efficient TADF emitters. Angew. Chem. Int. Ed. Engl. 2021, 60 (22), 12376-12380. 116Yang, S. Y.; Wang, Y. K.; Peng, C. C.; Wu, Z. G.; Yuan, S.; Yu, Y. J.; Li, H.; Wang, T. T.; Li, H. C.; Zheng, Y. X.; Jiang, Z. Q.; Liao, L. S., Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. J. Am. Chem. Soc. 2020, 142 (41), 17756-17765. 117Frédéric, L.; Desmarchelier, A.; Favereau, L.; Pieters, G., Designs and Applications of Circularly Polarized Thermally Activated Delayed Fluorescence Molecules. Adv. Funct. Mater. 2021, 31 (20), 2010281. 118Zhang, Y. P.; Liang, X.; Luo, X. F.; Song, S. Q.; Li, S.; Wang, Y.; Mao, Z. P.; Xu, W. Y.; Zheng, Y. X.; Zuo, J. L.; Pan, Y., Chiral Spiro-Axis Induced Blue Thermally Activated Delayed Fluorescence Material for Efficient Circularly Polarized OLEDs with Low Efficiency Roll-Off. Angew. Chem. Int. Ed. Engl. 2021, 60 (15), 8435-8440. 119Xie, F. M.; Li, H. Z.; Dai, G. L.; Li, Y. Q.; Cheng, T.; Xie, M.; Tang, J. X.; Zhao, X., Rational Molecular Design of Dibenzo[a,c]phenazine-Based Thermally Activated Delayed Fluorescence Emitters for Orange-Red OLEDs with EQE up to 22.0. ACS Appl. Mater. Interfaces 2019, 11 (29), 26144-26151. 120Zhang, Y. L.; Ran, Q.; Wang, Q.; Liu, Y.; Hanisch, C.; Reineke, S.; Fan, J.; Liao, L. S., High-Efficiency Red Organic Light-Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Adv. Mater. 2019, 31 (42), e1902368. 121Chen, J. X.; Tao, W. W.; Chen, W. C.; Xiao, Y. F.; Wang, K.; Cao, C.; Yu, J.; Li, S.; Geng, F. X.; Adachi, C.; Lee, C. S.; Zhang, X. H., Red/Near-Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angew. Chem. Int. Ed. Engl. 2019, 58 (41), 14660-14665. 122Xie, F. M.; Wu, P.; Zou, S. J.; Li, Y. Q.; Cheng, T.; Xie, M.; Tang, J. X.; Zhao, X., Efficient Orange–Red Delayed Fluorescence Organic Light‐Emitting Diodes with External Quantum Efficiency over 26%. Adv Electron. Mater. 2019, 6 (1), 1900843. 123Yang, T.; Cheng, Z.; Li, Z.; Liang, J.; Xu, Y.; Li, C.; Wang, Y., Improving the Efficiency of Red Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diode by Rational Isomer Engineering. Adv. Funct. Mater. 2020, 30 (34), 2002681. 124Mehes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C., Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 2012, 51 (45), 11311-11315. 125Shao, S.; Hu, J.; Wang, X.; Wang, L.; Jing, X.; Wang, F., Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. J. Am. Chem. Soc. 2017, 139 (49), 17739-17742. 126Hu, J.; Li, Q.; Wang, X.; Shao, S.; Wang, L.; Jing, X.; Wang, F., Developing Through-Space Charge Transfer Polymers as a General Approach to Realize Full-Color and White Emission with Thermally Activated Delayed Fluorescence. Angew. Chem. Int. Ed. Engl. 2019, 58 (25), 8405-8409. 127Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T., Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28 (14), 2777-2781. 128Xia, G.; Qu, C.; Zhu, Y.; Ye, J.; Ye, K.; Zhang, Z.; Wang, Y., A TADF Emitter Featuring Linearly Arranged Spiro-Donor and Spiro-Acceptor Groups: Efficient Nondoped and Doped Deep-Blue OLEDs with CIE(y) <0.1. Angew. Chem. Int. Ed. Engl. 2021, 60 (17), 9598-9603. 129Xu, Y.; Wang, Q.; Cai, X.; Li, C.; Wang, Y., Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers. Adv. Mater. 2021, 33 (21), e2100652. 130Ando, N.; Yamada, T.; Narita, H.; Oehlmann, N. N.; Wagner, M.; Yamaguchi, S., Boron-Doped Polycyclic pi-Electron Systems with an Antiaromatic Borole Substructure That Forms Photoresponsive B-P Lewis Adducts. J. Am. Chem. Soc. 2021, 143 (26), 9944-9951. 131Park, S.; Kwon, O. H.; Lee, Y. S.; Jang, D. J.; Park, S. Y., Imidazole-Based Excited-State Intramolecular Proton-Transfer (ESIPT) Materials: Observation of Thermally Activated Delayed Fluorescence (TDF). J. Phys. Chem. A 2007, 111 (39), 9649-9653. 132Gupta, A. K.; Li, W.; Ruseckas, A.; Lian, C.; Carpenter-Warren, C. L.; Cordes, D. B.; Slawin, A. M. Z.; Jacquemin, D.; Samuel, I. D. W.; Zysman-Colman, E., Thermally Activated Delayed Fluorescence Emitters with Intramolecular Proton Transfer for High Luminance Solution-Processed Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2021, 13 (13), 15459-15474. 133Pilato, M. L.; Catalano, V. J.; Bell, T. W., Synthesis of 1,2,3,4,5,6,7,8-Octahydroacridine via Condensation of Cyclohexanone with Formaldehyde. J. Org. Chem. 2001, 66 (4), 1525–1527. 134Thummel, R. P.; Jahng, Y., Polyaza cavity shaped molecules. 4. Annelated derivatives of 2,2':6',2"-terpyridine. J. Org. Chem. 1985, 50 (14), 2407–2412. 135Appukuttan, V. K.; Liu, Y.; Son, B. C.; Ha, C.-S.; Suh, H.; Kim, I., Iron and Cobalt Complexes of 2,3,7,8-Tetrahydroacridine-4,5(1H,6H)-diimine Sterically Modulated by Substituted Aryl Rings for the Selective Oligomerization to Polymerization of Ethylene. Organometallics 2011, 30 (8), 2285-2294. 136Buu-Hoï, N. P.; Périn, F.; Jacquignon, P., 870. Carcinogenic nitrogen compounds. Part XXVIII. Azadibenzofluorenes and related compounds. J. Chem. Soc. 1960, 4500-4503. 137Panahi, F.; Jamedi, F.; Iranpoor, N., Nickel-Catalyzed Reductive Addition of Aryl/Benzyl Halides and Pseudohalides to Carbodiimides for the Synthesis of Amides. Eur. J. Org. Chem. 2016, 2016 (4), 780-788.
|