跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 14:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊雨軒
研究生(外文):Yu-Hsuan Yang
論文名稱:合成與探索發色團光物理性質在離子遷移和激發態分子內質子轉移之應用
論文名稱(外文):Synthesis and Exploitation of Photophysics of Chromophores and Applications in Ion-Migration and Excited State Intramolecular Proton Transfer
指導教授:周必泰
指導教授(外文):Pi-Tai Chou
口試委員:劉冠妙趙啟民洪文誼楊小青
口試委員(外文):Kuan-Miao LiuChi-Min ChauWen-Yi HungHsiao-Ching Yang
口試日期:2023-07-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:135
中文關鍵詞:鈣鈦礦太陽能電池兩性離子鈍化供體-受體添加劑平衡電荷傳輸增強穩定性ESIPT質子轉移兩性離子離子遷移電荷轉移溶劑化顯色多氫鍵腔體OLED發射器基於ESIPT的TADF主/客系統複合物
外文關鍵詞:perovskite solar cellzwitterionic passivationdonor−acceptor additivesbalanced charge transportenhanced stabilityESIPTproton transferzwitterionion-migrationcharge transfersolvatochromismmultiple hydrogen bond cavityOLED emitterESIPT-based TADFhost/guest systemcomplex
DOI:10.6342/NTU202303516
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要-第一部分
倒置鈣鈦礦太陽能電池(PSCs)因其微弱的遲滯現象和低溫製造工藝而引起了廣泛關注。但是倒置PSCs的效率仍然不如商業化的矽太陽能電池好。而且較差的穩定性是實現PSCs商業化的主要障礙之一。在本文中我們設計並合成了一系列新的兩性離子作為邊界調節劑,分別以R,R-二苯氨基和嘧啶-(CH2)n-磺酸鹽為電子供體和受體,並有系統地研究了它們在PSCs中相關的界面性質。詳細的物理和光電研究證實,這些兩性離子具有四合一的功能,暨平衡電荷載體傳輸、抑制不太協調的Pb2+缺陷、增強防潮性和減少離子遷移。儘管由特定的鈍化分子改善單一功能的相關研究已有被報告,但同時調節電荷轉移平衡和其他三種功能的策略仍尚未被開發。結果表明這種策略對PSCs的性能有全方位的改進。在所有兩性離子中,OMeZC3表現出較為優異的性能,其平衡空穴/電子遷移率鈣鈦礦含量降至0.91,相應PSCs的功率轉換效率(PCE)高達23.15%,且無滯後現象,為倒置結構中的最佳PSCs之一。更重要的是,OMeZC3修飾的PSCs表現出出色的長期穩定性,在 80% 相對濕度下儲存35天後幾乎仍保持其初始PCE值。
摘要-第二部分
我們在此報告分子3-(4λ2-嗎啉-3-基)-4'-(吡啶-4-基)-[1,1'-聯苯]-4-醇吡啶-4-基-[1,1'-聯苯]-4 -ol, (6c)的設計和合成,探測其激發態分子內質子轉移(ESIPT)性質。6c顯示幾乎與溶劑無關的吸收光譜,而發射峰波長從環己烷中的370 nm急劇紅移到CH2Cl2中的500 nm和CH3CN中的545 nm。峰值波數與溶劑極性的線性Lippert 圖無法擬合表面上看起來的溶劑化變色效應,此外經計算得出吸收到發射之間的0-0起點值大至分別在600 cm-1(在CH2Cl2中)和800 cm-1(在CH3CN中),而它在環己烷中幾乎重疊。通過改變環己烷/ CH2Cl2的比率來連續調節介電常數,將發射從藍色(100% 環己烷)到白色(雙發射)再到黃色(100% CH2Cl2)有著顯著的變化。相比之下,在甲氧基衍生物5cOMe表現有輕微的溶劑化變色變化出規則的發射,發射從330(環己烷)到350(CH2Cl2)再到390 nm(CH3CN)只有輕微的溶劑化變色變化。結果使我們得出6c中有激發態分子內質子轉移(ESIPT)的發生,這顛覆了大多數在非極性溶劑中發生質子轉移的傳統ESIPT系統,6c的ESIPT可以隨著溶劑極性的增加而從“關閉”到“開啟”。6c中的ESIPT的耦合電荷轉移特性使這一非常規結果合理化,其中ESIPT中兩性離子的形成起著關鍵作用。兩性離子互變異構體及其誘導的電荷轉移會產生大的偶極變化,這需要大的介電穩定性並且在非極性環境中是不利的。3-(嗎啉代甲基)-[1,1':4',1''-三聯苯]-4-醇 (6d)和2-(嗎啉代甲基)-4-(吡啶-4-基)苯酚(6a),分別作為沒有電子轉移的兩性離子型ESIPT和6c類似物但沒有橋接苯環的參考。在實驗上,6d和6c在非極性溶劑中表現出開和關的ESIPT,並且可以通過兩性離子ESIPT耦合電荷轉移很好地合理化。因此,該結果設置了具有通用機制的非常規ESIPT開啟(非極性介質)到關閉(極性介質)開關的範例。
摘要-第三部分
在此報導我們設計並合成的具有多氫鍵結合位點的剛性腔體7,8,10,11,18,20-六氫吡啶並[3',2':6,7]吲哚[3,2-c]吡啶並[3' ,2':6,7]吲哚[2,3-h]吖啶-2,16-二胺(NH2-DPI)。我們通過將客體2,4-二氨基-6-苯基-1,3,5-三嗪(DCPT)引入NH2-DPI並通過氫鍵鍵結生成NH2DPI-DCPT複合物的方式,將之設計為基於ESIPT的TADF發射體。接著再利用理論計算進一步證實了我們的想法,與NH2-DPI和DCPT相比,NH2DPI-DCPT複合物的穩定能量為-14.5 kcal/mol,這歸因於吡咯與DCPT中的N-H分別形成的2.77 Å和2.30 Å的弱氫鍵。此外該複合物可導致分子軌道分離,分別將HOMO定位在主體上,LUMO分佈在客體上。將NH2-DPI與NH2DPI-DCPT複合物相比,發射光由藍光紅移到黃光並且溶解度和熒光量子產率增加。因此我們認為NH2DPI-DCPT複合物作為OLED發射體具有巨大的潛力。
Abstract-Part I
Inverted perovskite solar cells (PSCs) have attracted intense attention because of their insignificant hysteresis and low-temperature fabrication process. However, the efficiencies of inverted PSCs are still inferior to those of commercialized silicon solar cells. Also, the poor stability of PSCs is one of the major impedances to commercialization. Herein, we rationally designed and synthesized a new series of electron donor (R,R-diphenylamino) and acceptor (pyridimium-(CH2)n-sulfonates) zwitterions as a boundary modulator and systematically investigated their associated interface properties. Comprehensive physical and optoelectronic studies verify that these zwitterions provide a four-in-one functionality: balancing charge carrier transport, suppressing less-coordinated Pb2+ defects, enhancing moisture resistance, and reducing ion migration. Although each functionality may have been reported by specific passivating molecules, a strategy that simultaneously regulates the charge-transfer balance and three other functionalities has not yet been developed. The results are to make an omnidirectional improvement of PSCs. Among all zwitterions, 4-(4-(4-(di-(4-methoxylphenyl)amino)phenyl)propane-1-ium-1-yl)butane-1-sulfonate (OMeZC3) optimizes the balance hole/electron mobility ratio of perovskite to 0.91, and the corresponding PSCs demonstrate a high power conversion efficiency (PCE) of up to 23.15% free from hysteresis, standing out as one of the champion PSCs with an inverted structure. Importantly, the OMeZC3-modified PSC exhibits excellent long-term stability, maintaining almost its initial PCE after being stored at 80% relative humidity for 35 days.
Abstract-Part II
We report herein the design and synthesis of molecule 3-(4λ2-morpholin-3-yl)-4'-(pyridin-4-yl)-[1,1'-biphenyl]-4-olpyridin-4-yl-[1,1'-biphenyl]-4-ol, 6c to probe its excited-state intramolecular proton transfer (ESIPT) property. 6c shows nearly solvent independent absorption spectra, while the emission peak wavelength red shifts drastically from 370 nm in cyclohexane to 500 nm in CH2Cl2 and 545 nm in CH3CN. The seemly solvatochromic effect cannot be fit by the linear Lippert’s plot for peak wavenumber versus the solvent polarity. Moreover, the 0-0 onset between absorption to emission is calculated to be as large as 600 cm-1 (in CH2Cl2) and 800 cm-1 (in CH3CN) whereas it is nearly overlapped in cyclohexane. Continuously tuning the dielectric constant by varying cyclohexane/ CH2Cl2 ratio, the emission changes remarkably from blue (100% cyclohexane), white (dual emission) and yellow (100% CH3CN). In comparison, its methoxyl derivative 5cOMe exhibits regular emission with slight solvatochromic shift from 330 (cyclohexane), 350 (CH2Cl2) to 390 nm (CH3CN). The results lead us to conclude the occurrence of excited-state intramolecular proton transfer (ESIPT) in 6c. Subverting most of conventional ESIPT systems where proton transfer takes place in nonpolar solvents, ESIPT of 6c is “off” and then is turned “on” as increasing the solvent polarity. This unconventional result is rationalized by ESIPT coupled charge transfer in 6c where zwitterion formation amid ESIPT plays a key role. The zwitterionic tautomer, together with its inducing charge transfer, creates large dipolar changes that requires large dielectric stabilization and is unfavourable in nonpolar environment. The generality of this mechanism is further supported by 3-(morpholinomethyl)-[1,1':4',1''-terphenyl]-4-ol (6d) and 2-(morpholinomethyl)-4-(pyridin-4-yl)phenol (6a), which, respectively, serves as a reference for the zwitterionic-type ESIPT without electron transfer, and an analogue of 6c but without the bridging phenyl ring. Experimentally, 6d and 6a show on- and off- ESIPT in nonpolar solvent and can be well rationalized by the zwitterionic ESIPT coupled charge transfer. The results thus set a paradigm of unconventional ESIPT on(nonpolar medium)-to-off(polar medium) switch with a generalized mechanism.
Abstract-Part III
We reported herein designed and synthesized a multiple hydrogen-binding sites rigid cavity 7,8,10,11,18,20-hexahydropyrido[3',2':6,7]indolo[3,2-c]pyrido[3',2':6,7]indolo [2,3-h]acridine-2,16-diamine (NH2-DPI). NH2-DPI was designed as an ESIPT-based TADF emitter by introducing the guest 2,4-diamino-6-phenyl-1,3,5-triazine (DCPT) into NH2-DPI and generating the NH2DPI-DCPT complex through hydrogen bonding. Our ideas are further confirmed by theoretical calculations, the stabilization energy is -14.5 kcal/mol for the generation of the NH2DPI-DCPT complex when compare to NH2-DPI and DCPT, which is ascribed to the weak hydrogen bonds of 2.77 Å and 2.30 Å for NH in pyrrole and DCPT, respectively. Furthermore, the complex gives rise to molecular orbital separation with HOMO and localization in the host and LUMO distribution on the guest, respectively. Compared to NH2-DPI after the NH2DPI-DCPT complex was generated, the emission red-shift from blue to yellow, and the solubility and fluorescence quantum yield increased. Therefore, we considered the NH2DPI-DCPT complex has great potential as an OLED emitter.
Contents
口試委員會審定書 I
誌謝 II
摘要-第一部分 III
摘要-第二部分 IV
摘要-第三部分 V
Abstract-Part I VI
Abstract-Part II VII
Abstract-Part III VIII
Contents IX
Figure Contents XI
Scheme Contents XIV
Table Contents XV
Part I. Modulation of Perovskite Grain Boundaries by Electron Donor-Acceptor Zwitterions R,R-Diphenylamino-phenyl-pyridinium-(CH2)n-sulfonates: All-Round Improvement on the Solar Cell Performance 1
1.1 Introduction 1
1.2 Results and Discussion 3
1.2.1. Synthesis of Zwitterions 3
1.3 Molecular Design Concept 4
1.3.1. Characterization 5
1.4 Conclusions 8
1.5 Experimental Method 9
1.5.1. Chemicals 9
1.5.2. General Synthetic Methods. 9
2.1 Supporting Information 15
2.1.1. NMR Analysis 15
2.1.2. Mass Spectra 24
2.1.3. Differential Pulse Voltammetry Experiments 25
Part II. An Unconventional “Off-to-On” Switch of Excited-State Intramolecular Proton-Transfer from Nonpolar to Polar Media. 28
2.1 Introduction 28
2.2 Results and Discussion 30
2.2.1. Synthetic Routes and Characterization 30
2.2.2. Fluorescence Spectroscopy 37
2.1.1. Time-resolved emission spectroscopy 45
2.2 Conclusion 49
2.3 Experiment section 50
2.3.1. General Methods and Materials 50
2.3.2. Synthesis and Characterization 50
2.3.3. Time-resolved fluorescence spectroscope 58
2.4 Supporting Information 62
2.4.1. NMR Analysis 62
3.1.1. X-ray Crystallography 81
Part III. The Application of Cavity-Shaped Receptors of Multiple Hydrogen Bonds Based on Pyridyl Indole acridine Derivatives. 101
3.1 Introduction 101
3.1.1. Molecular Design Concept – Art and Dream 101
3.1.2. Molecular Design Concept – Reality 103
3.2 Results and Discussion 104
3.2.1. Synthetic Routes 105
3.2.2. Characterization 106
3.3 Conclusion 110
3.4 Experimental Method 110
3.4.1. General Methods and Materials. 110
3.4.2. Synthesis and Characterization 111
3.5 Supporting Information 115
3.5.1. NMR Analysis 115
3.5.2. X-ray Crystallography 122
References 124
Figure Contents
Figure 0.1 (a) Chemical structure of passivation zwitterions before and after internal charge transfer from the triphenylamine donor to the pyridinium acceptor. Here, the regions marked by blue, green, and red color contribute to the higher stability of the as-prepared perovskite via improving moisture resistance, suppressing surface defects, and reducing ion migration, respectively. (b) Schematic illustration of PSCs with zwitterion treatment to balance the charge carrier transport and to ameliorate the stability. Here, the orange, purple, green, red, yellow, gray, blue, and white balls within the white circle represent the lead, halide, A-site cation, oxygen, sulfur, carbon, nitrogen, and hydrogen atoms, respectively. 4
Figure 0.2 (a) J–V curves of the PSCs prepared by pristine (black line), ZC2- (red line), ZC3- (orange line), ZC4- (green line), MeZC3- (blue line), and OMeZC3-incorporating (purple line) perovskites. SCLC fitting for the J0.5–V curve of (b) hole-only and (c) electron-only devices. (d) Energy diagram of PTAA, passivation zwitterions, and perovskite. 5
Figure 0.3 (a) Plot of PCE as a function of the number of −CH2 bridges. Also shown is PCE of the pristine PSC (black solid circle, which is placed at the arbitrary x-axis). (b) Plot of PCE as a function of |1 – (h/e)| × 100%, where h and e are the hole and electron mobility, respectively. See text for definition. 8
Figure II.1 Structures of various reported CT-ESIPT systems and an ESIPT-CT model. 29
Figure II.2 The stacked spectrum of 1H NMR and nuclear Overhauser effect (NOE) of 7cIMe. 35
Figure II.3 The mechanism of quinone methide. 97, 98 36
Figure II.4 The stability of compound 6 series and compound 7 series. 37
Figure II.5 1) The absorption and emission spectra of 6c in various solvents, which in (A)cyclohexane, (B)benzene, (C)Toluene, (D)chloroform, (E)ethyl estate, (F)dichloromethane, (G)acetonitrile, respectively. The excitation wavelength is at the absorption peak of ~310 nm. (H) The Lippert-Mataga plot of 6c emission peak frequency vs. solvent orientation polarizability (f), see text for definition) where Δf: cyclohexane, -0.0014; benzene, 0.0030; toluene, 0.0131; chloroform, 0.1482; ethyl estate, 0.2010; dichloromethane, 0.2183; and acetonitrile, 0.3060. 2) The absorption and emission spectra of 5cOMe in various solvents, which in (A)cyclohexane, (B)benzene, (C)chloroform, (D)ethyl estate, (E)acetonitrile, respectively. The excitation wavelength is at the absorption peak of ~310 nm. (F) The Lippert Mataga plot of 5cOMe emission peak frequency vs. solvent orientation polarizability (f), see text for definition) where Δf: cyclohexane, -0.0014; benzene, 0.0030; chloroform, 0.1482; ethyl estate, 0.2010; and acetonitrile, 0.3060. 38
Figure II.6 1) The absorption and emission spectra of 6d in various solvents, which in (A)cyclohexane, (B)benzene, (C)chloroform, (D)1,4-dioxane, (E)dichloromethane, (F)acetonitrile, respectively. The excitation wavelength is at the absorption peak of ~310 nm. (G) The Lippert Mataga plot of 6d emission peak frequency vs. solvent orientation polarizability (Δf), see text for definition) where Δf: cyclohexane, -0.0014; benzene, 0.0030; toluene, 0.0131; 1,4-dioxane, 0.0212; dichloromethane, 0.2183; and acetonitrile, 0.3060. 2) The absorption and emission spectra of 6a in various solvents, which in (A)cyclohexane, (B)benzene, (C)toluene, (D)ethyl estate, (E)dichloromethane (F)acetonitrile, respectively. The excitation wavelength is at the absorption peak of ~310 nm. (G) The Lippert Mataga plot of 6a emission peak frequency vs. solvent orientation polarizability (f), see text for definition) where Δf: cyclohexane, -0.0014; benzene, 0.0030; toluene, 0.0131; dichloromethane, 0.2183; and acetonitrile, 0.3060. 40
Figure II.7 The emission spectra of 6c in cyclohexane titrated by various portions of CHCl3. The excitation wavelength is 310 nm. 41
Figure II.8. The absorption and emission of (a) BPym-OH/I, (b) BPym- OH/ClO4, (c) BPym-OH/PF6, (d) BPym-OH/OTf, and (e) BPym-OH/ASA in toluene. (f) Observed emissive ratio of F2 and F3. 41
Figure II.9. The absorption/emission spectra of Bpym-OH (solid color ball/solid color lines) and Bpym-OSi (hollow color ball/dashed color lines) in (a) mixed solvent of cyclohexane and toluene (ratio=1:4 in volume), (b) toluene, and (c) dichloromethane. The excitation wavelength is at the absorption peak. 42
Figure II.10. The absorption/emission spectra of (a) BPy-OH and (b) BPy-OMe (solid color ball/solid color lines) in varies solvent. (CyH: cyclohexane; Tol: Toluene; DCM: CH2Cl2; ACN: CH3CN.) 43
Figure II.11. (a) BPym-OH/PF6 as an example to explain the mechanism. (b) The ultrafast ESIPT decay lifetime was resolved by a 35fs systemic response of up-conversion, which lifetime is measured as 300fs (c) The early dynamics profile of PBym-OH/PF6 toluene was performed by fluorescence up-conversion measurement. This relaxation decay time is resolved as ~4ps. 47
Figure II.12. The Time-Correlated Single Photo Counting measurement of BPym-OH/X (X= I, ClO4, PF6, OTf, ASA) was monitored at (a) 600 nm and (b) 740 nm. (c) The deconvolution of relaxation kinetics of the F3 emission for BPym-OH/ClO4 in toluene (monitored at 740 nm), which clearly indicates the cancellation of decay and rise features due to the non-negligible overlap between normal and tautomer emissions. The simulation includes the system response function. (Notes (1) The ASA- is far away from the rigorous spherical, and we estimated its smallest width by Gaussian program as its size. (2) The value of color ball was fitted from Figure II.11a and b. (3) The anion migration dynamic is a continuum relaxation process, so the observed time constant is a continuum changed over time/wavelength. Therefore, we provide a range to present the relaxed time constant, which refers to the fitting result of TCSPC dynamic profile in Figure S II.53-58.) 48
Figure II.13 (a) Time-resolved fluorescence spectroscope of BPy-OH (6c) in the mixing solvent (cyclohexane/CH2Cl2=90%:10%). (b) the equilibrium of the normal form and tautomer form was proved in (c)-(h) due to the dynamics of 6c having almost the same population decay of ~1300ps. (The shorter decay lifetime of ~160ps in the bluer emissive corresponds with the rise time in the redder, which is assigned the relaxation of ESIPT in this mixing solvent.) 58
Figure II.14 The absorption and emission spectra of BPy-OH (6c) in various solvents, which in (a)cyclohexane, (b)Toluene, (c)acetonitrile, respectively. The early dynamics spectrum of 6c in (d)cyclohexane, (e)(f)toluene, (g)(h)acetonitrile. 59
Figure II.15 The absorption and emission spectra of 6d in various solvents, which in (A)cyclohexane, (B)Toluene, (C)acetonitrile, respectively. The early dynamics spectrum of 6d in (d)cyclohexane, (e)(f)toluene, (g)(h)acetonitrile. 60
Figure III.1 a) The DPI complexes with urea derivatives. b)and c) DPI as molecular recognition has two categories from guest-molecule-assisted ESPT.111 102
Figure III.2 The initially designed receptors for carbonic acid of DPI derivatives. 103
Figure III.3 a) The proposed donors for TADF emitter. b) NH2-DPI as acceptor. c) The proposed possible hydrogen bonding model of TADF emitter. 104
Figure III.4 The DFT optimizes geometry at M062X/def2-TZVP level of theory of NH2DPI-DCPT complex in benzene. 107
Figure III.5. CV spectrums of (a) triazine, (b) 1,8-Naphthalimide, (c) Phthalimide, (d) NH2-DPI. (The guest triazine, 1,8-naphthalimide, and phthalimide were measured in THF and the host NH2-DPI in DMSO.) 108
Figure III.6. Absorption spectra of host and guests. (The guest triazine, 1,8-naphthalimide, and phthalimide were measured in THF and the host NH2-DPI in DMSO.) 108
Figure III.7. Energy level diagram of the guests and host. 109
Figure III.8 Photograph of NH2DPI-DCPT complex under irradiation at 365 nm and daylight in different solution and solid phases. 110
Scheme Contents
Scheme 0.1 Synthetic route of zwitterions. (i) Pd(PPh3)2Cl2, K2CO3,Toluene/ EtOH/ H2O, 18h, 110oC, 71%; (ii) toluene, 48h, 120oC, (ZC4, 33%; ZC3, 44%); (iii) NaI, DMF, 50h, 120oC, 70%; (iv) Pd(PPh3)2Cl2, K2CO3, Toluene/ EtOH/ H2O, 18h, 110oC, 59%; (v) Pd(OAc)2, Xantphos, NaOtBu, toluene, 18h, 110oC; (vi) toluene, 48h, 120oC, (Pd(PPh3)2Cl2CH2Cl2: bis(triphenylphosphine)palladium(II) dichloridedichlorometh- ane; K2CO3: potassium carbonate; EtOH; ethanol; NaI: sodium iodide; DMF: dimethylformamide; NaOtBu: Sodium tert-butoxide ). 3
Scheme II.1 First synthetic route to 7cIMe. (i) VO(acac)2, CH2Cl2, reflux, 48h, 19%; (ii) TsOMe, Cs2CO3, acetone, r.t., overnight, 71%; (iii) Pd(PPh3)4, Cs2CO3, THF, reflux, 18h, 65%; (iv) HBr, CH3COOH, reflux, 18h, 53%; (v) CH3I, acetone, r.t., 24h, 68%; (VO(acac)2: Vanadyl acetylacetonate; CH2Cl2: dichloromethane; TsOMe: methyl p-toluenesulfonate; Cs2CO3: cesium carbonate; THF: tetrahydrofuran, CH3I: iodomethane). 30
Scheme II.2 Second synthetic route to 7cIMe. (i) NaBH4, MeOH, r.t., 30min, quant.; (ii) Et3N, MsCl, CH2Cl2, r.t., 3h; (iii) morpholine, CH2Cl2, r.t., 18h, (ii + iii = 99%); (iv) Pd(PPh3)2Cl2, K2CO3, Toluene/ EtOH/ H2O, reflux, 18h, (5cOMe, 66%; 6aOMe, 58%); (v) HBr, CH3COOH, reflux, 18h, (6c,53%; 6a, 0%); (vi) CH3I, acetone, r.t., 24h, 68%; (NaBH4: sodium borohydride; MeOH: methanol; Et3N: triethylamine; MsCl: methanesulfonyl chloride; Pd(PPh3)2Cl2CH2Cl2: bis(triphenylphosphine)palladium(II) dichloridedichloromethane; K2CO3: potassium carbonate; EtOH: ethanol). 31
Scheme II.3 Final synthetic route to compound 6. (i) K2CO3, benzyl bromide, acetonitrile, 70oC, 3h, 97%; (ii) NaBH4, MeOH, r.t., 30min, quant.; (iii) Et3N, MsCl, CH2Cl2, r.t., 3h; (iv) morpholine, CH2Cl2, r.t., 18h, (ii + iii = 99%); (v) Pd(PPh3)2Cl2, K2CO3, Toluene/ EtOH/ H2O, reflux, 18h, (5a, 66%; 5b, 34%; 5c, 73%; 5d, 21%); (vi) Pd/C, H2, r.t., (6a, 6b, 6c,1.5h; 6d, 18h), quant. 32
Scheme II.4 (i) MeI, acetone, r.t., 24h; (ii) 1-iodohexane, acetonitrile, r.t., 120h; (iii) KX salt, DI water/CH2Cl2, r.t., 24h; (iv) MeI, pacetone, reflux, 20h; (KNO3: potassium nitrate; KPF6: potassium hexafluorophosphate; KOTf: Potassium trifluoromethanesulfonate; KClO4: potassium perchlorate; ASA K: acesulfame potassium; DI water: de-ionized water). 33
Scheme II.5 (i) TBDMSCl, Et3N, CH2Cl2, 50oC, 18h; (ii) MeI, Et3N, CH2Cl2, r.t., (iii) Benzyl chloride, Et3N, 50oC; (iv) TBDPSCl, DMAP, Et3N, CH2Cl2, 50oC, 18h; (v) Potassium salt, DI water/CH2Cl2, r.t., 24h; (TBDMSCl: tert-Butyldimethylsilyl chloride; TBDPSCl: tert-Butyldiphenylsilyl chloride; DMAP: 4-Dimethylaminopyridine) 34
Scheme II.6 The proposed ESIPT-CT coupled reaction for 6c. 39
Scheme II.7. The proposed excited-state reaction for (a) BPy-OH and (b) BPym-OH in solvents toluene, CH2Cl2 and CH3CN. 45
Scheme III.1 Synthetic scheme of Br-DPI. (i)PFA, NaOH/ MeOH, 80oC 70min, 50%; (ii) Cu(OAc)2•H2O, NH4OAc, AcOH, reflux, 3h, 30%; (iii) Ac2O, reflux, 8h, 56%; (iv) O3, CH2Cl2, -90oC; (v) Me2S, -89oC to r.t., quant.; (vi) EtOH/ AcOH, reflux, 1.5h, 41%; (vii) PPA, toluene, 100oC, 10h, 70%;(viii) HNO3, H2SO4, r.t., 2h, 68%; (ix) Fe, NH4Cl, EtOH/ H2O, 100oC, 30min, 89%; (x) NaNO2/H2O, 0oC, 1.5h; (xi) SnCl2•H2O, 0oC, 2.5h, 52%; (PFA: paraformaldehyde; Cu(OAc)2•H2O: cupric acetate monohydrate; NH4OAc: Ammonium acetate; Ac2O: Acetic anhydride; Me2S: dimethyl sulfide; PPA: polyphosphoric acid; NH4Cl: ammonium chloride; NaNO2: Sodium nitrite; SnCl2•H2O: stannous chloride dihydrate). 105
Scheme III.2 The isomers of nitration reaction of 2-bromoquinoline. 105
Scheme III.3 Synthetic scheme of NH2DPI-DCPT. (i) NH3(aq)/ DMSO, CuI, 80oC, 24h, 71%; (ii) cyclohexane, 70 oC, 48h, quant. 106
Table Contents
Table 0.1 Optoelectronic parameters of PSC fabricated by various perovskite precursors. 7
Table II.1. The absorption peak, emission peak, and ion-migration rate/ratio of BPym-OH/anions and BPym-OSi/anions in the solvent of varied polarity. 43
Table II.2. Anion migration dynamics of entitled compounds in toluene measured by time-correlated single photon counting technique. The fluorescence decay/rise lifetime were resolved at F2/F3 and F1/F2 for BPym-OH/anion and BPym-OSi/anion. (The fitting data refers to the fitting of TCSPC dynamic profile in Figure II.12a, b.) 48
Table II.3 The ultrafast dynamics of 6c and 6d in the toluene and acetonitrile. The population relaxation of titled compounds was referred to TCSPC experiment. 61
Table II.4. The fluorescence relaxation constant of BPym-OH/PF6 in toluene. (Measured by TCSPC) 95
Table III.1. Energy level of the guests and host. 109
1.Herz, L. M., Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Letters 2017, 2 (7), 1539-1548.
2Biewald, A.; Giesbrecht, N.; Bein, T.; Docampo, P.; Hartschuh, A.; Ciesielski, R., Temperature-Dependent Ambipolar Charge Carrier Mobility in Large-Crystal Hybrid Halide Perovskite Thin Films. ACS Appl Mater Interfaces 2019, 11 (23), 20838-20844.
3Lin, J. T.; Liao, C. C.; Hsu, C. S.; Chen, D. G.; Chen, H. M.; Tsai, M. K.; Chou, P. T.; Chiu, C. W., Harnessing Dielectric Confinement on Tin Perovskites to Achieve Emission Quantum Yield up to 21. J. Am. Chem, Soc. 2019, 141 (26), 10324-10330.
4Ming, W.; Shi, H.; Du, M. H., Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3. J. Mater. Chem. A 2016, 4 (36), 13852-13858.
5Febriansyah, B.; Koh, T. M.; John, R. A.; Ganguly, R.; Li, Y.; Bruno, A.; Mhaisalkar, S. G.; England, J., Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through π-Stacked Viologens. Chem. Mater. 2018, 30 (17), 5827-5830.
6Lin, J. T.; Chen, D. G.; Wu, C. H.; Hsu, C. S.; Chien, C. Y.; Chen, H. M.; Chou, P. T.; Chiu, C. W., A Universal Approach for Controllable Synthesis of n-Specific Layered 2D Perovskite Nanoplates. Angew. Chem. Int. Ed. Engl. 2021, 60 (14), 7866-7872.
7Huang, H.; Raith, J.; Kershaw, S. V.; Kalytchuk, S.; Tomanec, O.; Jing, L.; Susha, A. S.; Zboril, R.; Rogach, A. L., Growth mechanism of strongly emitting CH(3)NH(3)PbBr(3) perovskite nanocrystals with a tunable bandgap. Nat. Commun. 2017, 8 (1), 996.
8Huang, H. H.; Liu, Q. H.; Tsai, H.; Shrestha, S.; Su, L. Y.; Chen, P. T.; Chen, Y. T.; Yang, T. A.; Lu, H.; Chuang, C. H.; Lin, K.-F.; Rwei, S. P.; Nie, W.; Wang, L., A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication. Joule 2021, 5 (4), 958-974.
9Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25 (27), 3727-3732.
10Chen, S.; Dai, X.; Xu, S.; Jiao, H.; Zhao, L.; Huang, J., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373 (6557), 902-907.
11Lin, X.; Cui, D.; Luo, X.; Zhang, C.; Han, Q.; Wang, Y.; Han, L., Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 2020, 13 (11), 3823-3847.
12Yin, X.; Han, J.; Zhou, Y.; Gu, Y.; Tai, M.; Nan, H.; Zhou, Y.; Li, J.; Lin, H., Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. J. Mater. Chem. A 2019, 7 (10), 5666-5676.
13Chen, G. S.; Chen, Y. C.; Lee, C. T.; Lee, H. Y., Performance improvement of perovskite solar cells using electron and hole transport layers. Sol. Energy 2018, 174, 897-900.
14Pan, H.; Zhao, X.; Gong, X.; Li, H.; Ladi, N. H.; Zhang, X. L.; Huang, W.; Ahmad, S.; Ding, L.; Shen, Y.; Wang, M.; Fu, Y., Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Mater. Horiz. 2020, 7 (9), 2276-2291.
15Li, S.; Cao, Y. L.; Li, W. H.; Bo, Z. S., A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 2021, 40 (10), 2712-2729.
16Han, X.; Wang, Y.; Zhu, L., The performance and long-term stability of silicon concentrator solar cells immersed in dielectric liquids. Energy Convers. Manag. 2013, 66, 189-198.
17Holzhey, P.; Saliba, M., A full overview of international standards assessing the long-term stability of perovskite solar cells. J. Mater. Chem. A 2018, 6 (44), 21794-21808.
18Chi, W.; Banerjee, S. K., Stability Improvement of Perovskite Solar Cells by Compositional and Interfacial Engineering. Chem. Mater. 2021, 33 (5), 1540-1570.
19Liang, M.; Ali, A.; Belaidi, A.; Hossain, M. I.; Ronan, O.; Downing, C.; Tabet, N.; Sanvito, S.; Ei-Mellouhi, F.; Nicolosi, V., Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides. npj 2D Mater. Appl. 2020, 4, 40.
20Tiep, N. H.; Ku, Z.; Fan, H. J., Recent Advances in Improving the Stability of Perovskite Solar Cells. Adv. Energy Mater. 2016, 6 (3), 1501420.
21Hu, Q.; Chen, W.; Yang, W.; Li, Y.; Zhou, Y.; Larson, B. W.; Johnson, J. C.; Lu, Y. H.; Zhong, W.; Xu, J.; Klivansky, L.; Wang, C.; Salmeron, M.; Djurišić, A. B.; Liu, F.; He, Z.; Zhu, R.; Russell, T. P., Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. Joule 2020, 4 (7), 1575-1593.
22Nair, S.; Patel, S. B.; Gohel, J. V., Recent trends in efficiency-stability improvement in perovskite solar cells. Mater. Today Energy 2020, 17.
23Diau, E. W. G.; Jokar, E.; Rameez, M., Strategies To Improve Performance and Stability for Tin-Based Perovskite Solar Cells. ACS Energy Lett. 2019, 4 (8), 1930-1937.
24Gil-Escrig, L.; Dreessen, C.; Kaya, I. C.; Kim, B. S.; Palazon, F.; Sessolo, M.; Bolink, H. J., Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA1–xMAxPbI3. ACS Energy Lett. 2020, 5 (9), 3053-3061.
25Huang, Y.; Li, Y.; Lim, E. L.; Kong, T.; Zhang, Y.; Song, J.; Hagfeldt, A.; Bi, D., Stable Layered 2D Perovskite Solar Cells with an Efficiency of over 19% via Multifunctional Interfacial Engineering. J. Am. Chem. Soc. 2021, 143 (10), 3911-3917.
26Xie, L.; Lin, K.; Lu, J.; Feng, W.; Song, P.; Yan, C.; Liu, K.; Shen, L.; Tian, C.; Wei, Z., Efficient and Stable Low-Bandgap Perovskite Solar Cells Enabled by a CsPbBr(3)-Cluster Assisted Bottom-up Crystallization Approach. J. Am. Chem. Soc. 2019, 141 (51), 20537-20546.
27He, Q.; Worku, M.; Liu, H.; Lochner, E.; Robb, A. J.; Lteif, S.; Vellore Winfred, J. S. R.; Hanson, K.; Schlenoff, J. B.; Kim, B. J.; Ma, B., Highly Efficient and Stable Perovskite Solar Cells Enabled by Low-Cost Industrial Organic Pigment Coating. Angew. Chem. Int. Ed. Engl. 2021, 60 (5), 2485-2492.
28Ma, K.; Atapattu, H. R.; Zhao, Q.; Gao, Y.; Finkenauer, B. P.; Wang, K.; Chen, K.; Park, S. M.; Coffey, A. H.; Zhu, C.; Huang, L.; Graham, K. R.; Mei, J.; Dou, L., Multifunctional Conjugated Ligand Engineering for Stable and Efficient Perovskite Solar Cells. Adv. Mater. 2021, 33 (32), e2100791.
29Lin, J. T.; Hu, Y. K.; Hou, C. H.; Liao, C. C.; Chuang, W. T.; Chiu, C. W.; Tsai, M. K.; Shyue, J. J.; Chou, P. T., Superior Stability and Emission Quantum Yield (23% +/- 3%) of Single-Layer 2D Tin Perovskite TEA(2) SnI(4) via Thiocyanate Passivation. Small 2020, 16 (19), e2000903.
30Zuo, X.; Kim, B.; Liu, B.; He, D.; Bai, L.; Wang, W.; Xu, C.; Song, Q.; Jia, C.; Zang, Z.; Lee, D.; Li, X.; Chen, J., Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells. Chem. Eng. J. 2022, 431,133209.
31Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V., Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137 (4), 1530-1538.
32Kundu, S.; Kelly, T. L., In situ studies of the degradation mechanisms of perovskite solar cells. Eco. Mat. 2020, 2 (2), 1-22.
33Chen, B. A.; Lin, J. T.; Suen, N. T.; Tsao, C. W.; Chu, T. C.; Hsu, Y. Y.; Chan, T. S.; Chan, Y. T.; Yang, J. S.; Chiu, C. W.; Chen, H. M., In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. ACS Energy Lett. 2017, 2 (2), 342-348.
34Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J., Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48 (14), 3842-3867.
35Lei, Y.; Xu, Y.; Wang, M.; Zhu, G.; Jin, Z., Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small 2021, 17 (26), e2005495.
36Chen, Y.; Zhou, H., Defects chemistry in high-efficiency and stable perovskite solar cells. J. Appl. Phys. 2020, 128 (6), 060903.
37Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Na.t Commun. 2017, 8, 15218.
38Lee, H.; Lee, C., Analysis of Ion-Diffusion-Induced Interface Degradation in Inverted Perovskite Solar Cells via Restoration of the Ag Electrode. Adv. Energy Mater. 2018, 8 (11),1702197.
39Lee, J. W.; Kim, S. G.; Yang, J.-M.; Yang, Y.; Park, N. G., Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 2019, 7, 041111.
40Li, C.; Guerrero, A.; Huettner, S.; Bisquert, J., Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 2018, 9, 5113.
41Wang, X.; Rakstys, K.; Jack, K.; Jin, H.; Lai, J.; Li, H.; Ranasinghe, C. S. K.; Saghaei, J.; Zhang, G.; Burn, P. L.; Gentle, I. R.; Shaw, P. E., Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 2021, 12 (1), 52.
42Xi, J.; Wu, Y.; Chen, W.; Li, Q.; Li, J.; Shen, Y.; Chen, H.; Xu, G.; Yang, H.; Chen, Z.; Li, N.; Zhu, J.; Li, Y.; Li, Y., Cross-linkable molecule in spatial dimension boosting water-stable and high-efficiency perovskite solar cells. Nano Energy 2022, 93, 106846.
43Jiang, J.; Wang, Q.; Jin, Z.; Zhang, X.; Lei, J.; Bin, H.; Zhang, Z. G.; Li, Y.; Liu, S. F., Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability. Adv. Energy Mater. 2018, 8 (3), 1701757.
44Cao, Q.; Li, Y.; Zhang, H.; Yang, J.; Han, J.; Xu, T.; Wang, S.; Wang, Z.; Gao, B.; Zhao, J.; Li, X.; Ma, X.; Zakeeruddin, S. M.; Sha, W. E. I.; Li, X.; Grätzel, M., Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 2021, 7 (28), eabg0633.
45Hou, Y.; Wang, K.; Yang, D.; Jiang, Y.; Yennawar, N.; Wang, K.; Sanghadasa, M.; Wu, C.; Priya, S., Enhanced Performance and Stability in DNA-Perovskite Heterostructure-Based Solar Cells. ACS Energy Lett. 2019, 4 (11), 2646-2655.
46Li, F.; Deng, X.; Qi, F.; Li, Z.; Liu, D.; Shen, D.; Qin, M.; Wu, S.; Lin, F.; Jang, S. H.; Zhang, J.; Lu, X.; Lei, D.; Lee, C. S.; Zhu, Z.; Jen, A. K., Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. J. Am. Chem. Soc. 2020, 142 (47), 20134-20142.
47Zhou, Y.; Zhong, H.; Han, J.; Tai, M.; Yin, X.; Zhang, M.; Wu, Z.; Lin, H., Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. J. Mater. Chem. A 2019, 7 (46), 26334-26341.
48Zheng, X.; Deng, Y.; Chen, B.; Wei, H.; Xiao, X.; Fang, Y.; Lin, Y.; Yu, Z.; Liu, Y.; Wang, Q.; Huang, J., Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells. Adv. Mater. 2018, 30 (52), e1803428.
49Wang, R.; Xue, J.; Meng, L.; Lee, J. W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z. K.; Duan, Y.; Yang, J. L.; Tan, S.; Yuan, Y.; Huang, Y.; Yang, Y., Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule 2019, 3 (6), 1464-1477.
50Wang, K.; Liu, C.; Du, P.; Zheng, J.; Gong, X., Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ. Sc. 2015, 8 (4), 1245-1255.
51Pan, H.; Shao, H.; Zhang, X. L.; Shen, Y.; Wang, M., Interface engineering for high-efficiency perovskite solar cells. J. Appl. Phys. 2021, 129 (13), 130904.
52Handbook of Bond Dissociation Energies in Organic Compounds By Yu-Ran Luo (University of South Florida, St. Petersburg). CRC Press LLC:  Boca Raton. 2003. xii + 380 pp. $159.95. ISBN 0-8493-1589-1. J. Am. Chem. Soc.2004, 126, 978-982.
53Belcher, W. J.; Fabre, M.; Farhan, T.; Steed, J. W., Pyridinium CH...anion and pi-stacking interactions in modular tripodal anion binding hosts: ATP binding and solid-state chiral induction. Org. Biomol. Chem. 2006, 4 (5), 781-786.
54Nguyen, W. H.; Bailie, C. D.; Unger, E. L.; McGehee, M. D., Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)(2) in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136 (31), 10996-1001.
55Hashimoto, R.; Anh Truong, M.; Gopal, A.; Imanah Rafieh, A.; Nakamura, T.; Murdey, R.; Wakamiya, A., Hole-Transporting Polymers Containing Partially Oxygen-Bridged Triphenylamine Units and Their Application for Perovskite Solar Cells. J. Photopolym. Sci. Technol. 2020, 33, 505– 516.
56Bader, A. N.; V.G., P.; Demchenko, A. P.; Ariese, F.; Gooijer, C., Excited State and Ground State Proton Transfer Rates of 3-Hydroxyflavone and Its Derivatives Studied by Shpol'skii Spectroscopy:  The Influence of Redistribution of Electron Density. J. Phys. Chem. B 2004, 108 (29), 10589–10595.
57Zhang, M.; Yang, D.; Ren, B.; Wang, D., A TDDFT study on the excited-state intramolecular proton transfer (ESIPT): excited-state equilibrium induced by electron density swing. J. Fluoresc. 2013, 23 (4), 761-766.
58Wilbraham, L.; Savarese, M.; Rega, N.; Adamo, C.; Ciofini, I., Describing excited state intramolecular proton transfer in dual emissive systems: a density functional theory based analysis. J. Phys. Chem. B 2015, 119 (6), 2459-66.
59Doroshenko, A. O.; Posokhov, E. A.; Verezubova, A. A.; Ptyagina, L. M., Excited state intramolecular proton transfer reaction and luminescent properties of theortho-hydroxy derivatives of 2,5-diphenyl-1,3,4-oxadiazole. J.Phys. Org. Chem. 2000, 13 (5), 253-265.
60Benelhadj, K.; Muzuzu, W.; Massue, J.; Retailleau, P.; Charaf-Eddin, A.; Laurent, A. D.; Jacquemin, D.; Ulrich, G.; Ziessel, R., White emitters by tuning the excited-state intramolecular proton-transfer fluorescence emission in 2-(2'-hydroxybenzofuran)benzoxazole dyes. Chemistry 2014, 20 (40), 12843-12857.
61Yang, Y.; Zhao, J.; Li, Y., Theoretical Study of the ESIPT Process for a New Natural Product Quercetin. Sci. Rep. 2016, 6, 32152.
62Chou, P. T., The observation of solvent-dependent proton-transfer charge-transfer lasers from 4' -diethylamino-3-hydroxyflavone. Chem. Phys. Lett. 1993, 204 (5-6), 395-399.
63Chou, P. T., Reversal of excitation behavior of proton-transfer vs. charge-transfer by dielectric perturbation of electronic manifolds. J. Phys. Chem. 1993, 97 (11), 2618-2622.
64Swinney, T. C.; Kelley, D. F., Proton transfer dynamics in substituted 3-hydroxyflavones: Solvent polarization effects. J. Chem. Phys. 1993, 99 (1), 211-221.
65Kimura, Y.; Fukuda, M.; Suda, K.; Terazima, M., Excited State Intramolecular Proton Transfer Reaction of 4′-N,N-Diethylamino-3-hydroxyflavone and Solvation Dynamics in Room Temperature Ionic Liquids Studied by Optical Kerr Gate Fluorescence Measurement. J. Phys. Chem. B 2010, 114 (36), 11847–11858.
66Yang, D.; Yang, G.; Jia, M.; Song, X.; Zhang, Q.; Zhang, T.; Gao, H., Theoretical research on excited-state intramolecular proton coupled charge transfer modulated by molecular structure. RSC Adv. 2018, 8 (52), 29662-29669.
67Klymchenko, A. S.; Pivovarenko, V. G.; Demchenko, A. P., Elimination of the Hydrogen Bonding Effect on the Solvatochromism of 3-Hydroxyflavones. J. Phys. Chem. A 2003, 107 (21), 4211–4216.
68Klymchenko, A. S.; Demchenko, A. P., Electrochromic Modulation of Excited-State Intramolecular Proton Transfer:  The New Principle in Design of Fluorescence Sensors. J. Am. Chem. Soc. 2002, 124 (41), 12372–12379.
69Sytnik, A.; Gormin, D.; Kasha, M., Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes. Proc. Natl. Acad. Sci. USA 1994, 91 (25), 11968-11972.
70Furukawa, K.; Yamamoto, N.; Hino, K.; Sekiya, H., Excited-state intramolecular proton transfer and conformational relaxation in 4'-N,N-dimethylamino-3-hydroxyflavone doped in acetonitrile crystals. Phys Chem Chem Phys 2016, 18 (41), 28564-28575.
71Chou, P. T.; Huang; Pu, S. C.; Cheng, Y. M.; Liu, Y. H.; Wang, Y.; Chen, C. T., Tuning Excited-State Charge/Proton Transfer Coupled Reaction via the Dipolar Functionality J. Phys. Chem. A, 2004, 108 (31), 6452–6454.
72Hsieh, C. C.; Cheng, Y. M.; Hsu, C. J.; Chen, K. Y.; Chou, P. T., Spectroscopy and Femtosecond Dynamics of Excited-State Proton Transfer Induced Charge Transfer Reaction. J. Phys. Chem. A 2008, 112 (36), 8323–8332.
73Chou, P. T.; Yu, W. S.; Cheng, Y. M.; Pu, S. C.; Yu, Y. C.; Lin, Y. C.; Huang, C. H.; Chen, C. T., Solvent-Polarity Tuning Excited-State Charge Coupled Proton-Transfer Reaction in p-N,N-Ditolylaminosalicylaldehydes. J. Phys. Chem. A 2004, 108 (31), 6487–6498.
74Cheng, Y. M.; Pu, S. C.; Hsu, C. J.; Lai, C. H.; Chou, P. T., Femtosecond dynamics on 2-(2'-hydroxy-4'-diethylaminophenyl)benzothiazole: solvent polarity in the excited-state proton transfer. Chemphyschem 2006, 7 (6), 1372-81.
75Tseng, H. W.; Shen, J. Y.; Kuo, T. Y.; Tu, T. S.; Chen, Y. A.; Demchenko, A. P.; Chou, P. T., Excited-state intramolecular proton-transfer reaction demonstrating anti-Kasha behavior. Chem. Sci. 2016, 7 (1), 655-665.
76Hsieh, C. C.; Cheng, Y. M.; Hsu, C. J.; Chen, K. Y.; Chou, P. T., Spectroscopy and femtosecond dynamics of excited-state proton transfer induced charge transfer reaction. J. Phys. Chem. A 2008, 112 (36), 8323-8332.
77Chou, P. T.; Pu, S. C.; Cheng, Y. M.; Yu, W. S.; Yu, Y. C.; Hung, F. T.; Hu, W. P., Femtosecond Dynamics on Excited-State Proton Charge-Transfer Reaction in 4‘-N,N-Diethylamino-3-hydroxyflavone. The Role of Dipolar Vectors in Constructing a Rational Mechanism. J. Phys. Chem. A 2005, 109 (17), 3777-3787.
78Suda, K.; Terazima, M.; Kimura, Y., Anomalous ground-state proton transfer of 4'-N,N-diethylamino-3-hydroxyflavone in ionic liquids of imidazolium-based cations with tetrafluoroborate. Chem. Commun. (Camb) 2013, 49 (38), 3976-8.
79Rumble, C. A.; Breffke, J.; Maroncelli, M., Solvation Dynamics and Proton Transfer in Diethylaminohydroxyflavone. J. Phys. Chem. B 2017, 121 (3), 630-637.
80Jana, S.; Dalapati, S.; Guchhait, N., Excited state intramolecular charge transfer suppressed proton transfer process in 4-(diethylamino)-2-hydroxybenzaldehyde. J. Phys. Chem. A 2013, 117 (21), 4367-4376.
81Behera, S. K.; Karak, A.; Krishnamoorthy, G., Photophysics of 2-(4'-amino-2'-hydroxyphenyl)-1H-imidazo-[4,5-c]pyridine and its analogues: intramolecular proton transfer versus intramolecular charge transfer. J. Phys. Chem. B 2015, 119 (6), 2330-2344.
82Hsieh, C. C.; Chou, P. T.; Shih, C. W.; Chuang, W. T.; Chung, M. W.; Lee, J.; Joo, T., Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore. J. Am. Chem. Soc. 2011, 133 (9), 2932-2943.
83Zhang, Z.; Chen, Y. A.; Hung, W. Y.; Tang, W. F.; Hsu, Y. H.; Chen, C. L.; Meng, F. Y.; Chou, P. T., Control of the Reversibility of Excited-State Intramolecular Proton Transfer (ESIPT) Reaction: Host-Polarity Tuning White Organic Light Emitting Diode on a New Thiazolo[5,4-d]thiazole ESIPT System. Chem. Mater. 2016, 28 (23), 8815-8824.
84Chen, C. L.; Tseng, H. W.; Chen, Y. A.; Liu, J. Q.; Chao, C. M.; Liu, K. M.; Lin, T. C.; Hung, C. H.; Chou, Y. L.; Lin, T. C.; Chou, P. T., Insight into the Amino-Type Excited-State Intramolecular Proton Transfer Cycle Using N-Tosyl Derivatives of 2-(2'-Aminophenyl)benzothiazole. J. Phys. Chem. A 2016, 120 (7), 1020-1028.
85Wang, C. H.; Liu, Z. Y.; Huang, C. H.; Chen, C. T.; Meng, F. Y.; Liao, Y. C.; Liu, Y. H.; Chang, C. C.; Li, E. Y.; Chou, P. T., Chapter Open for the Excited-State Intramolecular Thiol Proton Transfer in the Room-Temperature Solution. J. Am. Chem. Soc. 2021, 143 (32), 12715-12724.
86Seo, J.; Kim, S.; Park, S. Y., Strong Solvatochromic Fluorescence from the Intramolecular Charge-Transfer State Created by Excited-State Intramolecular Proton Transfer. J. Am. Chem. Soc. 2004, 126 (36), 11154–11155.
87Johns, V. K.; Wang, Z. Z.; Li, X. X.; Liao, Y., Physicochemical Study of a Metastable-State Photoacid. J. Phys. Chem. A 2013, 117 (49), 13101-13104.
88Shi, Z.; Peng, P.; Strohecker, D.; Liao, Y., Long-Lived Photoacid Based upon a Photochromic Reaction. J. Am. Chem. Soc. 2011, 133 (37), 14699-14703.
89Tolbert, L. M.; Solntsev, K. M., Excited-state proton transfer: From constrained systems to "super" photoacids to superfast proton transfer. Acc. Chem. Res. 2002, 35 (1), 19-27.
90Tolbert, L. M.; Haubrich, J. E., Photoexcited Proton-Transfer from Enhanced Photoacids. J. Am. Chem. Soc. 1994, 116 (23), 10593-10600.
91Demchenko, A. P.; Tang, K. C.; Chou, P. T., Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 2013, 42 (3), 1379-1408.
92Hsieh, C. C.; Jiang, C. M.; Chou, P. T., Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction. Acc. Chem. Res. 2010, 43 (10), 1364-1374.
93Chou, P. T.; Martinez, M. L.; Clements, J. H., Reversal of Excitation Behavior of Proton-Transfer Vs Charge-Transfer by Dielectric Perturbation of Electronic Manifolds. J. Phys. Chem. 1993, 97 (11), 2618-2622.
94Vardhan, H.; Hou, L.; Yee, E.; Nafady, A.; Al-Abdrabalnabi, M. A.; Al-Enizi, A. M.; Pan, Y.; Yang, Z.; Ma, S., Vanadium Docked Covalent-Organic Frameworks: An Effective Heterogeneous Catalyst for Modified Mannich-Type Reaction. ACS Sustain. Chem. & Eng. 2019, 7 (5), 4878-4888.
95Mech, P.; Bogunia, M.; Nowacki, A.; Makowski, M., Calculations of pK(a) Values of Selected Pyridinium and Its N-Oxide Ions in Water and Acetonitrile. J. Phys. Chem. A 2020, 124 (3), 538-551.
96Jung, G. Y.;Kim, T. H.; Lim, H. B., Separation of Morpholine, N-Methylmorpholine and N-Methylmorpholine-N-oxide by Indirect UV Absorption Capillary Electrophoresis. ANAL. SCI. 1996, 12, 367–370.
97Zlatic, K.; Antol, I.; Uzelac, L.; Mikecin Drazic, A. M.; Kralj, M.; Bohne, C.; Basaric, N., Labeling of Proteins by BODIPY-Quinone Methides Utilizing Anti-Kasha Photochemistry. ACS Appl. Mater. Interfaces 2020, 12 (1), 347-351.
98Schneider, C.; Hofmann, F.; Gärtner, C.; Kretzschmar, M., Asymmetric Synthesis of Fused Tetrahydroquinolines via Intra­molecular Aza-Diels–Alder Reaction of ortho-Quinone Methide Imines. Synthesis 2021, 54 (04), 1055-1080.
99Lin, T. C.; Liu, Z. Y.; Liu, S. H.; Koshevoy, I. O.; Chou, P. T., Counterion Migration Driven by Light-Induced Intramolecular Charge Transfer. JACS Au 2021, 1 (3), 282-293.
100Belyaev, A.; Su, B. K.; Cheng, Y. H.; Liu, Z. Y.; Khan, N. M.; Karttunen, A. J.; Chou, P. T.; Koshevoy, I. O., Multiple Emission of Phosphonium Fluorophores Harnessed by the Pathways of Photoinduced Counterion Migration. Angew. Chem. Int. Ed. Engl. 2022, 61 (19), e202115690.
101Davis, A. P.; Wareham, R. S., Carbohydrate Recognition through Noncovalent Interactions: A Challenge for Biomimetic and Supramolecular Chemistry. Angew. Chem. Int. Ed. 1999, 38 (20), 2978-2996.
102Mizutani, T.; Kurahashi, T.; Murakami, T.; Matsumi, N.; Ogoshi, H., Molecular Recognition of Carbohydrates by Zinc Porphyrins:  Lewis Acid/Lewis Base Combinations as a Dominant Factor for Their Selectivity. J. Am. Chem. Soc. 1997, 119 (38), 8991–9001.
103Davis, A. P.; Wareham, R. S., A Tricyclic Polyamide Receptor for Carbohydrates in Organic Media. Angew. Chem. Int. Ed. 1998, 37 (16), 2270-2273.
104Endo, N.; Kanaura, M.; Iwasawa, T., Elucidation of reaction process through β-halogen elimination in CuCN-mediated cyanation of (E)-1-bromo-2-iodoalkene. Tetrahedron Lett. 2016, 57 (4), 483-486.
105Robson, R. N.; Hay, B. P.; Pfeffer, F. M., To Cooperate or Not: The Role of Central Functionality in Bisthiourea [6]polynorbornane Hosts. Eur. J. O. Chem. 2019, (39), 6720-6727.
106Chou, P. T.; Wei, C. Y.; Wu, G. R.; Chen, W. S., Excited-State Double Proton Transfer in 7-Azaindole Analogues:  Observation of Molecular-Based Tuning Proton-Transfer Tautomerism. J. Am. Chem. Soc. 1999, 121 (51), 12186–12187.
107Reddy, S. K.; Balasubramanian, S., Carbonic acid: molecule, crystal and aqueous solution. Chem. Commun. (Camb.) 2014, 50 (5), 503-514.
108Maren, T. H., Carbonic anhydrase chemistry, physiology, and inhibition. Physiol. Rev. 1967, 47 (4), 595-781.
109Loerting, T.; Tautermann, C.; Kroemer, R. T.; Kohl, I.; Hallbrucker, A.; Mayer, E.; Liedl, K. R., On the Surprising Kinetic Stability of Carbonic Acid (H2CO3). Angew. Chem. Int. Ed. 2000, 39 (5), 891-894.
110Hegde, V.; Madhukar, P.; Madura, J. D.; Thummel, R. P., Fischer route to pyrido[3,2-g]indoles. A novel receptor for urea derivatives. J. Am. Chem. Soc. 1990, 112 (11), 4549–4550.
111Chou, H. C.; Hsu, C. H.; Cheng, Y. M.; Cheng, C. C.; Liu, H. W.; Pu, S. C.; Chou, P. T., Multiple Hydrogen Bonds Tuning Guest/Host Excited-State Proton Transfer Reaction:  Its Application in Molecular Recognition. J. Am. Chem. Soc. 2004, 126 (6), 1650–1651.
112Yang, Z.; Mao, Z.; Xie, Z. Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P., Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017, 46 (3), 915-1016.
113Dias, F. B.; Penfold, T. J.; Monkman, A. P., Photophysics of thermally activated delayed fluorescence molecules. Methods Appl. Fluoresc. 2017, 5 (1), 012001.
114Wong, M. Y.; Zysman-Colman, E., Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29 (22),1605444.
115Liu, H.; Liu, Z.; Li, G.; Huang, H.; Zhou, C.; Wang, Z.; Yang, C., Versatile Direct Cyclization Constructs Spiro-acridan Derivatives for Highly Efficient TADF emitters. Angew. Chem. Int. Ed. Engl. 2021, 60 (22), 12376-12380.
116Yang, S. Y.; Wang, Y. K.; Peng, C. C.; Wu, Z. G.; Yuan, S.; Yu, Y. J.; Li, H.; Wang, T. T.; Li, H. C.; Zheng, Y. X.; Jiang, Z. Q.; Liao, L. S., Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. J. Am. Chem. Soc. 2020, 142 (41), 17756-17765.
117Frédéric, L.; Desmarchelier, A.; Favereau, L.; Pieters, G., Designs and Applications of Circularly Polarized Thermally Activated Delayed Fluorescence Molecules. Adv. Funct. Mater. 2021, 31 (20), 2010281.
118Zhang, Y. P.; Liang, X.; Luo, X. F.; Song, S. Q.; Li, S.; Wang, Y.; Mao, Z. P.; Xu, W. Y.; Zheng, Y. X.; Zuo, J. L.; Pan, Y., Chiral Spiro-Axis Induced Blue Thermally Activated Delayed Fluorescence Material for Efficient Circularly Polarized OLEDs with Low Efficiency Roll-Off. Angew. Chem. Int. Ed. Engl. 2021, 60 (15), 8435-8440.
119Xie, F. M.; Li, H. Z.; Dai, G. L.; Li, Y. Q.; Cheng, T.; Xie, M.; Tang, J. X.; Zhao, X., Rational Molecular Design of Dibenzo[a,c]phenazine-Based Thermally Activated Delayed Fluorescence Emitters for Orange-Red OLEDs with EQE up to 22.0. ACS Appl. Mater. Interfaces 2019, 11 (29), 26144-26151.
120Zhang, Y. L.; Ran, Q.; Wang, Q.; Liu, Y.; Hanisch, C.; Reineke, S.; Fan, J.; Liao, L. S., High-Efficiency Red Organic Light-Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Adv. Mater. 2019, 31 (42), e1902368.
121Chen, J. X.; Tao, W. W.; Chen, W. C.; Xiao, Y. F.; Wang, K.; Cao, C.; Yu, J.; Li, S.; Geng, F. X.; Adachi, C.; Lee, C. S.; Zhang, X. H., Red/Near-Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angew. Chem. Int. Ed. Engl. 2019, 58 (41), 14660-14665.
122Xie, F. M.; Wu, P.; Zou, S. J.; Li, Y. Q.; Cheng, T.; Xie, M.; Tang, J. X.; Zhao, X., Efficient Orange–Red Delayed Fluorescence Organic Light‐Emitting Diodes with External Quantum Efficiency over 26%. Adv Electron. Mater. 2019, 6 (1), 1900843.
123Yang, T.; Cheng, Z.; Li, Z.; Liang, J.; Xu, Y.; Li, C.; Wang, Y., Improving the Efficiency of Red Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diode by Rational Isomer Engineering. Adv. Funct. Mater. 2020, 30 (34), 2002681.
124Mehes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C., Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 2012, 51 (45), 11311-11315.
125Shao, S.; Hu, J.; Wang, X.; Wang, L.; Jing, X.; Wang, F., Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. J. Am. Chem. Soc. 2017, 139 (49), 17739-17742.
126Hu, J.; Li, Q.; Wang, X.; Shao, S.; Wang, L.; Jing, X.; Wang, F., Developing Through-Space Charge Transfer Polymers as a General Approach to Realize Full-Color and White Emission with Thermally Activated Delayed Fluorescence. Angew. Chem. Int. Ed. Engl. 2019, 58 (25), 8405-8409.
127Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T., Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28 (14), 2777-2781.
128Xia, G.; Qu, C.; Zhu, Y.; Ye, J.; Ye, K.; Zhang, Z.; Wang, Y., A TADF Emitter Featuring Linearly Arranged Spiro-Donor and Spiro-Acceptor Groups: Efficient Nondoped and Doped Deep-Blue OLEDs with CIE(y) <0.1. Angew. Chem. Int. Ed. Engl. 2021, 60 (17), 9598-9603.
129Xu, Y.; Wang, Q.; Cai, X.; Li, C.; Wang, Y., Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers. Adv. Mater. 2021, 33 (21), e2100652.
130Ando, N.; Yamada, T.; Narita, H.; Oehlmann, N. N.; Wagner, M.; Yamaguchi, S., Boron-Doped Polycyclic pi-Electron Systems with an Antiaromatic Borole Substructure That Forms Photoresponsive B-P Lewis Adducts. J. Am. Chem. Soc. 2021, 143 (26), 9944-9951.
131Park, S.; Kwon, O. H.; Lee, Y. S.; Jang, D. J.; Park, S. Y., Imidazole-Based Excited-State Intramolecular Proton-Transfer (ESIPT) Materials:  Observation of Thermally Activated Delayed Fluorescence (TDF). J. Phys. Chem. A 2007, 111 (39), 9649-9653.
132Gupta, A. K.; Li, W.; Ruseckas, A.; Lian, C.; Carpenter-Warren, C. L.; Cordes, D. B.; Slawin, A. M. Z.; Jacquemin, D.; Samuel, I. D. W.; Zysman-Colman, E., Thermally Activated Delayed Fluorescence Emitters with Intramolecular Proton Transfer for High Luminance Solution-Processed Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2021, 13 (13), 15459-15474.
133Pilato, M. L.; Catalano, V. J.; Bell, T. W., Synthesis of 1,2,3,4,5,6,7,8-Octahydroacridine via Condensation of Cyclohexanone with Formaldehyde. J. Org. Chem. 2001, 66 (4), 1525–1527.
134Thummel, R. P.; Jahng, Y., Polyaza cavity shaped molecules. 4. Annelated derivatives of 2,2':6',2"-terpyridine. J. Org. Chem. 1985, 50 (14), 2407–2412.
135Appukuttan, V. K.; Liu, Y.; Son, B. C.; Ha, C.-S.; Suh, H.; Kim, I., Iron and Cobalt Complexes of 2,3,7,8-Tetrahydroacridine-4,5(1H,6H)-diimine Sterically Modulated by Substituted Aryl Rings for the Selective Oligomerization to Polymerization of Ethylene. Organometallics 2011, 30 (8), 2285-2294.
136Buu-Hoï, N. P.; Périn, F.; Jacquignon, P., 870. Carcinogenic nitrogen compounds. Part XXVIII. Azadibenzofluorenes and related compounds. J. Chem. Soc. 1960, 4500-4503.
137Panahi, F.; Jamedi, F.; Iranpoor, N., Nickel-Catalyzed Reductive Addition of Aryl/Benzyl Halides and Pseudohalides to Carbodiimides for the Synthesis of Amides. Eur. J. Org. Chem. 2016, 2016 (4), 780-788.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊