|
[1]De Broglie, L. Waves and Quanta. Nature 1923, 112, 540. [2]Nogues, G.; Rauschenbeutel, A.; Osnaghi, S.; Brune, M.; Raimond, J. M.; Haroche, S. Seeing a Single Photon without Destroying It. Nature 1999, 400, 239–242. [3]Browne, M. Schaum's Outline of Physics for Engineering and Science; McGraw-Hill Education, 2013. [4]Uzan, J. P.; Leclercq, B.; Mizon, B. The Natural Laws of the Universe: Understanding Fundamental Constants; Praxis: New York, NY, 2008. [5]Sliney, D. What Is Light? The Visible Spectrum and Beyond. Eye 2016, 30, 222–229. [6]Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168–184. [7]Wang, C.; Wang, X.; Zhou, Y.; Zhang, S.; Li, C.; Hu, D.; Xu, L.; Jiao, H. An Ultra-Broadband Near-Infrared Cr3+-Activated Gallogermanate Mg3Ga2GeO8 Phosphor as Light Sources for Food Analysis. ACS Appl. Electron. Mater. 2019, 1, 1046–1053. [8]Zhang, L.; Wang, D.; Hao, Z.; Zhang, X.; Pan, G. H.; Wu, H.; Zhang, J. Cr3+‐Doped Broadband NIR Garnet Phosphor with Enhanced Luminescence and Its Application in NIR Spectroscopy. Adv. Opt. Mater. 2019, 7, 1900185. [9]Fang, M. H.; De Guzman, G. N. A.; Bao, Z.; Majewska, N.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Hu, S. F.; Liu, R. S. Ultra-High-Efficiency Near-Infrared Ga2O3:Cr3+ Phosphor and Controlling of Phytochrome. J. Mater. Chem. C . 2020, 8, 11013–11017. [10]Zhu, S.; Yung, B. C.; Chandra, S.; Niu, G.; Antaris, A. L.; Chen, X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018, 8, 4141. [11]Liu, B. M.; Guo, X. X.; Huang, L.; Zhou, R. F.; Zou, R.; Ma, C. G.; Wang, J. A Super‐Broadband NIR Dual‐Emitting Mg2SnO4:Cr3+,Ni2+ Phosphor for Ratiometric Phosphor‐Converted NIR Light Source Applications. Adv. Mater. Technol. 2022, 2201181. [12]Li, C.; Chen, G.; Zhang, Y.; Wu, F.; Wang, Q. Advanced Fluorescence Imaging Technology in the Near-Infrared-II Window for Biomedical Applications. J. Am. Chem. Soc. 2020, 142, 14789–14804. [13]McKittrick, J.; Shea‐Rohwer, L. E. Down Conversion Materials for Solid‐State Lighting. J. Am. Chem. Soc. 2014, 97, 1327–1352. [14]Shinde, K. N.; Dhoble, S.; Swart, H.; Park, K. Phosphate Phosphors for Solid-State Lighting; Springer Science & Business Media, 2012. [15]Nakamura, S. Zn-Doped Ingan Growth and Ingan/Algan Double-Heterostructure Blue-Light-Emitting Diodes. J. Cryst. Growth 1994, 145, 911–917. [16]Shionoya, S.; Yen, W. M.; Yamamoto, H. Phosphor Handbook; CRC press, 2018. [17]Cao, R.; Peng, M.; Qiu, J. Photoluminescence of Bi2+-Doped BaSO4 as a Red Phosphor for White LEDs. Opt. Express 2012, 20, A977–A983. [18]Liu, B. M.; Gu, S. M.; Huang, L.; Zhou, R. F.; Zhou, Z.; Ma, C. G.; Zou, R.; Wang, J. Ultra-Broadband and High-Efficiency Phosphors to Brighten NIR-II Light Source Applications. Cell Rep. Phys. Sci. 2022, 3, 101078. [19]Ropp, R. C. Luminescence and the Solid State; Elsevier, 2013. [20]Halappa, P.; Shivakumara, C. Synthesis and Characterization of Luminescent La2Zr2O7/Sm3+ Polymer Nanocomposites. Trends Appl. Adv. Polym. Mater. 2017, 163–189. [21]Jaffé, H. H.; Miller, A. L. The Fates of Electronic Excitation Energy. J. Chem. Educ. 1966, 43, 469. [22]Schweizer, T.; Kubach, H.; Koch, T. Investigations to Characterize the Interactions of Light Radiation, Engine Operating Media and Fluorescence Tracers for the Use of Qualitative Light-Induced Fluorescence in Engine Systems. Automot. Engine Technol. 2021, 6, 275–287. [23]Lax, M. The Franck–Condon Principle and Its Application to Crystals. J. Chem. Phys. 1952, 20, 1752–1760. [24]Coolidge, A. S.; James, H. M.; Present, R. D. A Study of the Franck–Condon Principle. J. Chem. Phys. 1936, 4, 193–211. [25]Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer New York, NY, 2006. [26]Gispert, J. R. Coordination Chemistry; Wiley-VCH, Weinheim, 2008. [27]Kitai, A. Luminescent Materials and Applications; John Wiley & Sons, 2008. [28]De Jong, M.; Seijo, L.; Meijerink, A.; Rabouw, F. T. Resolving the Ambiguity in the Relation between Stokes Shift and Huang–Rhys Parameter. Phys. Chem. Chem. Phys. 2015, 17, 16959–16969. [29]Dreyer, C. E.; Stengel, M.; Vanderbilt, D. Current-Density Implementation for Calculating Flexoelectric Coefficients. Phys. Rev. B 2018, 98, 075153. [30]Zhao, F.; Song, Z.; Liu, Q. Advances in Chromium‐Activated Phosphors for Near‐Infrared Light Sources. Laser Photonics Rev. 2022, 16, 2200380. [31]Kong, L.; Liu, Y.; Dong, L.; Zhang, L.; Qiao, L.; Wang, W.; You, H. Near-Infrared Emission of CaAl6Ga6O19:Cr3+,Ln3+(Ln = Yb, Nd, and Er) Via Energy Transfer for C-Si Solar Cells. Dalton Trans. 2020, 49, 8791–8798. [32]Yang, Z.; Zhao, Y.; Zhou, Y.; Qiao, J.; Chuang, Y. C.; Molokeev, M. S.; Xia, Z. Giant Red‐Shifted Emission in (Sr, Ba) Y2O4:Eu2+ Phosphor toward Broadband Near‐Infrared Luminescence. Adv. Funct. Mater. 2022, 32, 2103927. [33]Park, J. Y.; Joo, J. S.; Yang, H. K.; Kwak, M. Deep Red-Emitting Ca14Al10Zn6O35:Mn4+ Phosphors for WLED Applications. J. Alloys Compd. 2017, 714, 390–396. [34]Griffith, J. S.; Orgel, L. E. Ligand-Field Theory. Q. Rev. Chem. Soc. 1957, 11, 381–393. [35]Wang, X.; Wang, Z.; Zheng, M.; Cui, J.; Yao, Y.; Cao, L.; Zhang, M.; Yang, Z.; Suo, H.; Li, P. A Dual-Excited and Dual Near-Infrared Emission Phosphor Mg14Ge5O24:Cr3+,Cr4+ with a Super Broad Band for Biological Detection. Dalton Trans. 2021, 50, 311–322. [36]Yuan, S.; Mu, Z.; Lou, L.; Zhao, S.; Zhu, D.; Wu, F. Broadband NIR-II Phosphors with Cr4+ Single Activated Centers Based on Special Crystal Structure for Nondestructive Analysis. Ceram. Int. 2022, 48, 26884–26893. [37]Cai, H.; Liu, S.; Song, Z.; Liu, Q. Tuning Luminescence from NIR-I to NIR-II in Cr3+-Doped Olivine Phosphors for Nondestructive Analysis. J. Mater. Chem. C 2021, 9, 5469–5477. [38]Zhong, J.; Zhuo, Y.; Du, F.; Zhang, H.; Zhao, W.; You, S.; Brgoch, J. Efficient Broadband Near‐Infrared Emission in the GaTaO4:Cr3+ Phosphor. Adv. Opt. Mater. 2022, 10, 2101800. [39]Zhou, H.; Cai, H.; Zhao, J.; Song, Z.; Liu, Q. Crystallographic Control for Cr4+ Activators toward Efficient NIR-II Luminescence. Inorg. Chem. Front. 2022, 9, 1912–1919. [40]Zhang, Q.; Liu, D.; Wang, Z.; Dang, P.; Lian, H.; Li, G.; Lin, J. LaMgGa11O19:Cr3+, Ni2+ as Blue‐Light Excitable Near‐Infrared Luminescent Materials with Ultra‐Wide Emission and High External Quantum Efficiency. Adv. Opt. Mater. 2023, 2202478. [41]Yuan, L.; Jin, Y.; Wu, H.; Deng, K.; Qu, B.; Chen, L.; Hu, Y.; Liu, R. S. Ni2+-Doped Garnet Solid-Solution Phosphor-Converted Broadband Shortwave Infrared Light-Emitting Diodes toward Spectroscopy Application. ACS Appl. Mater. Interfaces 2022, 14, 4265–4275. [42]Atkins, P.; Overton, T. Shriver and Atkins' Inorganic Chemistry; Oxford University Press, USA, 2010. [43]Racah, G. Theory of Complex Spectra. II. Phys. Rev. 1942, 62, 438. [44]Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions II. J. Phys. Soc. Japan 1954, 9, 766–779. [45]Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions III: The Calculation of the Crystalline Field Strength. J. Phys. Soc. Japan 1956, 11, 864–877. [46]Schlapp, R.; Penney, W. G. Influence of Crystalline Fields on the Susceptibilities of Salts of Paramagnetic Ions. II. The Iron Group, Especially Ni, Cr and Co. Phys. Rev. 1932, 42, 666. [47]Fang, M. H.; Chen, K. C.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Liu, R. S. Hidden Structural Evolution and Bond Valence Control in Near-Infrared Phosphors for Light-Emitting Diodes. ACS Energy Lett. 2020, 6, 109–114. [48]Zhong, J.; Zhuo, Y.; Du, F.; Zhang, H.; Zhao, W.; Brgoch, J. Efficient and Tunable Luminescence in Ga2–xInxO3:Cr3+ for Near-Infrared Imaging. ACS Appl. Mater. Interfaces 2021, 13, 31835–31842 [49]Som, S.; Kunti, A.; Kumar, V.; Kumar, V.; Dutta, S.; Chowdhury, M.; Sharma, S.; Terblans, J.; Swart, H. Defect Correlated Fluorescent Quenching and Electron Phonon Coupling in the Spectral Transition of Eu3+ in CaTiO3 for Red Emission in Display Application. J. Appl. Phys. 2014, 115, 193101. [50]Chen, J.; Liu, Y.; Fang, M.; Huang, Z. Luminescence Properties and Energy Transfer of Eu/Mn-Coactivated Mg2Al4Si5O18 as a Potential Phosphor for White-Light LEDs. Inorg. Chem. 2014, 53, 11396–11403. [51]Yang, W. J.; Luo, L.; Chen, T. M.; Wang, N. S. Luminescence and Energy Transfer of Eu-and Mn-Coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UVLED. Chem. Mater. 2005, 17, 3883–3888. [52]Chen, H.; Wang, Y. Sr2LiScB4O10:Ce3+/Tb3+: A Green-Emitting Phosphor with High Energy Transfer Efficiency and Stability for LEDs and FEDs. Inorg. Chem. 2019, 58, 7440–7452. [53]Bosze, E.; Hirata, G.; Shea-Rohwer, L.; McKittrick, J. Improving the Efficiency of a Blue-Emitting Phosphor by an Energy Transfer from Gd3+ to Ce3+. J. Lumin. 2003, 104, 47–54. [54]Wang, L.; Zhang, X.; Hao, Z.; Luo, Y.; Zhang, J.; Wang, X. J. Interionic Energy Transfer in Y3Al5O12:Ce3+,Pr3+ Phosphor. J. Appl. Phys. 2010, 108, 93515. [55]Miao, S.; Liang, Y.; Zhang, Y.; Chen, D.; Wang, X. J. Blue Led‐Pumped Broadband Short‐Wave Infrared Emitter Based on LiMgPO4:Cr3+,Ni2+ Phosphor. Adv. Mater. Technol. 2022, 7, 2200320. [56]Wang, C.; Zhang, Y.; Han, X.; Hu, D.; He, D.; Wang, X.; Jiao, H. Energy Transfer Enhanced Broadband Near-Infrared Phosphors: Cr3+/Ni2+ Activated ZnGa2O4–Zn2SnO4 Solid Solutions for the Second NIR Window Imaging. J. Mater. Chem. C . 2021, 9, 4583–4590. [57]Chang, C.; Xu, J.; Jiang, L.; Mao, D.; Ying, W. Luminescence of Long-Lasting CaAl2O4:Eu2+,Nd3+ Phosphor by Co-Precipitation Method. Mater. Chem. Phys. 2006, 98, 509–513. [58]Huang, L.; Zhu, Y.; Zhang, X.; Zou, R.; Pan, F.; Wang, J.; Wu, M. Hf-Free Hydrothermal Route for Synthesis of Highly Efficient Narrow-Band Red Emitting Phosphor K2Si1–xF6:xMn4+ for Warm White Light-Emitting Diodes. Chem. Mater. 2016, 28, 1495–1502. [59]Kang, Y. C.; Roh, H. S.; Park, S. B. Preparation of Y2O3:Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis. Adv. Mater. 2000, 12, 451–453. [60]Peng, T.; Huajun, L.; Yang, H.; Yan, C. Synthesis of SrAl2O4:Eu,Dy Phosphor Nanometer Powders by Sol–Gel Processes and Its Optical Properties. Mater. Chem. Phys. 2004, 85, 68–72. [61]Shikao, S.; Jiye, W. Combustion Synthesis of Eu3+ Activated Y3Al5O12 Phosphor Nanoparticles. J. Alloys Compd. 2001, 327, 82–86. [62]Song, Z.; Liao, J.; Ding, X.; Liu, X.; Liu, Q. Synthesis of YAG Phosphor Particles with Excellent Morphology by Solid State Reaction. J. Cryst. Growth 2013, 365, 24–28. [63]Tamrakar, R. K.; Bisen, D. P.; Brahme, N. Comparison of Photoluminescence Properties of Gd2O3 Phosphor Synthesized by Combustion and Solid State Reaction Method. J. Radiat. Res. Appl. Sci. 2014, 7, 550–559. [64]Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, 32, 751–767. [65]Chen, K. C.; Fang, M. H.; Huang, W. T.; Kamiński, M.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Liu, R. S. Chemical and Mechanical Pressure-Induced Photoluminescence Tuning Via Structural Evolution and Hydrostatic Pressure. Chem. Mater. 2021, 33, 3832–3840. [66]Eckert, M. Max Von Laue and the Discovery of X‐Ray Diffraction in 1912. Ann. Phys. 2012, 524, A83–A85. [67]Pope, C. G. X-Ray Diffraction and the Bragg Equation. J. Chem. Educ. 1997, 74, 129. [68]Pecharsky, V. K.; Zavalij, P. Y. Fundamentals of Diffraction. In Fundamentals of Powder Diffraction and Structural Characterization of Materials; Pecharsky, V. K.; Zavalij, P. Y., Eds.; Springer: Boston, MA, 2005, Chapter 2, pp 99–260. [69]Toby, B. H.; Von Dreele, R. B. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46, 544–549. [70]Lovesey, S. W. Theory of Neutron Scattering from Condensed Matter; Clarendon Press, UK, 1984. [71]Avdeev, M.; Hester, J.; Peterson, V.; Studer, A. Wombat and Echidna: The Powder Diffractometers. Neutron News 2009, 20, 29–33. [72]Avdeev, M.; Hester, J. R. Echidna: A Decade of High‐Resolution Neutron Powder Diffraction at Opal. J. Appl. Crystallogr. 2018, 51, 1597–1604. [73]Coelho, A. A. Topas and Topas-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [74]Rietveld, H. Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Crystallogr. 1967, 22, 151–152. [75]Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [76]Wang, H.; Chu, P. K., Surface Characterization of Biomaterials. In Characterization of Biomaterials; Bandyopadhyay, A.; Bose, S., Eds.; Elsevier, 2013, Chapter 4, pp 105–147. [77]Kowalska, J.; DeBeer, S. The Role of X-Ray Spectroscopy in Understanding the Geometric and Electronic Structure of Nitrogenase. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853, 1406–1415. [78]Yamamoto, T. Assignment of Pre‐Edge Peaks in K‐Edge X‐Ray Absorption Spectra of 3d Transition Metal Compounds: Electric Dipole or Quadrupole? X-Ray Spectrom. 2008, 37, 572–584. [79]Penner-Hahn, J. E. X-Ray Absorption Spectroscopy. In Comprehensive Coordination Chemistry II; McCleverty, J. A.; Meyer, T. J., Eds.; Elsevier: London, UK, 2003; Vol. 2, pp 159–186. [80]Ravel, B.; Newville, M. Athena, Artemis, Hephaestus: Data Analysis for X-Ray Absorption Spectroscopy Using Ifeffit. J. Synchrotron Radiat. 2005, 12, 537–541. [81]Graves, P.; Gardiner, D. Practical Raman Spectroscopy. Springer 1989, 10, 978–973. [82]Stuart, B. H. Analytical Techniques in Materials Conservation; John Wiley & Sons, 2007. [83]Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons, 2019. [84]Bleaney, B.; Stevens, K. Paramagnetic Resonance. Rep. Prog. Phys. 1953, 16, 108. [85]Song, E.; Zhou, Y.; Yang, X. B.; Liao, Z.; Zhao, W.; Deng, T.; Wang, L.; Ma, Y.; Ye, S.; Zhang, Q. Highly Efficient and Stable Narrow-Band Red Phosphor Cs2SiF6:Mn4+ for High-Power Warm White LED Applications. ACS Photonics 2017, 4, 2556–2565. [86]Wang, S.; Sun, Q.; Devakumar, B.; Liang, J.; Sun, L.; Huang, X. Novel Highly Efficient and Thermally Stable Ca2GdTaO6:Eu3+ Red-Emitting Phosphors with High Color Purity for UV/Blue-Excited WLEDs. J. Alloys Compd. 2019, 804, 93–99. [87]Kubicki, A. A.; Bojarski, P.; Grinberg, M.; Sadownik, M.; Kukliński, B. Time-Resolved Streak Camera System with Solid State Laser and Optical Parametric Generator in Different Spectroscopic Applications. Opt. Commun. 2006, 263, 275–280. [88]Krishnan, R.; Saitoh, H.; Terada, H.; Centonze, V.; Herman, B. Development of a Multiphoton Fluorescence Lifetime Imaging Microscopy System Using a Streak Camera. Rev. Sci. Instrum. 2003, 74, 2714–2721. [89]Onuma, T.; Fujioka, S.; Yamaguchi, T.; Itoh, Y.; Higashiwaki, M.; Sasaki, K.; Masui, T.; Honda, T. Polarized Raman Spectra in β-Ga2O3 Single Crystals. J. Cryst. Growth 2014, 401, 330–333. [90]Brik, M.; Camardello, S.; Srivastava, A.; Avram, N.; Suchocki, A. Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect. ECS J. Solid State Sci. Technol. 2015, 5, R3067. [91]Lin, C. C.; Tsai, Y. T.; Johnston, H. E.; Fang, M. H.; Yu, F.; Zhou, W.; Whitfield, P.; Li, Y.; Wang, J.; Liu, R. S. Enhanced Photoluminescence Emission and Thermal Stability from Introduced Cation Disorder in Phosphors. J. Am. Chem. Soc. 2017, 139, 11766–11770. [92]He, H.; Orlando, R.; Blanco, M. A.; Pandey, R.; Amzallag, E.; Baraille, I.; Rérat, M. First-Principles Study of the Structural, Electronic, and Optical Properties of Ga2O3 in Its Monoclinic and Hexagonal Phases. Phys. Rev. B 2006, 74, 195123. [93]Lipinska-Kalita, K.; Chen, B.; Kruger, M.; Ohki, Y.; Murowchick, J.; Gogol, E. High-Pressure X-Ray Diffraction Studies of the Nanostructured Transparent Vitroceramic Medium K2O−SiO2−Ga2O3. Phys. Rev. B 2003, 68, 035209. [94]Machon, D.; McMillan, P. F.; Xu, B.; Dong, J. High-Pressure Study of the Β-to-Α Transition in Ga2O3. Phys. Rev. B 2006, 73, 094125. [95]Rajendran, V.; Fang, M. H.; Huang, W. T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K. Chromium Ion Pair Luminescence: A Strategy in Broadband Near-Infrared Light-Emitting Diode Design. J. Am. Chem. Soc. 2021, 143, 19058–19066. [96]Ottonello-Briano, F.; Errando-Herranz, C.; Rödjegård, H.; Martin, H.; Sohlström, H.; Gylfason, K. B. Carbon Dioxide Absorption Spectroscopy with a Mid-Infrared Silicon Photonic Waveguide. Opt. Lett. 2020, 45, 109–112.
|