|
1.9. References 1V. H. Suzuki, I. Y. S. Lee, Y. S. and N. Maed, Int. J. Phys. Sci., 2008, 3, 42. 2X. X. He, J. Y. Chen, K. M. Wang, D. L. Qin and W. H. Tan, Talanta, 2007, 72, 1519. 3H. Shi, X. X. He, K. M. Wang, Y. Yuan, K. Deng, J. Y. Chen and W. H. Tan, Nanomed. Nanotechnol. Biol. Med., 2007, 3, 266. 4L. Wang, C. Y. Yang and W. H. Tan, Nano Lett., 2005, 5, 37. 5J. Lovric, H. S. Bazzi, Y. Cuie, G. R. A. Fortin, F. M. Winnik and D. Maysinger, J. Mol. Med., 2005, 83, 377. 6Shiohara, A. Hoshino, K. Hanaki, K. Suzuki and K. Yamamoto, Microbiol. Immunol., 2004, 48, 669. 7X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung and S. M, Nat. Biotechnol., 2004, 22, 969. 8K. T. Yong, Nanotechnology, 2009, 20, 109. 9G. Iyer, J. J. Li, F. Pinaud, J. M. Tsay, L. A. Bentolila, X. Michalet and S. Weiss, In Conf. on Colloidal Quantum Dots for Biomedical Applications, article 60960B. San Jose, CA: Spie-International Society for Optical Engineering, 2006. 10F. Auzel, Chem. Rev., 2004, 104, 139. 11J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Kramer, C. Reinhard and H.U. Gudel, Opt. Mater., 2005, 27, 111. 12F. Wang, W. Tan, Y. Zhang, X. Fan and M. Wang, Nanotechnology, 2006, 17, 21. 13K. J. Konig, J. Microsc., 2000, 200, 83. 14F. Wang, D. K. Chatterjee, Z. Q. Li, Y. Zhang, X. P. Fan and M. Q. Wang, Nanotechnology, 2006, 17, 5786. 15D. K. Chatterjee, A. J. Rufalhah and Y. Zhang, Biomaterials, 2008, 29, 937. 16Ungun, R. K. Prudhomme, S. J. Budijono, J. N. Shan, S. F. Lim, Y. G. Ju and R. Austin, Opt. Express, 2009, 17, 80. 17L.Y. Wang, R. X. Yan, Z. Y. Hao, L. Wang, J. H. Zeng, H. Bao, X. Wang, Q. Peng and Y. D. Li, Angew. Chem. Int. Ed., 2005, 44, 6054. 18S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim and L. Ye, Nanotechnology, 2009, 20, 101. 19K. Kuningas, H. Pakkila, T. Ukonaho, T. Rantanen, T. Lovgren and T. Soukka, Clin. Chem., 2007, 53, 145. 20F. V. Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala and H. J. Tanke, Nat. Biotechnol., 2001, 19, 273. 21L. Y. Wang and Y. D. Li, Chem. Commun., 2006, 25, 2557. 22F. Wang and X. Liu, Chem. Soc. Rev., 2009, 38, 976. 23Patra, C. S. Friend, R. Kapoor and P. N. Prasad, J. Phys. Chem. B. 2002, 106, 1909. 24X. Liang, X. Wang, J. Zhuang, Q. Peng, andY.D. Li, Inorg Chem., 2007, 46, 6050. 25X. Qin, T. Yokomori and Y. Ju, Appl. Phys. Lett., 2007, 90, 073104. 26R. Naccache, F. Vetrone, V. Mahalingam, L.A. Cuccia and J. A. Capobianco, Chem. Mater., 2009, 21, 717. 27V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini and J. A. Capobianco, Adv. Mater., 2009, 21, 4025. 28Huang and B. Hu, Spectrochimica Acta Part B, 2008, 63, 437. 29A.F.S. Habee, Anal. Biochem.,1966, 14, 328. 30L.F. Koao, H.C. Swart, R.I. Obed and F.B. Dejene, Journal of Luminescence, 2011, 131, 1249. 31S. Aryal, R. Bahadur, N. Bhattarai, C. K. Kim, and H. Y. Kim, Journal of Colloid and Interface Science, 2006, 299, 191. 32V. Blaaderen and A. Vrij, Langmuir, 1992, 8, 2921. 33S. Santra, H. Yang, D. Dutta, J. T. Stanley, P. H. Holloway, W. Tan, B. M. Moudgil, and R. A. Mericle, Chem. Commun., 2004, 25, 2810. 34S. Kawata, H.B. Sun, T. Tanaka and K. Takada, Nature, 2001, 412, 697. 35A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245, 843. 36Gao, R. R. Agayan, H. Xu, M. A. Philbert and R. Kopelman, Nano Lett., 2006, 6, 2383. 37W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb, Proc. Natl. Acad. Sci., 2003, 100, 7075. 38G. Yi and G. Chow, J. Mater. Chem., 2005, 15, 4460. 39J. C. Boyer, F. Vetrone, L. A. Cuccia and J. A. Capobianco, J. Am. Chem. Soc., 2006, 128, 7444. 40Wang, X. G. Liu. J Am Chem Soc., 2008, 130, 5642. 41X. Wang, J. Zhuang, Q. Peng, Y.D. Li J Am Chem Soc., 2005, 437, 121. 42X. Liang, X. Wang, J. Zhuang, Q. Peng, Y. D. Li. Adv. Funct. Mater, 2007,17, 2757 43Wang, X. G. Liu. J Am Chem Soc., 2008, 130, 5642 44X. Wang, J. Zhuang, Q. Peng, Y. D. Li, J Am Chem Soc., 2005, 437, 121. 45R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, P. N. Prasad, Adv. Funct. Mater., 2009, 19, 853. 46S. He, P. P. Markowicz, T.C. Lin, P. N. Prasad, Nature, 2002, 415, 767. 47Y. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Agren, P. N. Prasad, Nanoscale, 2011, 3, 2003. 48C. Boyer, M. P. Manseau, J. I. Murray, V. Veggel, Langmuir, 2010, 26, 1157. 49N. Bogdan, F. Vetrone, G. A. Ozin, J. A. Capobianco, Nano Lett., 2011, 11, 835. 50G. Y. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, P. N. Prasad, ACS Nano, 2012, 6, 2969. 51Y. L. Dai, D. M. Yang, P. A. Ma, X. J. Kang, X. Zhang, C. X. Li, Z.Y. Hou, Z. Y. Cheng, Y.J. Lin, Biomaterials, 2012, 33, 8704. 52G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, A. Budde, H. Mohwald, Colloids Surf. A, 1998, 137, 253. 53H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, Y. Zhang, Small, 2009, 5, 2285. 54Y. F. Yang, Y. Q. Qu, J. W. Zhao, Q. H. Zeng, Y. Y. Ran, Q. B. Zhang, X. G. Kong, H. Zhang, Eur. J. Inorg. Chem., 2010, 5195. 55X. J. Kang, Z.Y. Cheng, C. X. Li, D. M. Yang, M. M. Shang, P. A. Ma, G. G. Li, N. A. Liu, J. J. Lin, Phys. Chem. C., 2011, 115, 15801. 56N. J. J. Johnson, N. M. Sangeetha, J. C. Boyer, F. C. V. Veggel, Nanoscale, 2010, 2, 771. 57G.C. Jiang, J. Pichaandi, N.J.J. Johnson, R.D. Burke, F.C.V. Veggel, Langmuir, 2012, 28, 3239. 58S. L. Gai, P. P. Yang, C. X. Li, W. X Wang, Dai, Y. L. Niu, Adv. Funct. Mater. 2010, 20, 1166. 59T. Ukonaho, T. Rantanen, L. Jamsen, K. Kuningas, H. Pakkila, T. Lovgren, T. Soukka, Anal. Chim. Acta, 2007, 596, 106. 60X. J. Zhu, J. Zhou, M. Chen, M. Shi, W. Feng, F.Y. Li, Biomaterials, 2012, 33, 4618. 61H. Xu, L. Cheng, C. Wang, X. X. Ma, Y. G. Li, Z. Liu, Biomaterials, 2011, 32, 9364. 62Z. Y Hou, C. X. Li, P. A. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, J. Lin, Adv. Funct. Mater., 2011, 21, 2356. 63X. Zhang, P. Yang, Y. Dai, X. Li, Z. Cheng, Z. Hou, X. Kang, C. Li, J. Lin, Adv. Funct. Mater., 2013, 23, 4067. 64Z.G. Chen, H. L. Chen, H. Hu, M. X. Yu, F. Y. Li, Q. Zhang, Z. G. Zhou, T. Yi, C. H. Huang, J. Am. Chem. Soc., 2008, 130, 3023. 65M. Kumar, Y. Guo, P. Zhang, Biosens. Bioelectron., 2009, 24, 1522. 66H.J. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R.S. Niedbala, H.J. Tanke, Anal. Biochem., 1999, 267, 30. 67Kuningas, T. Rantanen, T. Ukonaho, T. Lovgren, T. Soukka, Anal. Chem., 2005, 77, 7348. 68Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, H. Xing, Q. Ren, W. Fan, W. Zhao, K. Hua, Y. Shi, J. Am. Chem. Soc., 2013, 135, 13041. 69K. Chatterjee, Z. Yong, Nanomedicine, 2008, 3, 73. 70Wang, L. A. Cheng, Z. A. Liu, Biomaterials, 2011, 32, 1110. 71M. Wang, C. C. Mi, W. Wang, C. H. Liu, Y. F. Wu, Z. R. Xu, C. B. Mao, S. K. Xu, ACS Nano, 2009, 3, 1580. 72M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu.; F. Li, C. B. Mao, S. K. Xu, J. Phys. Chem. C, 2009, 113, 19021. 73Kuningas, T. Rantanen, T. Ukonaho, T. Lovgren, T. Soukka, Anal. Chem. 2005, 77, 7348. 74B.A. Dong, S. Xu, J.A. Sun, S. Bi, S.; Li, D.; Bai, X.; Wang, Y.; Wang, L. P.; Song, H. W. J. Mater. Chem. 2011, 21, 6193. 75X.J. Kang, Z.Y. Cheng, C.X. Li, D.M. Yang, M.M. Shang, P.A. Ma, G.G. Li, N.A. Liu, J.J. Lin, Phys. Chem. C, 2011, 115, 15801. 76S. L. Gai, P. P. Yang, C. X. Li, W. X Wang, Dai, Y. L. Niu, Adv. Funct. Mater. 2010, 20, 1166. 77G. Zhang, Y.L. Liu, Q.H. Yuan, Zong, C. H.; Liu, J. H.; Lu, L. H. Nanoscale 2011, 3, 4365 78Y.L. Liu, K.L. Ai, J.H. Liu, Q.H. Yuan, Y.Y. He, L.H. Lu, Angew. Chem., Int. Ed. 2012, 51, 1437. 79Y.L. Liu, K.L. Ai, J.H. Liu, Q.H. Yuan, Y.Y. He, L.H. Lu, Angew. Chem., Int. Ed. 2012, 51, 1437. 80H. Xu, L. Cheng, C. Wang, X.X. Ma, Y. Li, Z. Liu, Biomaterials 2011, 32, 9364. 81Z. Hou, C.X. Li, P.A. Ma, G.G. Li, Z.Y. Cheng, C. Peng, D.M. Yang, J. Lin, Adv. Funct. Mater. 2011, 21, 2356. 82Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, J. Lin, J. Am. Chem. Soc. 2013, 135, 18920. 83Y. Yang, B. Velmurugan, X. Liu, B. Xing, Small, 2013, 9, 2937. 84J.A. Liu, W.B. Bu, L.M. Pan, J.L. Shi, Angew. Chem., Int. Ed., 2013, 52, 4375. 85J. Shen, G. Chen, T.Y. Ohulchanskyy, S.J. Kesseli, S. J.; Buchholz, Z. Li, P.N. Prasad, G. Han, Small, 2013, 9, 3213. 86X. Zhang, P. Yang, Y. Dai, P. Ma, X. Li, Z. Cheng, Z. Hou, X. Kang, C. Li, J. Lin, Adv. Funct. Mater., 2013, 23, 4067. 87Z.H. Xu, P.A. Ma, C.X. Li, Z.Y. Hou, X.F. Zhai, S. S. Huang, J. Lin, Biomaterials, 2011, 32, 4161. 88Dong, D. An, M. Gong, Y. Lu, H. L. Gao, Y.J. Xu, S.H. Yu, Small, 2013, 9, 323. 2.6. References 1H. Zhang, ACS Nano, 2015, 9, 9451. 2B. Silbernagel, Acta Crystallogr, Sect. B, 1978, 34, 3498. 3A. Balchin, Springer, 1976, 2, 642. 4K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab and K. Kim, Nature, 2012, 490, 192. 5X. Li, M. Rui, J. Song, Z. Shen and H. Zeng, Adv. Funct. Mater., 2015, 25, 4929. 6C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 2008, 321, 385. 7G. Eda and M. Chhowalla, Adv. Mater., 2010, 22, 2392. 8Y. Liu, X. Dong and P. Chen, Chem. Soc. Rev., 2012, 41, 2283. 9Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay and Y. Lin, J. Mater. Chem., 2010, 20, 7491. 10S. Roy, and A. Jaiswal, Rep. Adv. Phys. Sci. 2017, 1, 1750011. 11Z. Khan, S. Park, S. M. Hwang, J. Yang, Y. Lee, H. K. Song, Y. Kim and H. Ko, NPG Asia Mater., 2016, 8, 294. 12J. Hao, G. Song, T. Liu, X. Yi, K. Yang, L. Cheng and Z. Liu, Advanced Science, 2017, 4, 2198. 13X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res., 2008, 1, 203. 14C. Zhu, Z. Zeng, H. Li, F. Li, C.H. Fan and H. Zhang, J. Am. Chem. Soc., 2013, 135, 5998. 15Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan, H. Li, B. Chen, J. Yang, J. Chen, Y. Huang, L. Wang and H. Zhang, Adv. Mater, 2015, 27, 935. 16N. Dhenadhayalam, M. I. Sriram and K. C. Lin, Sensors and Actuators B, 2018, 258, 929. 17 S. Wang, Y. Zhang, Y. Ning and G. J. Zhang, Analyst, 2015, 140, 434. 18 J. Ge, E. C. Ou, R. Q. Yu and X. Chu, J. Mater. Chem. B, 2014, 2, 625. 19 X. Yin, J. Cai, H. Feng, Z. Wu, J. Zou and Q. Cai, New J. Chem., 2015, 39, 1892. 20 N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li and D. Wang, Adv. Mater., 2017, 29, 1606755. 21 S. Banerjee, Y. J. Hsieh, C. R. Liu, N. H. Yeh, Y. S. Lai, H. H. Hung, Y. T. Chen and C.Y. Pan, Small, 2016, 12, 5524. 22B. R. Li, Y. J. Hsieh, Y. X. Chen, Y. T. Chung, C. Y. Pan, and Y. T. Chen, J. Am. Chem. Soc., 2013, 135, 16034. 23K. I. Chen, B. R. Li, and Y. T. Chen, Nano Today, 2011, 6, 131. 24 X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu and Y. Lin, Biosens. Bioelectron., 2009, 25, 901. 25C. Shan, H. Yang, J. Song, D. Han, A. Ivaska and L. Niu, Anal. Chem., 2009, 81, 2378. 26 S. Wu, Z. Zeng, Q. He, Z. Wang, S.J. Wang, Y. Du, Z. Yin, X. Sun, W. Chen and H. Zhang, Small, 2012, 8, 2264. 27T. Lin, L. Zhong, L. Guo, F. Fu and G. Chen, Nanoscale, 2014, 6, 11856. 28 T. Lin, L. Zhong, Z. Song, L. Guo, H. Wu, Q. Guo, Y. Chen, F. Fu and G. Chen, Biosens. Bioelectron., 2014, 62, 302. 29T. Lin, L. Zhong, J. Wang, L. Guo, H. Wu, Q. Guo, F. Fu and G. Chen, Biosens. Bioelectron., 2014, 59, 89. 30J. Chen, J. Ge, L. Zhang, Z. Li, J. Li, Y. Sun and L. Qu, Microchim. Acta, 2016, 183, 1847. 31Y. Tao, Y. Lin, J. Ren and X. Qu, Biomaterials, 2013, 34, 4810. 32 J. Liu, L. Meng, Z. Fei, P. J. Dyson, X. Jing and X. Liu, Biosens. Bioelectron., 2017, 90, 69. 33P. Subramanian, A. Lesniewski, I. Kaminska, A. Vlandas, A. Vasilescu, J. Niedziolka-Jonsson, E. Pichonat, H. Happy, R. Boukherroub and S. Szunerits, Biosens. Bioelectron., 2013, 50, 239. 34N. F. Chiu, S. Y. Fan, C. D. Yang and T. Y. Huang, Biosens. Bioelectron., 2017, 89, 370. 35J. Zhang, Y. Sun, B. Xu, H. Zhang, Y. Gao, H. Zhang and D. Song, Biosens. Bioelectron., 2013, 45, 230. 36W. Nie, Q. Wang, X. Yang, H. Zhang, Z. Li, L. Gao, Y. Zheng, X. Liu and K. Wang, Anal. Chim. Acta, 2023, 2017, 55. 3.8. References 1M. Birkholz, Thin film Analysis by X-ray Scattering, WILEY-VCH Verlag GmbH & Co. 2006. 2D. Shindo and H. Kenji, High-Resolution Electron Microscopy for Material science, Springer, 1998. 3J. C. Russ, Fundamentals of Energy Dispersive X-Ray Analysis, Butterworths, 1984. 4V. Delgado, F. G. Caballeroi, R. J. Hunter, L. K. Koopal, and J. Lyklema, Pure Appl. Chem., 2005, 77, 1753. 5Schirmeisen, B. Anczykowski and H. Fuchs, Dynamic Modes of Atomic Force Microscopy, Springer Berlin Heildelberg, 2008. 6A.D. Elliott, Confocal microscopy: Principles and modern practices. Curr Protoc Cytom, 2020, 92. 7https://en.wikipedia.org/wiki/Fluorescence_spectroscopy. 4.3. References 1N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, Y. Zhang, Nat. Med. 2012, 18, 1580. 2N. Bogdan, F. Vetrone, G. A. Ozin and J. A. Capobianco, Nano Lett., 2011, 11, 835. 3Z. G. Chen, H. L. Chen, H. Hu, M. X. Yu, F. Y. Li, Q. Zhang, Z. G. Zhou, T. Yi and C. H. Huang, J. Am. Chem. Soc., 2008, 130, 3023. 4G. Y. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Agren and P. N. Prasad, Nanoscale, 2011, 3, 2003. 5J. C. Boyer, M. P. Manseau, J. I. Murray and V. Veggel, Langmuir, 2010, 26, 1157. 6Z. G. Chen, H. L. Chen, H. Hu, M. Yu, F. Y. Li, Q. Zhang, Z. G. Zhou, T. Yi, C. H. Huang, J. Am. Chem. Soc., 2008, 130, 3023. 7H. Hu, M. X. Yu, F. Y. Li, Z. G. Chen, X. Gao, L. Q. Xiong and C. H. Huang, Chem. Mater., 2008, 20, 7003. 8H. P. Zhou, C. H. Xu, W. Sun and C. H. Yan, Adv. Funct. Mater., 2009, 19, 3892. 9Y. L. Dai, D. M. Yang, P. A. Ma, X. J. Kang, X. Zhang, C. X. Li, Z.Y. Hou, Z. Y. Cheng and J. Lin, Biomaterials, 2012, 33, 8704. 10R. S. Niedbala, H. Feindt, K. Kardos, K. T. Burton, J. Bielska, S. Li, D. Milunic, P. Bourdelle and R. Vallejo, Anal. Biochem. 2001, 293, 22. 11Y. L. Liu, K. L. Ai and L. H. Lu, Acc. Chem. Res., 2012, 45, 1817. 12G. Zhang, Y. L. Liu, Q. H. Yuan, C. H. Zong, J. H. Liu and L. H. Lu, Nanoscale, 2011, 3, 4365. 13L. Dong, D. An, M. Gong, Y. Lu, H. L. Gao, Y. J. Xu and S. H. Yu, Small, 2013, 9, 3235. 14B. A. Dong, S. Xu, J. A. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang and H. W. J. Song, J. Mater. Chem., 2011, 21, 6193. 15A. Bansal, H. Liu, M. K. Jayakumar, E. S. Anderson and Y. Zhang, Small, 2016, 12, 1732. 16X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang and G. Han, ACS Nano, 2016, 10, 1060. 17S. Hososhima, H. Yuasa, T. Ishizuka, M. R. Hoque, T. Yamashita, A. Yamanaka, E. Sugano, H. Tomita and H. Yawo, Sci. Rep., 2015, 5, 16533 18S. Shah, J. Liu, J. N. Pasquale, J. Lai, H. Mcgowan, Z. P. Pang and K. B. Lee, Nanoscale, 2015, 7, 16571. 19L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian and A. V. Zvyagin, ACS Appl. Mater. Interfaces, 2016, 8, 11945. 20C. Wang, L. Cheng and Z. Liu, Biomaterials, 2011, 32, 1110. 21Y. Yang, F. Liu, X. Liu and B. Xing, Nanoscale, 2013, 5, 231. 22L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. B. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han and Y. Zhou, Elife, 2015, 4, 10024. 23A. D. Friedman, S. E. Claypool and R. Liu, Curr. Pharm. Des., 2013, 19, 6315. 24K. Huang, Q. Q. Dou and X. J. Loh, RSC Adv., 2016, 6, 60896. 25K. Cheng, S. Peng, C. Xu and S. Sun, J. Am. Chem. Soc., 2009, 131, 10637. 26J. Xie, K. Chen, H. Y. Lee, C. Xu, A. R. Hsu, S. Peng, X. Chen and S. Sun, J. Am. Chem. Soc., 2008, 130, 7542. 27S. Wu and H. J. Butt, Adv. Mater., 2016, 28, 1208. 28Z. Chen, W. Sun, H. J. Butt and S. Wu, Chem. Eur. J., 2015, 21, 9165. 29Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan, H. Li, B. Chen, J. Yang, J. Chen, Y. Huang, L. Wang, and H. Zhang, Adv. Mater., 2015, 27, 935. 30 N. Dhenadhayalana, M. I. Sriram and K. C. Lin, Sensors and Actuators B, 2018, 258, 929. 31S. Wang, Y. Zhang, Y. Ning and G. J. Zhang, Analyst, 2015, 140, 434. 32 J. Ge, E. C. Ou, R. Q. Yu and X. Chu, J. Mater. Chem. B, 2014, 2, 625. 33X. Yin, J. Cai, H. Feng, Z. Wu, J. Zou and Q. Cai, New J. Chem., 2015, 39, 1892. 34W. Wen, Y. Song, X. Yan, C. Zhu, D. Du, S. Wang, A. M. Asiri and Y. Lin, Materials Today, 2018, 21, 164. 35N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li and D. Wang, Adv. Mater., 2017, 29, 1606755. 36V. Yadav, S. Roy, P. Singh, Z. Khan and A. Jaiswal, Small, 2018, 15, 1803706. 37A. Bacaloni, C. Cavaliere, F. Cucci, P. Foglia, R. Samperi and A. Laganà, Journal of Chromatography A, 2008, 1179, 182. 38N.S. Shuib, A. Makahleh, S. M. Salhimi and B. Saad, Journal of chromatography A, 2017, 1510, 51. 39 A. Pietri, P. Fortunati, A. Mulazzi and T. Bertuzzi, Food Chem., 2016, 192, 235. 40 A. Vaz, A. C. C. Silva, P. Rodrigues and A. Venâncio, Microorganisms, 2020, 8, 246. 41S. Tsuboi, T. Nakagawa, M. Tornita, T. Seo, H. Ono, K. Kawamura and N. Iwamura, Cancer Research, 1984, 44, 1231. 42H. Ma, J. Sun, Y. Zhang, C. Bian, S. Xia and T. Zhen, Biosens. Bioelectron. 2016, 80, 222. 43 H. Ma, J. Sun, Y. Zhang and S. Xia, Biochem. Eng. J., 2016, 115, 38. 44 X. Zhou, S. Wu, H. Liu, X. Wu and Q. Zhang, Sens. Actuators B: Chem., 2016, 226 24. 45G. Selvolini, M. Lettieri, L. Tassoni, S. Gastaldello, M. Grillo, C. Maran and G. Marrazza, Talanta, 2019, 203, 49. 46X. Tang, P. Li, Q. Zhang, Z. Zhang, W. Zhang and J. Jiang, Anal. Chem., 2017, 89, 11520. 47S.E. McNamee, F. Bravin, G. Rosar, C.T. Elliott, K. Campbell, Talanta, 2017, 164, 368. 48S. J. Wu, N. Duan, C. Q. Zhu, X. Y. Ma, M. Wang and Z. P. Wang, Biosens. Bioelectron, 2011, 30, 35. 49H. Vaisocherová E. Brynda and J. Homola, Anal Bioanal Chem., 2015, 14, 3927. 50J. Y. Lichtenberg, Y. Ling and S. Kim, Sensors, 2019, 19, 2488. 5.5. References 1K. Deisseroth, Sci. Am., 2010, 303, 48. 2R. Berry, M. Getzin, L. Gjesteby and G. Wang, Photonics, 2015, 2, 23. 3O. A. Sineshchekov, K. H. Jung and J. L. Spudich, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 8689. 4J. Y. Lin, M. Z. Lin, P. Steinbach and R. Y. Tsien, Biophys. J., 2009, 96, 1803. 5G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann and E. Bamberg, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13940. 6L. Fenno, O. Yizhar and K. Deisseroth, Annu. Rev. Neurosci., 2011, 34, 389. 7K. M. Tye, R. Prakash, S. Y. Kim, L. E. Fenno, L. Grosenick, H. Zarabi, K. R. Thompson, V. Gradinaru, C. Ramakrishnan and K. Deisseroth, Nature, 2011, 471, 358. 8A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth and A. C. Kreitzer, Nature, 2010, 466, 622. 9V. Gradinaru, M. Mogri, K. R. J. Thompson, M. Henderson and K. Deisseroth, Science, 2009, 324, 354. 10W. R. Stauffer, A. Lak, A. Yang, M. Borel, O. Paulsen, E. S. Boyden and W. Schultz, Cell, 2016, 166, 1564. 11S. Konermann, M. D. Brigham, A. Trevino, P. D. Hsu, M. Heidenreich, L. Cong, R. J. Platt, D. A. Scott, G. M. Church and F. Zhang, Nature, 2013, 500, 472. 12R. A. Jalil and Y. Zhang, Biomaterials, 2008, 29, 4122. 13G. Chen, H. Qiu, F. Rongwei, S. Hao, S. Tan, C. Yang and G. Han, J. Mater. Chem., 2012, 22, 20190. 14G. Chen, H. Qiu, P. N. Prasad and X. Chen, Chem. Rev., 2014, 114, 5161. 15Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi and C. Huang, J. Am. Chem. Soc., 2008, 130, 3023. 16F. Wang, D. Banerjee, Y. Liu, X. Chen and X. Liu, Analyst, 2010, 135, 1839. 17X. Ai, C. J. H. Ho, J. Aw, A. B. E. Attia, J. Mu, Y. Wang, Y. Wang, X. Liu, H. Chen, M. Gao, X. Chen, E. K. L. Yeow, G. Liu, M. Olivo and B. Xing, Nat. Commun., 2016, 7, 10432. 18N. Bogdan, E. M. Rodríguez, F. S. Rodríguez, M. C. I. Cruz, A. Juarranz, D. Jaque, J. G. Solé and J. A. Capobianco, Nanoscale, 2012, 4, 3647. 19F. Vetrone, R. Naccache, A. J. Fuente, F. S. Rodríguez, A. B. Castro, E. M. Rodríguez, D. Jaque, J. G. Solé and J. A. Capobianco, Nanoscale, 2010, 2, 495. 20J. Gao, H. Gu and B. Xu, Acc. Chem. Res., 2009, 42, 1097. 21C. H. Luo, C. T. Huang, C. H. Su and C. S. Yeh, Nano Lett., 2016, 16, 3493. 22H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang and C. H. Yan, Chem. Rev., 2015, 115, 10725. 23B. Ungun, R. K. Prudhomme, S. J. Budijono, J. Shan, S. F. Lim, Y. Ju and R. Austin, Opt. Express, 2009, 17, 80. 24Y. Yang, B. Velmurugan, X. Liu and B. Xing, Small, 2013, 9, 2937. 25M. M. Dcona, Q. Yu, J. A. Capobianco and M. C. T. Hartman, Chem. Commun., 2015, 51, 8477. 26S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim and L. Ye, Nanotechnology, 2009, 20, 155101. 27F. V. D. Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala and H. J. Tanke, Nat. Biotechnol., 2001, 19, 273. 28L. Wang and Y. Li, Chem. Commun., 2006, 2557. 29K. Kuningas, T. Ukonaho, H. Pakkila, T. Rantanen, J. Rosenberg, T. Lovgren and T. Soukka, Anal. Chem., 2006, 78, 4690. 30T. Rantanen, H. Pakkila, L. Jamsen, K. Kuningas, T. Ukonaho, T. Lovgren and T. Soukka, Anal. Chem., 2007, 79, 6312. 31M. Wang, W. Hou, C. C. Mi, W. X. Wang, Z. R. Xu, H. H. Teng, C. B. Mao and S. K. Xu, Anal. Chem., 2009, 81, 8783. 32L. Mattsson, K. D. Wegner, N. Hildebrandt and T. Soukka, RSC Adv., 2015, 5, 13270. 33Y. Min, J. Li, F. Liu, E. K. L. Yeow and B. Xing, Angew. Chem., Int. Ed., 2014, 53, 1012. 34M. K. G. Jayakumar, N. M. Idris and Y. Zhang, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 8483. 35H. D. Gao, P. Thanasekaran, C. W. Chiang, J. L. Hong, Y. C. Liu, Y. H. Chang and H. Lee, ACS Nano, 2015, 9, 7041. 36W. Li, J. Wang, J. Ren and X. Qu, J. Am. Chem. Soc., 2014, 136, 2248. 37S. Shah, J. Liu, J. N. Pasquale, J. Lai, H. Mcgowan, Z. P. Pang and K. B. Lee, Nanoscale, 2015, 7, 16571. 38S. Hososhima, H. Yuasa, T. Ishizuka, M. R. Hoque, T. Yamashita, A. Yamanaka, E. Sugano, H. Tomita and H. Yawo, Sci. Rep., 2015, 5, 16533. 39X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang and G. Han, ACS Nano, 2016, 10, 1060. 40A. Bansal, H. Liu, M. K. Jayakumar, E. S. Anderson and Y. Zhang, Small, 2016, 12, 1732. 41L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian and A. V. Zvyagin, ACS Appl. Mater. Interfaces, 2016, 8, 11945. 42C. Wang, L. Cheng and Z. Liu, Biomaterials, 2011, 32, 1110. 43Y. Yang, F. Liu, X. Liu and B. Xing, Nanoscale, 2013, 5, 231. 44L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. B. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han and Y. Zhou, eLife, 2015, 4, 10024. 45A. D. Friedman, S. E. Claypool and R. Liu, Curr. Pharm. Des., 2013, 19, 6315. 46K. Huang, Q. Q. Dou and X. J. Loh, RSC Adv., 2016, 6, 60896. 47K. Cheng, S. Peng, C. Xu and S. Sun, J. Am. Chem. Soc., 2009, 131, 10637. 48J. Xie, K. Chen, H.-Y. Lee, C. Xu, A. R. Hsu, S. Peng, X. Chen and S. Sun, J. Am. Chem. Soc., 2008, 130, 7542. 49S. Wu and H. J. Butt, Adv. Mater., 2016, 28, 1208. 50Z. Chen, W. Sun, H. J. Butt and S. Wu, Chem. – Eur. J., 2015, 21, 9165. 51J. Y. Lin, Exp. Physiol., 2011, 96, 19. 52K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, H. Hyodo and H. Kishimoto, Eur. J. Inorg. Chem., 2010, 2010, 2673. 53T. Zako, H. Nagata, N. Terada, M. Sakono, K. Soga and M. Maeda, J. Mater. Sci., 2008, 43, 5325. 54W. C. Man, M. Miyazaki, K. Chu and J. M. Ntambi, J. Biol. Chem., 2006, 281, 1251. 55X. Ai, L. Lyu, Y. Zhang, Y. Zhang, Y. Tang, J. Mu, F. Liu, Y. Zhou, Z. Zuo, G. Liu and B. Xing, Angew. Chem., Int. Ed., 2017, 56, 3031. 56F. Zhang, L. P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk and K. Deisseroth, Nature, 2007, 446, 633. 57M. Y. Chou, C. Y. Lee, H. H. Liou and C. Y. Pan, Neuropharmacology, 2014, 83, 54. 58A. C. Chou, Y. T. Ju and C. Y. Pan, PLoS One, 2015, 10, 0138856. 6.5. References 1H. Gourama and L.B. Bullerman, J. Food Protect, 1995, 58, 1395. 2T. Tseng, Toxin Reviews, 1994, 13, 229. 3A. Sharma, G. Catanante, A. Hayat, G. Istamboulie, I. B. Rejeb, S. Bhand and J. L. Marty, Talanta, 2016, 158, 35. 4M. J. O. Riordan and M. G. Wilkinson, Food Chem. 2008, 107, 1429. 5L. Min, J. F. Gremmels, D. Li, X. Tong, J. Tang, X. Nan, Z. Yu, W. Chen and G. Wang, Animal Nutrition, 2021, 7, 42. 6A. M. Gurban, P. Epure, F. Oancea and M. Doni, Sensors, 2017, 17, 1. 7M. H. Iha, C. B. Barbosa, I. A. Okada and M. W. Trucksess, Food Control, 2013, 29, 1. 8N. W. Turner, S. Subrahmanyam, S. A. Piletsky, Analytica Chimica Acta, 2009, 632, 168. 9T. E. Massey, R. K. Stewart, J. M. Daniels, L. Liu, Proceedings of the Society for Experimental Biology and Medicine, 1995, 208, 213. 10Anttila, R. V. Bhat, J. A. Bond, S. J. Borghoff, F. X. Bosch, G. P. Carlson, M. Castegnaro, G. Cruzan, W. C. A. Gelderblom, U. Hass, IARC Monogr. Eval. Carcinog. Risks Hum., 2002, 82, 169. 11S. Hamid, I. G. Tesfamariam, Y. Zhang, Z. G. Zhang, Oncol. Lett., 2013, 5, 1087. 12International Agency for Research on Cancer, Monograph on the Evaluation of Carcinogenic Risk to Humans, World Health Organization, 2002, 171. 13European commission commission Regulation (EC) (No. 1881/2006) maximum levels for certain contaminants in foodstuffs, 2006, 5. 14A. Bacaloni, C. Cavaliere, F. Cucci, P. Foglia, R. Samperi, A. Laganà, Journal of Chromatography A, 2008, 1179, 182. 15N. S. Shuib, A. Makahleh, S. M. Salhimi and B. Saad, Journal of chromatography A, 2017, 1510, 51. 16A. Pietri, P. Fortunati, A. Mulazzi and T. Bertuzzi, Food Chem., 2016, 192, 235. 17A. Vaz, A. C. C. Silva, P. Rodrigues and A. Venâncio, Microorganisms, 2020, 8, 246. 18S. Tsuboi, T. Nakagawa, M. Tornita, T. Seo, H. Ono, K. Kawamura and N. Iwamura, Cancer Research, 1984, 44, 1231. 19H. Ma, J. Sun, Y. Zhang, C. Bian, S. Xia and T. Zhen, Biosens. Bioelectron., 2016, 80, 222. 20H. Ma, J. Sun, Y. Zhang and S. Xia, Biochem. Eng. J.,2016, 115, 38. 21X. Zhou, S. Wu, H. Liu, X. Wu and Q. Zhang, Sens. Actuators B: Chem., 2016, 226, 24. 22G. Selvolini, M. Lettieri, L. Tassoni, S. Gastaldello, M. Grillo, C. Maran and G. Marrazza, Talanta, 2019, 203, 49. 23X. Tang, P. Li, Q. Zhang, Z. Zhang, W. Zhang and J. Jiang, Anal. Chem. 2017, 89, 11520. 24S. E. McNamee, F. Bravin, G. Rosar, C. T. Elliott and K. Campbell, Talanta, 2017, 164, 368. 25S. J. Wu, N. Duan, C. Q. Zhu, X. Y. Ma, M. Wang and Z. P. Wang, Biosens. Bioelectron., 2011, 30, 35. 26T. Liu, C. Wang, X. Gu, H. Gong, L. Chen, X. Shi, L. Feng, B. Sun and Z. Liu, Adv. Mater., 2014, 26, 3433. 27W. J. Hardy, C. W. Chen, A. Marcinkova, H. Ji, J. Sinova, D. Natelson and E. Morosan, Physical Review B, 2015, 91, 054426. 28Y. Q. Miao, J. J. Guo, Z. Y. Luo, M. Z. Zhong, B. Li, X. G. Wang, Y. Z. Nie, Q. L. Xia, G. H. Guo, Frontiers in Physics, 2022, 10, 402. 29C. M. Kim, C. S. Kim, S. B. Kim and E. J. Hahn, J. Korean Phys. Soc., 2012, 60, 79. 30S. Debnath and P. Mahadevan, J. Electron Spectros. Relat. P, 2016, 208, 74. 31J. H Wijngaard, C. Haast and M. A. C. Devillers, J. Phys.: Condens. Matter, 1991, 3, 6913. 32C. Tan, P. Yu, Y. Hu, J. Chen, Y. Huang, Y. Cai, Z. Luo, B. Li, Q. Lu, L. Wang, Z. Liu and H. Zhang. J. Am. Chem. Soc., 2015, 137, 10430. 33R. M. Kong, L. Ding, Z. Wang, J. You and F. Qu, Anal Bioanal Chem., 2015, 407, 369. 34S. Wu, N. Duan, X. Ma., Y. Xia, H. Wang, Z. Wang and Q. Zhang, Anal. Chem., 2012, 84, 6263. 35S. K. Setlem, B. Mondal and S. Ramlal, Journal of Microbiological Methods, 2022, 193, 106414. 36C. Zhu, Z. Zeng, H. Li, F. Li, C.H. Fan and H. Zhang, J. Am. Chem. Soc., 2013, 135, 5998. 37Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan, H. Li, B. Chen, J. Yang, J. Chen, Y. Huang, L. Wang and H. Zhang, Adv. Mater., 2015, 27, 935. 38N. Dhenadhayalan, K. Yadav, M. I. Sriram, H. L. Lee and K. C. Lin, Nanoscale, 2017, 9, 12087. 39S. Wang, Y. Zhang, Y. Ning and G. J. Zhang, Analyst, 2015, 140, 434. 40J. Ge, E.C. Ou, R.Q. Yu and X. Chu, J. Mater. Chem. B, 2014, 2, 625. 41X. Yin, J. Cai, H. Feng, Z. Wu, J. Zou and Q. Cai, New J. Chem., 2015, 39, 1892. 42Y. Jia, F. Wu, P. Liu, G. Zhou, B. Yu, X. Lou and F. Xia., Talanta, 2019, 198, 71. 43R. D’Agata, N. Bellassai, V. Jungbluth and G. Spoto, Polymers, 2021, 13, 1929. 44H. Vaisocherová E. Brynda and J. Homola, Anal Bioanal Chem., 2015, 14, 3927. 45J. Y. Lichtenberg, Y. Ling and S. Kim, Sensors, 2019, 19, 2488. 46 E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama and G. M. Whitesides, Langmuir, 2001,17, 5605. 47M. Cerruti, S. Fissolo, C. Carraro, C. Ricciardi, A. Majumdar and R. Maboudian, Langmuir 2008, 24, 10646. 48K. Yadav, A. C. Chou, R. K. Ulaganathan, H. D. Gao, H. M. Lee, C. Y. Pan and Y. T. Chen, Nanoscale, 2017, 9, 9457. 49W. Wen, Y. Song, X. Yan, C. Zhu, D. Du, S. Wang, A. M. Asiri and Y. Lin, Materials Today, 2018, 21, 164. 50 V. Yadav, S. Roy, P. Singh, Z. Khan and A. Jaiswal, Small, 2018, 15, 1803706. 51N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li and D. Wang, Adv. Mater., 2017, 29, 1606755. 52F. E. J. Ellis, Journal of Nutritional & Environmental Medicine, 2007, 16, 52. 53P. C. Turner, Scientifica, 2013, 2013, 152879. 54Y. H. Leong, A. A. Latiff, N. I. Ahmad and A. Rosma, Mycotoxin Res., 2012, 28, 79. 55A. A. Ghazali, A. Abdulmughni, A. K. Muhammed, A. Mansoob, M. I. M. Ibrahim, A. A. Nehmi, A. A. Bareda, A. M. Alhadrami, S. O. Sherif and M. A. A. Wahhab, World Journal of Medical Sciences, 2014, 4, 570. 56H. C. Wu, R. Santella, Hepat Mon., 2012, 12, 7238. 57A. V. Jager, F. G. Tonin, G. Z. Baptista, P. C. M. C. Souto, C. A. F. Oliveira, Int. J. Hyg. Environ. Health, 2016, 219, 294. 58A. C. Manetta, Aflatoxins: Their Measure and Analysis, Aflatoxins-Detection, Measurement and Control, 2011, 93 59H. E. Indyk, J. E. Wood, B. D. Gill, International Dairy Journal, 2021, 121, 105119. 60J. Zhang, Y. K. Xia, M. Chen, D. Z. Wu, S. X. Cai, M. M. Liu, W. H. He and J. H. Chen, Sens. Actuators B, 2016, 235, 79. 61 M. W. Xiao, X. L. Bai, Y. M. Liu, L. Yang and L. X. Liao, J. Chromatogr A., 2018, 1569, 222. 62G. Istamboulié, N. Paniel, L. Zara, L. R. Granados, L. Barthelmebs and T. Noguer, Talanta, 2016, 146, 464. 63K.Y. Goud, A. Hayat, G. Catanante, M. Satyanarayana, K.V. Gobi, J. L. Marty, Electrochim. Acta, 2017, 244, 96. 64C. Wang, J. Qian, K. An, C. Ren, X. Lu, N. Hao and K. Wang, Biosens. Bioelectron., 2018, 108, 69. 65X. Tang, P. Li, Q. Zhang, Z. Zhang, W. Zhang and J. Jiang, Anal. Chem., 2017, 89, 11520. 66Y. Shao, H. Duan, L. Guo, Y. Leng, W. Lai and Y. Xiong, Analytica Chimica Acta, 2018, 1025, 163.
|