跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:甘湘恩
研究生(外文):Kanchan Yadav
論文名稱:用於活細胞光遺傳學的上轉換奈米粒子與二維奈米材料在生物感測之應用
論文名稱(外文):Upconversion Nanoparticles for Optogenetics in Living Cells and Two-Dimensional Nanomaterials for Biosensing Application
指導教授:雷 曼梁文傑梁文傑引用關係
指導教授(外文):Raman SankarMan-Kit Leung
口試委員:潘建源朱忠瀚張嘉升
口試委員(外文):Chien-Yuan PanChung-Han ChuChia-Seng Chang
口試日期:2023-05-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:145
中文關鍵詞:光遺傳學光敏感通道蛋白上轉換奈米粒子生物感測器黃麴毒素核酸適體二維奈米片聚乙二醇
外文關鍵詞:Optogeneticschannelrhodopsinupconverting nanoparticles (UCNPs)BiosensorAflatoxinAptamer2D NanosheetsPolyethylene-glycol
DOI:10.6342/NTU202300861
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩個部分,第一部分是關於應用在光遺傳學的上轉換奈米粒子 (UCNPs),第二部分是關於二維奈米材料應用於生物感測。
(i) 以上轉換奈米粒子進行光遺傳學之研究
我們藉由biotin和neutravidin間分子的作用,將UCNP和表現光敏感性之通道蛋白─channel rhodopsin(ChR2)的活細胞結合,並藉由細胞裂解和活細胞的實驗(免疫點試驗和蛋白質體外结合實驗)確認UCNP和ChR2的專一性作用。在這項研究中,和UCNP結合之ChR2只需要低能量的近紅外光即可被激發,並藉由量測通過連接通道的離子電流和細胞內上升之鈣離子濃度而證實。我們的設計降低了UCNP和光敏感性蛋白間之距離至分子等級,因此不只縮小了所需的近紅外光能量,也在光遺傳學之應用中提供了可引導專一性結合的方法。
(ii) 論文的第二部分是關於二維奈米材料應用於生物感測。由於所要感測的生物樣品中含有複雜多樣的基質,這些基質的干擾對於生物感測器在生理或真實樣品中的應用是一個巨大的挑戰。為了解決這個問題,本研究著重在生物感測系統中引入聚乙二醇 (PEG), 二維奈米片(2D-NSs)被聚乙二醇修飾後,可避免二維奈米片的聚集,增強其穩定性和偵測靈敏度,同時能夠減少複雜基質的干擾。生成三元過渡金屬硫化物(Mn0.02Ta3S6 和 Fe0.65Ta3S6)單晶後,將其剝離成二維奈米片,並製備聚乙二醇修飾的二維奈米片。接著,基於聚乙二醇修飾的二維奈米片具有高螢光淬滅能力和核酸適體對待測生化分子的親和力,可達到在不同介質(1倍PBS 緩衝液、牛奶和人血清)中對黃麴毒素 B1 和黃麴毒素 M1 的多重檢測。黃麴毒素是一種真菌毒素,它不僅會污染食物,食用後還會對人體健康產生不利的影響,並可作為肝癌和其他可怕疾病的生物標誌物。所設計的生物感測器具備超高的多重檢測靈敏度(偵測極限可達到pM)、廣泛的線性工作範圍(≥ 5 個分析物濃度的數量級)、目標選擇性、快速檢測和成本效益。因此,本研究所設計的方法在食品工業、生理環境中眾多疾病生物標誌物的臨床診斷應用上非常有希望,對實際醫療保健和基礎研究是一個重大的里程碑和並且廣泛的影響。
The thesis contains two parts. The first part of thesis is related to upconversion nanoparticles (UCNPs) for optogenetics applications.
Optogenetics is an innovative technology adopted by neuroscientist, where the expression of a light-sensitive protein in the specific cells and the activation of the light-sensitive protein-conjugated ion channels in those cells via illumation. However, most of optogenetic light-sensitive proteins are activated by ultraviolet or visible light, which has a limitation to penetrate tissue. This problem could be solved by upconversion nanoparticles (UCNPs), a fluorescent nanoparticle that absorb near-infrared (NIR) light and then emit light with shorter wavelengths. In this study, we selectively conjugated the UCNPs with channelrhodopsin-2 (ChR2) to show the target selectivity. The extracellular N-terminal of ChR2 (V5-ChR2m) has been tagged by V5 epitope and NeutrAvidin was functionalized on the surface of UCNP (NAv-UCNPs). As a result of the biotinylated antibody against V5 adhering to the V5-ChR2m expressed in the plasma membrane of living HEK293T cells, our data demonstrated that the NAv-UCNPs were specifically bound to the membrane of cells expressing V5-ChR2m. However, without the V5 epitope or the NAv alteration, no binding of UCNPs to the cell membrane was seen. In the cells expressing V5-ChR2m and associated with NAv-UCNP, 488 nm illumination and the upconverted blue fluorescence from UCNP by 980 nm excitation both generated an inward current and increased the intracellular Ca2+ concentration. By shortening the distance between UCNP and the light-sensitive protein to a molecular level, our study reduces the amount of NIR energy needed. Hence, this strategy provides a pathway for the specific binding for optogenetics applications.
The second part of thesis is related to two-dimensional nanomaterials for biosensing. The application of the biosensor in physiological or real samples is a big challenge because of the interference from the complex matrix of sensing medium. To solve this issue, the present study focuses on the introduction of polyethylene glycol (PEG) in the biosensing system. The PEG modification enhances the stability and detection sensitivity by preventing the aggregation of 2-dimensional Nanosheets (2D-NSs) and minimizing the interferences in the complex matrix. Ternary transition metal sulfides (Mn0.02Ta3S6 and Fe0.65Ta3S6) single crystals have been grown, exfoliated to NSs and PEGylated NSs were prepared. It has been demonstrated that PEGylated NSs improves the detection sensitivity ~ 248 times better than non-PEGylated NSs. Then, multiplexed detection of aflatoxins B1 and aflatoxins M1 in diverse mediums (PBS buffer (1×), milk, and human serum) based on the high fluorescence quenching abilities and affinities towards the aptamers was demonstrated via PEG@NSs. Aflatoxins are fungal toxins which not only contaminate food, but also adversely affect human health if consumed and function as biomarkers for liver cancer and other dreadful diseases. The designed sensor demonstrates ultrahigh multiplexed detection sensitivity (limit of detection ~ pM), wide span of linear working range (≥ 5 orders of analyte concentrations), target selectivity, quick detection and cost-effective method. Consequently, the designed strategy is highly promising not only for the food industry, but also for the clinical diagnosis of numerous disease biomarkers in physiological environments.
Table of Contents
Acknowledgements......………………………………………………….…………..…….ii
摘要…………..……...………………………………………………….…………...….. iv
Abstract…….……………....………………………………………….…………………vi
Table of Contents…..……..…………………………………………….…………….....viii
List of Figures…….………..………………………………………….……………........xii
List of Tables…………………..………………………………………………………...xiv
Chapter 1 Upconversion nanoparticle……………..……………………………………1
1.1 Introduction of Upconversion nanoparticles………………………….…….....1
1.2 Upconversion mechanism………………………..…..………………………..2
1.2.1. Excited State Absorption (ESA)………………..…………………………..3
1.2.2. Energy Transfer Upconversion (ETU)………...…………...………………4
1.3 Dopant and Host Selection Criteria…………….……………………………..5
1.4 Upconversion Nanoparticle Synthesis……….………………………………..8
1.4.1. Hydrothermal/solvothermal method….…..……………….…………….…8
1.4.2. Coprecipitation method ……………………………………………………8
1.4.3. Thermal decomposition…….………………………………………………8
1.5 Methods for surface modification of UCNP…………………………………………8
1.5.1. Ligand Exchange…..……………………………………………………….9
1.5.2. Ligand Removal…...….……..……………………………………………..9
1.5.3. Ligand Oxidation ……...........…………..…………………………………9
1.5.4. Layer-by-Layer Assembly .………………………..………………………9
1.5.5. Surface Silanization ………........................................................................9
1.5.6. Amphiphilic Polymer Coating….………….……………………………..10
1.6 Biocompatability test of UCNP……………………………………………...10
1.7 Various Applications of Upconversion nanoparticles………...……………..10
1.7.1 Bioassay….……....……………………………………….……………….10
1.7.2 High contrast Bioimaging…………………………………………………11
1.7.3 Cellular Imaging …….……………………………………………………11
1.7.4 Drug delivery………….…………………………………………………..12
1.7.4 (i) Hydrophobic pockets.………....……………………………………….12
1.7.4 (ii) Mesoporous silica shells……..……..…………………………………13
1.7.5 In Vitro and In Vivo Photoactivations…………………………………….13
1.7.6 Upconversion-Guided Photothermal Therapy…………………………….13
1.8 Summary……………………………………………………………………..14
1.9 References……………………………………………………………………15
Chapter 2 Two-Dimensional Nanomaterials…..…….…………...……………………22
2.1 Introduction of Two-Dimensional Nanomaterials…...………………………22
2.2 Growth of 2D materials…………….…………………..…………………….22
2.2.1 Chemical Vapor Transport ……………..…………………………………23
2.2.2 Bridgman Technique…………..….……………………………………….23
2.2.3. Mechanical Exfoliation…………………………………………………...24
2.2.4. Liquid Exfoliation....………………………………………………….…..25
2.3 Biocompatibility of 2D TMDs ………………………………………………26
2.4 Biosensing Applications Based on 2D materials…………………………….26
2.5 Summary…………………………………..…………………………………28
2.6 References……………………………………………………………………29
Chapter 3 Material Characterizations and Instrumentation….….………………….32
3.1 X-ray Diffraction.…….………………………………………………………32
3.2 Transmission Electron Microscopy.……….…………………………………34
3.3 Scanning Electron Microscopy and Energy Dispersive X-ray analysis….….37
3.4 Zeta potential………..……………………………………………………….38
3.5 Atomic Force Microscopy.....…..……………………………………………39
3.6 Confocal Microscopy….………..……………………………………………41
3.7 Fluorescence Spectroscopy……..……………………………………………42
3.8 References….……………………..………………………………………….44
Chapter 4 Aim and Scope………...……..………..…………………………………….45
4.1 Optogenetics study using upconversion nanoparticles in living cells………..47
4.2 Multiplexed detection of aflatoxin B1 and aflatoxin M1 using PEGylated
2Dimensional Nanosheets…………...……………………………….……....47
4.3 References…..……..…………………………………………………………50
Chapter 5 Optogenetics study using upconversion nanoparticles in living cells..…..54
5.1 Introduction……..……………………………………………………………54
5.2 Experimental Section….……………………………………………………..57
5.3 Results and Discussions.……..………………………………………………64
5.3.1 UCNP characterizations and Experimental design………………..……….64
5.3.2 V5-ChR2m localizes in the cell membrane…………..……………………71
5.3.3a Specific binding of NAv-UCNP to V5-ChR2m in cell lysate…….……...72
5.3.3b Specific binding of NAv-UCNP to V5-ChR2m in live cells……………..72
5.3.4 Optogenetic activation of ChR2…...………………………………………77
5.3.4 (a) Optogenetic activation of ChR2 validated by electrophysiological
Measurements…………………………………………………………..77
5.3.4 (b) Optogenetic activation of ChR2 confirmed by monitoring [Ca2+]i ……79
5.4 Summary……………………………………………………………………..82
5.5 References...………………………………………………………………….83
Chapter 6 Multiplexed detection of aflatoxin B1 and aflatoxin M1 using
PEGylated two-dimensional nanosheets……………….…………............88
6.1 Introduction…………………………………………………………………..88
6.2 Experimental Section…..…………………………………………………….90
6.3 Results & discussions……….…………………………………………….. 100
6.3.1. Characterization of Mn0.02Ta3S6 and Fe0.65Ta3S6 single crystals and
NSs…………………………………………………………………....…100
6.3.2. Characterization of PEG@Mn0.02Ta3S6 and PEG@Fe0.65Ta3S6 NSs..…..102
6.3.3. Optimization of experimental conditions .……………………..………..107
6.3.4a. Mechanism for Fluorescence Sensing of AFB1…………….………….118
6.3.4b. Selectivity test of Tam-Apt-B1 and Fam-Apt M1…………….......……120
6.3.5. Detection of AFB1…………………………………………….…………123
6.3.6. Multiplexed detection of AFM1 and AFB1………...……………………126
6.3.6a. Factors for multiplexed detection……………………………………….126
6.3.6b. Control experiments before multiplexed detection………...…..……….128
6.3.6c. Multiplexed detection of AFM1 and AFB1 in PBS buffer, milk and
human serum……………………………..………………….…………..129
6.4 Summary……………………………………………………………………135
6.5 References…………………………………………………………….……136
Chapter 7 Conclusions and Future Scope.….……….……………………………….141
7.1 Significant contribution……………………………………………………141
7.2 Future scope………………………………………………………………..142
Awards and conferences….……...………….……………………………..143
List of publications ………………………..………………. ……………..144
1.9. References
1V. H. Suzuki, I. Y. S. Lee, Y. S. and N. Maed, Int. J. Phys. Sci., 2008, 3, 42.
2X. X. He, J. Y. Chen, K. M. Wang, D. L. Qin and W. H. Tan, Talanta, 2007, 72, 1519.
3H. Shi, X. X. He, K. M. Wang, Y. Yuan, K. Deng, J. Y. Chen and W. H. Tan, Nanomed. Nanotechnol. Biol. Med., 2007, 3, 266.
4L. Wang, C. Y. Yang and W. H. Tan, Nano Lett., 2005, 5, 37.
5J. Lovric, H. S. Bazzi, Y. Cuie, G. R. A. Fortin, F. M. Winnik and D. Maysinger, J. Mol. Med., 2005, 83, 377.
6Shiohara, A. Hoshino, K. Hanaki, K. Suzuki and K. Yamamoto, Microbiol. Immunol., 2004, 48, 669.
7X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung and S. M, Nat. Biotechnol., 2004, 22, 969.
8K. T. Yong, Nanotechnology, 2009, 20, 109.
9G. Iyer, J. J. Li, F. Pinaud, J. M. Tsay, L. A. Bentolila, X. Michalet and S. Weiss, In Conf. on Colloidal Quantum Dots for Biomedical Applications, article 60960B. San Jose, CA: Spie-International Society for Optical Engineering, 2006.
10F. Auzel, Chem. Rev., 2004, 104, 139.
11J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Kramer, C. Reinhard and H.U. Gudel, Opt. Mater., 2005, 27, 111.
12F. Wang, W. Tan, Y. Zhang, X. Fan and M. Wang, Nanotechnology, 2006, 17, 21.
13K. J. Konig, J. Microsc., 2000, 200, 83.
14F. Wang, D. K. Chatterjee, Z. Q. Li, Y. Zhang, X. P. Fan and M. Q. Wang, Nanotechnology, 2006, 17, 5786.
15D. K. Chatterjee, A. J. Rufalhah and Y. Zhang, Biomaterials, 2008, 29, 937.
16Ungun, R. K. Prudhomme, S. J. Budijono, J. N. Shan, S. F. Lim, Y. G. Ju and R. Austin, Opt. Express, 2009, 17, 80.
17L.Y. Wang, R. X. Yan, Z. Y. Hao, L. Wang, J. H. Zeng, H. Bao, X. Wang, Q. Peng and Y. D. Li, Angew. Chem. Int. Ed., 2005, 44, 6054.
18S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim and L. Ye, Nanotechnology, 2009, 20, 101.
19K. Kuningas, H. Pakkila, T. Ukonaho, T. Rantanen, T. Lovgren and T. Soukka, Clin. Chem., 2007, 53, 145.
20F. V. Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala and H. J. Tanke, Nat. Biotechnol., 2001, 19, 273.
21L. Y. Wang and Y. D. Li, Chem. Commun., 2006, 25, 2557.
22F. Wang and X. Liu, Chem. Soc. Rev., 2009, 38, 976.
23Patra, C. S. Friend, R. Kapoor and P. N. Prasad, J. Phys. Chem. B. 2002, 106, 1909.
24X. Liang, X. Wang, J. Zhuang, Q. Peng, andY.D. Li, Inorg Chem., 2007, 46, 6050.
25X. Qin, T. Yokomori and Y. Ju, Appl. Phys. Lett., 2007, 90, 073104.
26R. Naccache, F. Vetrone, V. Mahalingam, L.A. Cuccia and J. A. Capobianco, Chem. Mater., 2009, 21, 717.
27V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini and J. A. Capobianco, Adv. Mater., 2009, 21, 4025.
28Huang and B. Hu, Spectrochimica Acta Part B, 2008, 63, 437.
29A.F.S. Habee, Anal. Biochem.,1966, 14, 328.
30L.F. Koao, H.C. Swart, R.I. Obed and F.B. Dejene, Journal of Luminescence, 2011, 131, 1249.
31S. Aryal, R. Bahadur, N. Bhattarai, C. K. Kim, and H. Y. Kim, Journal of Colloid and Interface Science, 2006, 299, 191.
32V. Blaaderen and A. Vrij, Langmuir, 1992, 8, 2921.
33S. Santra, H. Yang, D. Dutta, J. T. Stanley, P. H. Holloway, W. Tan, B. M. Moudgil, and R. A. Mericle, Chem. Commun., 2004, 25, 2810.
34S. Kawata, H.B. Sun, T. Tanaka and K. Takada, Nature, 2001, 412, 697.
35A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245, 843.
36Gao, R. R. Agayan, H. Xu, M. A. Philbert and R. Kopelman, Nano Lett., 2006, 6, 2383.
37W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb, Proc. Natl. Acad. Sci., 2003, 100, 7075.
38G. Yi and G. Chow, J. Mater. Chem., 2005, 15, 4460.
39J. C. Boyer, F. Vetrone, L. A. Cuccia and J. A. Capobianco, J. Am. Chem. Soc., 2006, 128, 7444.
40Wang, X. G. Liu. J Am Chem Soc., 2008, 130, 5642.
41X. Wang, J. Zhuang, Q. Peng, Y.D. Li J Am Chem Soc., 2005, 437, 121.
42X. Liang, X. Wang, J. Zhuang, Q. Peng, Y. D. Li. Adv. Funct. Mater, 2007,17, 2757
43Wang, X. G. Liu. J Am Chem Soc., 2008, 130, 5642
44X. Wang, J. Zhuang, Q. Peng, Y. D. Li, J Am Chem Soc., 2005, 437, 121.
45R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, P. N. Prasad, Adv. Funct. Mater., 2009, 19, 853.
46S. He, P. P. Markowicz, T.C. Lin, P. N. Prasad, Nature, 2002, 415, 767.
47Y. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Agren, P. N. Prasad, Nanoscale, 2011, 3, 2003.
48C. Boyer, M. P. Manseau, J. I. Murray, V. Veggel, Langmuir, 2010, 26, 1157.
49N. Bogdan, F. Vetrone, G. A. Ozin, J. A. Capobianco, Nano Lett., 2011, 11, 835.
50G. Y. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, P. N. Prasad, ACS Nano, 2012, 6, 2969.
51Y. L. Dai, D. M. Yang, P. A. Ma, X. J. Kang, X. Zhang, C. X. Li, Z.Y. Hou, Z. Y. Cheng, Y.J. Lin, Biomaterials, 2012, 33, 8704.
52G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, A. Budde, H. Mohwald, Colloids Surf. A, 1998, 137, 253.
53H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, Y. Zhang, Small, 2009, 5, 2285.
54Y. F. Yang, Y. Q. Qu, J. W. Zhao, Q. H. Zeng, Y. Y. Ran, Q. B. Zhang, X. G. Kong, H. Zhang, Eur. J. Inorg. Chem., 2010, 5195.
55X. J. Kang, Z.Y. Cheng, C. X. Li, D. M. Yang, M. M. Shang, P. A. Ma, G. G. Li, N. A. Liu, J. J. Lin, Phys. Chem. C., 2011, 115, 15801.
56N. J. J. Johnson, N. M. Sangeetha, J. C. Boyer, F. C. V. Veggel, Nanoscale, 2010, 2, 771.
57G.C. Jiang, J. Pichaandi, N.J.J. Johnson, R.D. Burke, F.C.V. Veggel, Langmuir, 2012, 28, 3239.
58S. L. Gai, P. P. Yang, C. X. Li, W. X Wang, Dai, Y. L. Niu, Adv. Funct. Mater. 2010, 20, 1166.
59T. Ukonaho, T. Rantanen, L. Jamsen, K. Kuningas, H. Pakkila, T. Lovgren, T. Soukka, Anal. Chim. Acta, 2007, 596, 106.
60X. J. Zhu, J. Zhou, M. Chen, M. Shi, W. Feng, F.Y. Li, Biomaterials, 2012, 33, 4618.
61H. Xu, L. Cheng, C. Wang, X. X. Ma, Y. G. Li, Z. Liu, Biomaterials, 2011, 32, 9364.
62Z. Y Hou, C. X. Li, P. A. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, J. Lin, Adv. Funct. Mater., 2011, 21, 2356.
63X. Zhang, P. Yang, Y. Dai, X. Li, Z. Cheng, Z. Hou, X. Kang, C. Li, J. Lin, Adv. Funct. Mater., 2013, 23, 4067.
64Z.G. Chen, H. L. Chen, H. Hu, M. X. Yu, F. Y. Li, Q. Zhang, Z. G. Zhou, T. Yi, C. H. Huang, J. Am. Chem. Soc., 2008, 130, 3023.
65M. Kumar, Y. Guo, P. Zhang, Biosens. Bioelectron., 2009, 24, 1522.
66H.J. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R.S. Niedbala, H.J. Tanke, Anal. Biochem., 1999, 267, 30.
67Kuningas, T. Rantanen, T. Ukonaho, T. Lovgren, T. Soukka, Anal. Chem., 2005, 77, 7348.
68Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, H. Xing, Q. Ren, W. Fan, W. Zhao, K. Hua, Y. Shi, J. Am. Chem. Soc., 2013, 135, 13041.
69K. Chatterjee, Z. Yong, Nanomedicine, 2008, 3, 73.
70Wang, L. A. Cheng, Z. A. Liu, Biomaterials, 2011, 32, 1110.
71M. Wang, C. C. Mi, W. Wang, C. H. Liu, Y. F. Wu, Z. R. Xu, C. B. Mao, S. K. Xu, ACS Nano, 2009, 3, 1580.
72M. Wang, C. C. Mi, Y. X. Zhang, J. L. Liu.; F. Li, C. B. Mao, S. K. Xu, J. Phys. Chem. C, 2009, 113, 19021.
73Kuningas, T. Rantanen, T. Ukonaho, T. Lovgren, T. Soukka, Anal. Chem. 2005, 77, 7348.
74B.A. Dong, S. Xu, J.A. Sun, S. Bi, S.; Li, D.; Bai, X.; Wang, Y.; Wang, L. P.; Song, H. W. J. Mater. Chem. 2011, 21, 6193.
75X.J. Kang, Z.Y. Cheng, C.X. Li, D.M. Yang, M.M. Shang, P.A. Ma, G.G. Li, N.A. Liu, J.J. Lin, Phys. Chem. C, 2011, 115, 15801.
76S. L. Gai, P. P. Yang, C. X. Li, W. X Wang, Dai, Y. L. Niu, Adv. Funct. Mater. 2010, 20, 1166.
77G. Zhang, Y.L. Liu, Q.H. Yuan, Zong, C. H.; Liu, J. H.; Lu, L. H. Nanoscale 2011, 3, 4365
78Y.L. Liu, K.L. Ai, J.H. Liu, Q.H. Yuan, Y.Y. He, L.H. Lu, Angew. Chem., Int. Ed. 2012, 51, 1437.
79Y.L. Liu, K.L. Ai, J.H. Liu, Q.H. Yuan, Y.Y. He, L.H. Lu, Angew. Chem., Int. Ed. 2012, 51, 1437.
80H. Xu, L. Cheng, C. Wang, X.X. Ma, Y. Li, Z. Liu, Biomaterials 2011, 32, 9364.
81Z. Hou, C.X. Li, P.A. Ma, G.G. Li, Z.Y. Cheng, C. Peng, D.M. Yang, J. Lin, Adv. Funct. Mater. 2011, 21, 2356.
82Y. Dai, H. Xiao, J. Liu, Q. Yuan, P. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, J. Lin, J. Am. Chem. Soc. 2013, 135, 18920.
83Y. Yang, B. Velmurugan, X. Liu, B. Xing, Small, 2013, 9, 2937.
84J.A. Liu, W.B. Bu, L.M. Pan, J.L. Shi, Angew. Chem., Int. Ed., 2013, 52, 4375.
85J. Shen, G. Chen, T.Y. Ohulchanskyy, S.J. Kesseli, S. J.; Buchholz, Z. Li, P.N. Prasad, G. Han, Small, 2013, 9, 3213.
86X. Zhang, P. Yang, Y. Dai, P. Ma, X. Li, Z. Cheng, Z. Hou, X. Kang, C. Li, J. Lin, Adv. Funct. Mater., 2013, 23, 4067.
87Z.H. Xu, P.A. Ma, C.X. Li, Z.Y. Hou, X.F. Zhai, S. S. Huang, J. Lin, Biomaterials, 2011, 32, 4161.
88Dong, D. An, M. Gong, Y. Lu, H. L. Gao, Y.J. Xu, S.H. Yu, Small, 2013, 9, 323.
2.6. References
1H. Zhang, ACS Nano, 2015, 9, 9451.
2B. Silbernagel, Acta Crystallogr, Sect. B, 1978, 34, 3498.
3A. Balchin, Springer, 1976, 2, 642.
4K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab and K. Kim, Nature, 2012, 490, 192.
5X. Li, M. Rui, J. Song, Z. Shen and H. Zeng, Adv. Funct. Mater., 2015, 25, 4929.
6C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 2008, 321, 385.
7G. Eda and M. Chhowalla, Adv. Mater., 2010, 22, 2392.
8Y. Liu, X. Dong and P. Chen, Chem. Soc. Rev., 2012, 41, 2283.
9Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay and Y. Lin, J. Mater. Chem., 2010, 20, 7491.
10S. Roy, and A. Jaiswal, Rep. Adv. Phys. Sci. 2017, 1, 1750011.
11Z. Khan, S. Park, S. M. Hwang, J. Yang, Y. Lee, H. K. Song, Y. Kim and H. Ko, NPG Asia Mater., 2016, 8, 294.
12J. Hao, G. Song, T. Liu, X. Yi, K. Yang, L. Cheng and Z. Liu, Advanced Science, 2017, 4, 2198.
13X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res., 2008, 1, 203.
14C. Zhu, Z. Zeng, H. Li, F. Li, C.H. Fan and H. Zhang, J. Am. Chem. Soc., 2013, 135, 5998.
15Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan, H. Li, B. Chen, J. Yang, J. Chen, Y. Huang, L. Wang and H. Zhang, Adv. Mater, 2015, 27, 935.
16N. Dhenadhayalam, M. I. Sriram and K. C. Lin, Sensors and Actuators B, 2018, 258, 929.
17 S. Wang, Y. Zhang, Y. Ning and G. J. Zhang, Analyst, 2015, 140, 434.
18 J. Ge, E. C. Ou, R. Q. Yu and X. Chu, J. Mater. Chem. B, 2014, 2, 625.
19 X. Yin, J. Cai, H. Feng, Z. Wu, J. Zou and Q. Cai, New J. Chem., 2015, 39, 1892.
20 N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li and D. Wang, Adv. Mater., 2017, 29, 1606755.
21 S. Banerjee, Y. J. Hsieh, C. R. Liu, N. H. Yeh, Y. S. Lai, H. H. Hung, Y. T. Chen and C.Y. Pan, Small, 2016, 12, 5524.
22B. R. Li, Y. J. Hsieh, Y. X. Chen, Y. T. Chung, C. Y. Pan, and Y. T. Chen, J. Am. Chem. Soc., 2013, 135, 16034.
23K. I. Chen, B. R. Li, and Y. T. Chen, Nano Today, 2011, 6, 131.
24 X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu and Y. Lin, Biosens. Bioelectron., 2009, 25, 901.
25C. Shan, H. Yang, J. Song, D. Han, A. Ivaska and L. Niu, Anal. Chem., 2009, 81, 2378.
26 S. Wu, Z. Zeng, Q. He, Z. Wang, S.J. Wang, Y. Du, Z. Yin, X. Sun, W. Chen and H. Zhang, Small, 2012, 8, 2264.
27T. Lin, L. Zhong, L. Guo, F. Fu and G. Chen, Nanoscale, 2014, 6, 11856.
28 T. Lin, L. Zhong, Z. Song, L. Guo, H. Wu, Q. Guo, Y. Chen, F. Fu and G. Chen, Biosens. Bioelectron., 2014, 62, 302.
29T. Lin, L. Zhong, J. Wang, L. Guo, H. Wu, Q. Guo, F. Fu and G. Chen, Biosens. Bioelectron., 2014, 59, 89.
30J. Chen, J. Ge, L. Zhang, Z. Li, J. Li, Y. Sun and L. Qu, Microchim. Acta, 2016, 183, 1847.
31Y. Tao, Y. Lin, J. Ren and X. Qu, Biomaterials, 2013, 34, 4810.
32 J. Liu, L. Meng, Z. Fei, P. J. Dyson, X. Jing and X. Liu, Biosens. Bioelectron., 2017, 90, 69.
33P. Subramanian, A. Lesniewski, I. Kaminska, A. Vlandas, A. Vasilescu, J. Niedziolka-Jonsson, E. Pichonat, H. Happy, R. Boukherroub and S. Szunerits, Biosens. Bioelectron., 2013, 50, 239.
34N. F. Chiu, S. Y. Fan, C. D. Yang and T. Y. Huang, Biosens. Bioelectron., 2017, 89, 370.
35J. Zhang, Y. Sun, B. Xu, H. Zhang, Y. Gao, H. Zhang and D. Song, Biosens. Bioelectron., 2013, 45, 230.
36W. Nie, Q. Wang, X. Yang, H. Zhang, Z. Li, L. Gao, Y. Zheng, X. Liu and K. Wang, Anal. Chim. Acta, 2023, 2017, 55.
3.8. References
1M. Birkholz, Thin film Analysis by X-ray Scattering, WILEY-VCH Verlag GmbH & Co. 2006.
2D. Shindo and H. Kenji, High-Resolution Electron Microscopy for Material science, Springer, 1998.
3J. C. Russ, Fundamentals of Energy Dispersive X-Ray Analysis, Butterworths, 1984.
4V. Delgado, F. G. Caballeroi, R. J. Hunter, L. K. Koopal, and J. Lyklema, Pure Appl. Chem., 2005, 77, 1753.
5Schirmeisen, B. Anczykowski and H. Fuchs, Dynamic Modes of Atomic Force
Microscopy, Springer Berlin Heildelberg, 2008.
6A.D. Elliott, Confocal microscopy: Principles and modern practices. Curr Protoc Cytom, 2020, 92.
7https://en.wikipedia.org/wiki/Fluorescence_spectroscopy.
4.3. References
1N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, Y. Zhang, Nat. Med. 2012, 18, 1580.
2N. Bogdan, F. Vetrone, G. A. Ozin and J. A. Capobianco, Nano Lett., 2011, 11, 835.
3Z. G. Chen, H. L. Chen, H. Hu, M. X. Yu, F. Y. Li, Q. Zhang, Z. G. Zhou, T. Yi and C. H. Huang, J. Am. Chem. Soc., 2008, 130, 3023.
4G. Y. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Agren and P. N. Prasad, Nanoscale, 2011, 3, 2003.
5J. C. Boyer, M. P. Manseau, J. I. Murray and V. Veggel, Langmuir, 2010, 26, 1157.
6Z. G. Chen, H. L. Chen, H. Hu, M. Yu, F. Y. Li, Q. Zhang, Z. G. Zhou, T. Yi, C. H. Huang, J. Am. Chem. Soc., 2008, 130, 3023.
7H. Hu, M. X. Yu, F. Y. Li, Z. G. Chen, X. Gao, L. Q. Xiong and C. H. Huang, Chem. Mater., 2008, 20, 7003.
8H. P. Zhou, C. H. Xu, W. Sun and C. H. Yan, Adv. Funct. Mater., 2009, 19, 3892.
9Y. L. Dai, D. M. Yang, P. A. Ma, X. J. Kang, X. Zhang, C. X. Li, Z.Y. Hou, Z. Y. Cheng and J. Lin, Biomaterials, 2012, 33, 8704.
10R. S. Niedbala, H. Feindt, K. Kardos, K. T. Burton, J. Bielska, S. Li, D. Milunic, P. Bourdelle and R. Vallejo, Anal. Biochem. 2001, 293, 22.
11Y. L. Liu, K. L. Ai and L. H. Lu, Acc. Chem. Res., 2012, 45, 1817.
12G. Zhang, Y. L. Liu, Q. H. Yuan, C. H. Zong, J. H. Liu and L. H. Lu, Nanoscale, 2011, 3, 4365.
13L. Dong, D. An, M. Gong, Y. Lu, H. L. Gao, Y. J. Xu and S. H. Yu, Small, 2013, 9, 3235.
14B. A. Dong, S. Xu, J. A. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang and H. W. J. Song, J. Mater. Chem., 2011, 21, 6193.
15A. Bansal, H. Liu, M. K. Jayakumar, E. S. Anderson and Y. Zhang, Small, 2016, 12, 1732.
16X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang and G. Han, ACS Nano, 2016, 10, 1060.
17S. Hososhima, H. Yuasa, T. Ishizuka, M. R. Hoque, T. Yamashita, A. Yamanaka, E. Sugano, H. Tomita and H. Yawo, Sci. Rep., 2015, 5, 16533
18S. Shah, J. Liu, J. N. Pasquale, J. Lai, H. Mcgowan, Z. P. Pang and K. B. Lee, Nanoscale, 2015, 7, 16571.
19L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian and A. V. Zvyagin, ACS Appl. Mater. Interfaces, 2016, 8, 11945.
20C. Wang, L. Cheng and Z. Liu, Biomaterials, 2011, 32, 1110.
21Y. Yang, F. Liu, X. Liu and B. Xing, Nanoscale, 2013, 5, 231.
22L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. B. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han and Y. Zhou, Elife, 2015, 4, 10024.
23A. D. Friedman, S. E. Claypool and R. Liu, Curr. Pharm. Des., 2013, 19, 6315.
24K. Huang, Q. Q. Dou and X. J. Loh, RSC Adv., 2016, 6, 60896.
25K. Cheng, S. Peng, C. Xu and S. Sun, J. Am. Chem. Soc., 2009, 131, 10637.
26J. Xie, K. Chen, H. Y. Lee, C. Xu, A. R. Hsu, S. Peng, X. Chen and S. Sun, J. Am. Chem. Soc., 2008, 130, 7542.
27S. Wu and H. J. Butt, Adv. Mater., 2016, 28, 1208.
28Z. Chen, W. Sun, H. J. Butt and S. Wu, Chem. Eur. J., 2015, 21, 9165.
29Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan, H. Li, B. Chen, J. Yang, J. Chen, Y. Huang, L. Wang, and H. Zhang, Adv. Mater., 2015, 27, 935.
30 N. Dhenadhayalana, M. I. Sriram and K. C. Lin, Sensors and Actuators B, 2018, 258, 929.
31S. Wang, Y. Zhang, Y. Ning and G. J. Zhang, Analyst, 2015, 140, 434.
32 J. Ge, E. C. Ou, R. Q. Yu and X. Chu, J. Mater. Chem. B, 2014, 2, 625.
33X. Yin, J. Cai, H. Feng, Z. Wu, J. Zou and Q. Cai, New J. Chem., 2015, 39, 1892.
34W. Wen, Y. Song, X. Yan, C. Zhu, D. Du, S. Wang, A. M. Asiri and Y. Lin, Materials Today, 2018, 21, 164.
35N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li and D. Wang, Adv. Mater., 2017, 29, 1606755.
36V. Yadav, S. Roy, P. Singh, Z. Khan and A. Jaiswal, Small, 2018, 15, 1803706.
37A. Bacaloni, C. Cavaliere, F. Cucci, P. Foglia, R. Samperi and A. Laganà, Journal of Chromatography A, 2008, 1179, 182.
38N.S. Shuib, A. Makahleh, S. M. Salhimi and B. Saad, Journal of chromatography A, 2017, 1510, 51.
39 A. Pietri, P. Fortunati, A. Mulazzi and T. Bertuzzi, Food Chem., 2016, 192, 235.
40 A. Vaz, A. C. C. Silva, P. Rodrigues and A. Venâncio, Microorganisms, 2020, 8, 246.
41S. Tsuboi, T. Nakagawa, M. Tornita, T. Seo, H. Ono, K. Kawamura and N. Iwamura, Cancer Research, 1984, 44, 1231.
42H. Ma, J. Sun, Y. Zhang, C. Bian, S. Xia and T. Zhen, Biosens. Bioelectron. 2016, 80, 222.
43 H. Ma, J. Sun, Y. Zhang and S. Xia, Biochem. Eng. J., 2016, 115, 38.
44 X. Zhou, S. Wu, H. Liu, X. Wu and Q. Zhang, Sens. Actuators B: Chem., 2016, 226 24.
45G. Selvolini, M. Lettieri, L. Tassoni, S. Gastaldello, M. Grillo, C. Maran and G. Marrazza, Talanta, 2019, 203, 49.
46X. Tang, P. Li, Q. Zhang, Z. Zhang, W. Zhang and J. Jiang, Anal. Chem., 2017, 89, 11520.
47S.E. McNamee, F. Bravin, G. Rosar, C.T. Elliott, K. Campbell, Talanta, 2017, 164, 368.
48S. J. Wu, N. Duan, C. Q. Zhu, X. Y. Ma, M. Wang and Z. P. Wang, Biosens. Bioelectron, 2011, 30, 35.
49H. Vaisocherová E. Brynda and J. Homola, Anal Bioanal Chem., 2015, 14, 3927.
50J. Y. Lichtenberg, Y. Ling and S. Kim, Sensors, 2019, 19, 2488.
5.5. References
1K. Deisseroth, Sci. Am., 2010, 303, 48.
2R. Berry, M. Getzin, L. Gjesteby and G. Wang, Photonics, 2015, 2, 23.
3O. A. Sineshchekov, K. H. Jung and J. L. Spudich, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 8689.
4J. Y. Lin, M. Z. Lin, P. Steinbach and R. Y. Tsien, Biophys. J., 2009, 96, 1803.
5G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann and E. Bamberg, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13940.
6L. Fenno, O. Yizhar and K. Deisseroth, Annu. Rev. Neurosci., 2011, 34, 389.
7K. M. Tye, R. Prakash, S. Y. Kim, L. E. Fenno, L. Grosenick, H. Zarabi, K. R. Thompson, V. Gradinaru, C. Ramakrishnan and K. Deisseroth, Nature, 2011, 471, 358.
8A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth and A. C. Kreitzer, Nature, 2010, 466, 622.
9V. Gradinaru, M. Mogri, K. R. J. Thompson, M. Henderson and K. Deisseroth, Science, 2009, 324, 354.
10W. R. Stauffer, A. Lak, A. Yang, M. Borel, O. Paulsen, E. S. Boyden and W. Schultz, Cell, 2016, 166, 1564.
11S. Konermann, M. D. Brigham, A. Trevino, P. D. Hsu, M. Heidenreich, L. Cong, R. J. Platt, D. A. Scott, G. M. Church and F. Zhang, Nature, 2013, 500, 472.
12R. A. Jalil and Y. Zhang, Biomaterials, 2008, 29, 4122.
13G. Chen, H. Qiu, F. Rongwei, S. Hao, S. Tan, C. Yang and G. Han, J. Mater. Chem., 2012, 22, 20190.
14G. Chen, H. Qiu, P. N. Prasad and X. Chen, Chem. Rev., 2014, 114, 5161.
15Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi and C. Huang, J. Am. Chem. Soc., 2008, 130, 3023.
16F. Wang, D. Banerjee, Y. Liu, X. Chen and X. Liu, Analyst, 2010, 135, 1839.
17X. Ai, C. J. H. Ho, J. Aw, A. B. E. Attia, J. Mu, Y. Wang, Y. Wang, X. Liu, H. Chen, M. Gao, X. Chen, E. K. L. Yeow, G. Liu, M. Olivo and B. Xing, Nat. Commun., 2016, 7, 10432.
18N. Bogdan, E. M. Rodríguez, F. S. Rodríguez, M. C. I. Cruz, A. Juarranz, D. Jaque, J. G. Solé and J. A. Capobianco, Nanoscale, 2012, 4, 3647.
19F. Vetrone, R. Naccache, A. J. Fuente, F. S. Rodríguez, A. B. Castro, E. M. Rodríguez, D. Jaque, J. G. Solé and J. A. Capobianco, Nanoscale, 2010, 2, 495.
20J. Gao, H. Gu and B. Xu, Acc. Chem. Res., 2009, 42, 1097.
21C. H. Luo, C. T. Huang, C. H. Su and C. S. Yeh, Nano Lett., 2016, 16, 3493.
22H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang and C. H. Yan, Chem. Rev., 2015, 115, 10725.
23B. Ungun, R. K. Prudhomme, S. J. Budijono, J. Shan, S. F. Lim, Y. Ju and R. Austin, Opt. Express, 2009, 17, 80.
24Y. Yang, B. Velmurugan, X. Liu and B. Xing, Small, 2013, 9, 2937.
25M. M. Dcona, Q. Yu, J. A. Capobianco and M. C. T. Hartman, Chem. Commun., 2015, 51, 8477.
26S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim and L. Ye, Nanotechnology, 2009, 20, 155101.
27F. V. D. Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala and H. J. Tanke, Nat. Biotechnol., 2001, 19, 273.
28L. Wang and Y. Li, Chem. Commun., 2006, 2557.
29K. Kuningas, T. Ukonaho, H. Pakkila, T. Rantanen, J. Rosenberg, T. Lovgren and T. Soukka, Anal. Chem., 2006, 78, 4690.
30T. Rantanen, H. Pakkila, L. Jamsen, K. Kuningas, T. Ukonaho, T. Lovgren and T. Soukka, Anal. Chem., 2007, 79, 6312.
31M. Wang, W. Hou, C. C. Mi, W. X. Wang, Z. R. Xu, H. H. Teng, C. B. Mao and S. K. Xu, Anal. Chem., 2009, 81, 8783.
32L. Mattsson, K. D. Wegner, N. Hildebrandt and T. Soukka, RSC Adv., 2015, 5, 13270.
33Y. Min, J. Li, F. Liu, E. K. L. Yeow and B. Xing, Angew. Chem., Int. Ed., 2014, 53, 1012.
34M. K. G. Jayakumar, N. M. Idris and Y. Zhang, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 8483.
35H. D. Gao, P. Thanasekaran, C. W. Chiang, J. L. Hong, Y. C. Liu, Y. H. Chang and H. Lee, ACS Nano, 2015, 9, 7041.
36W. Li, J. Wang, J. Ren and X. Qu, J. Am. Chem. Soc., 2014, 136, 2248.
37S. Shah, J. Liu, J. N. Pasquale, J. Lai, H. Mcgowan, Z. P. Pang and K. B. Lee, Nanoscale, 2015, 7, 16571.
38S. Hososhima, H. Yuasa, T. Ishizuka, M. R. Hoque, T. Yamashita, A. Yamanaka, E. Sugano, H. Tomita and H. Yawo, Sci. Rep., 2015, 5, 16533.
39X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang and G. Han, ACS Nano, 2016, 10, 1060.
40A. Bansal, H. Liu, M. K. Jayakumar, E. S. Anderson and Y. Zhang, Small, 2016, 12, 1732.
41L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian and A. V. Zvyagin, ACS Appl. Mater. Interfaces, 2016, 8, 11945.
42C. Wang, L. Cheng and Z. Liu, Biomaterials, 2011, 32, 1110.
43Y. Yang, F. Liu, X. Liu and B. Xing, Nanoscale, 2013, 5, 231.
44L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. B. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han and Y. Zhou, eLife, 2015, 4, 10024.
45A. D. Friedman, S. E. Claypool and R. Liu, Curr. Pharm. Des., 2013, 19, 6315.
46K. Huang, Q. Q. Dou and X. J. Loh, RSC Adv., 2016, 6, 60896.
47K. Cheng, S. Peng, C. Xu and S. Sun, J. Am. Chem. Soc., 2009, 131, 10637.
48J. Xie, K. Chen, H.-Y. Lee, C. Xu, A. R. Hsu, S. Peng, X. Chen and S. Sun, J. Am. Chem. Soc., 2008, 130, 7542.
49S. Wu and H. J. Butt, Adv. Mater., 2016, 28, 1208.
50Z. Chen, W. Sun, H. J. Butt and S. Wu, Chem. – Eur. J., 2015, 21, 9165.
51J. Y. Lin, Exp. Physiol., 2011, 96, 19.
52K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, H. Hyodo and H. Kishimoto, Eur. J. Inorg. Chem., 2010, 2010, 2673.
53T. Zako, H. Nagata, N. Terada, M. Sakono, K. Soga and M. Maeda, J. Mater. Sci., 2008, 43, 5325.
54W. C. Man, M. Miyazaki, K. Chu and J. M. Ntambi, J. Biol. Chem., 2006, 281, 1251.
55X. Ai, L. Lyu, Y. Zhang, Y. Zhang, Y. Tang, J. Mu, F. Liu, Y. Zhou, Z. Zuo, G. Liu and B. Xing, Angew. Chem., Int. Ed., 2017, 56, 3031.
56F. Zhang, L. P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk and K. Deisseroth, Nature, 2007, 446, 633.
57M. Y. Chou, C. Y. Lee, H. H. Liou and C. Y. Pan, Neuropharmacology, 2014, 83, 54.
58A. C. Chou, Y. T. Ju and C. Y. Pan, PLoS One, 2015, 10, 0138856.
6.5. References
1H. Gourama and L.B. Bullerman, J. Food Protect, 1995, 58, 1395.
2T. Tseng, Toxin Reviews, 1994, 13, 229.
3A. Sharma, G. Catanante, A. Hayat, G. Istamboulie, I. B. Rejeb, S. Bhand and J. L. Marty, Talanta, 2016, 158, 35.
4M. J. O. Riordan and M. G. Wilkinson, Food Chem. 2008, 107, 1429.
5L. Min, J. F. Gremmels, D. Li, X. Tong, J. Tang, X. Nan, Z. Yu, W. Chen and G. Wang, Animal Nutrition, 2021, 7, 42.
6A. M. Gurban, P. Epure, F. Oancea and M. Doni, Sensors, 2017, 17, 1.
7M. H. Iha, C. B. Barbosa, I. A. Okada and M. W. Trucksess, Food Control, 2013, 29, 1.
8N. W. Turner, S. Subrahmanyam, S. A. Piletsky, Analytica Chimica Acta, 2009, 632, 168.
9T. E. Massey, R. K. Stewart, J. M. Daniels, L. Liu, Proceedings of the Society for Experimental Biology and Medicine, 1995, 208, 213.
10Anttila, R. V. Bhat, J. A. Bond, S. J. Borghoff, F. X. Bosch, G. P. Carlson, M. Castegnaro, G. Cruzan, W. C. A. Gelderblom, U. Hass, IARC Monogr. Eval. Carcinog. Risks Hum., 2002, 82, 169.
11S. Hamid, I. G. Tesfamariam, Y. Zhang, Z. G. Zhang, Oncol. Lett., 2013, 5, 1087.
12International Agency for Research on Cancer, Monograph on the Evaluation of Carcinogenic Risk to Humans, World Health Organization, 2002, 171.
13European commission commission Regulation (EC) (No. 1881/2006) maximum levels for certain contaminants in foodstuffs, 2006, 5.
14A. Bacaloni, C. Cavaliere, F. Cucci, P. Foglia, R. Samperi, A. Laganà, Journal of Chromatography A, 2008, 1179, 182.
15N. S. Shuib, A. Makahleh, S. M. Salhimi and B. Saad, Journal of chromatography A, 2017, 1510, 51.
16A. Pietri, P. Fortunati, A. Mulazzi and T. Bertuzzi, Food Chem., 2016, 192, 235.
17A. Vaz, A. C. C. Silva, P. Rodrigues and A. Venâncio, Microorganisms, 2020, 8, 246.
18S. Tsuboi, T. Nakagawa, M. Tornita, T. Seo, H. Ono, K. Kawamura and N. Iwamura, Cancer Research, 1984, 44, 1231.
19H. Ma, J. Sun, Y. Zhang, C. Bian, S. Xia and T. Zhen, Biosens. Bioelectron., 2016, 80, 222.
20H. Ma, J. Sun, Y. Zhang and S. Xia, Biochem. Eng. J.,2016, 115, 38.
21X. Zhou, S. Wu, H. Liu, X. Wu and Q. Zhang, Sens. Actuators B: Chem., 2016, 226, 24.
22G. Selvolini, M. Lettieri, L. Tassoni, S. Gastaldello, M. Grillo, C. Maran and G. Marrazza, Talanta, 2019, 203, 49.
23X. Tang, P. Li, Q. Zhang, Z. Zhang, W. Zhang and J. Jiang, Anal. Chem. 2017, 89, 11520.
24S. E. McNamee, F. Bravin, G. Rosar, C. T. Elliott and K. Campbell, Talanta, 2017, 164, 368.
25S. J. Wu, N. Duan, C. Q. Zhu, X. Y. Ma, M. Wang and Z. P. Wang, Biosens. Bioelectron., 2011, 30, 35.
26T. Liu, C. Wang, X. Gu, H. Gong, L. Chen, X. Shi, L. Feng, B. Sun and Z. Liu, Adv. Mater., 2014, 26, 3433.
27W. J. Hardy, C. W. Chen, A. Marcinkova, H. Ji, J. Sinova, D. Natelson and E. Morosan, Physical Review B, 2015, 91, 054426.
28Y. Q. Miao, J. J. Guo, Z. Y. Luo, M. Z. Zhong, B. Li, X. G. Wang, Y. Z. Nie, Q. L. Xia, G. H. Guo, Frontiers in Physics, 2022, 10, 402.
29C. M. Kim, C. S. Kim, S. B. Kim and E. J. Hahn, J. Korean Phys. Soc., 2012, 60, 79.
30S. Debnath and P. Mahadevan, J. Electron Spectros. Relat. P, 2016, 208, 74.
31J. H Wijngaard, C. Haast and M. A. C. Devillers, J. Phys.: Condens. Matter, 1991, 3, 6913.
32C. Tan, P. Yu, Y. Hu, J. Chen, Y. Huang, Y. Cai, Z. Luo, B. Li, Q. Lu, L. Wang, Z. Liu and H. Zhang. J. Am. Chem. Soc., 2015, 137, 10430.
33R. M. Kong, L. Ding, Z. Wang, J. You and F. Qu, Anal Bioanal Chem., 2015, 407, 369.
34S. Wu, N. Duan, X. Ma., Y. Xia, H. Wang, Z. Wang and Q. Zhang, Anal. Chem., 2012, 84, 6263.
35S. K. Setlem, B. Mondal and S. Ramlal, Journal of Microbiological Methods, 2022, 193, 106414.
36C. Zhu, Z. Zeng, H. Li, F. Li, C.H. Fan and H. Zhang, J. Am. Chem. Soc., 2013, 135, 5998.
37Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan, H. Li, B. Chen, J. Yang, J. Chen, Y. Huang, L. Wang and H. Zhang, Adv. Mater., 2015, 27, 935.
38N. Dhenadhayalan, K. Yadav, M. I. Sriram, H. L. Lee and K. C. Lin,
Nanoscale, 2017, 9, 12087.
39S. Wang, Y. Zhang, Y. Ning and G. J. Zhang, Analyst, 2015, 140, 434.
40J. Ge, E.C. Ou, R.Q. Yu and X. Chu, J. Mater. Chem. B, 2014, 2, 625.
41X. Yin, J. Cai, H. Feng, Z. Wu, J. Zou and Q. Cai, New J. Chem., 2015, 39, 1892.
42Y. Jia, F. Wu, P. Liu, G. Zhou, B. Yu, X. Lou and F. Xia., Talanta, 2019, 198, 71.
43R. D’Agata, N. Bellassai, V. Jungbluth and G. Spoto, Polymers, 2021, 13, 1929.
44H. Vaisocherová E. Brynda and J. Homola, Anal Bioanal Chem., 2015, 14, 3927.
45J. Y. Lichtenberg, Y. Ling and S. Kim, Sensors, 2019, 19, 2488.
46 E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama and G. M. Whitesides, Langmuir, 2001,17, 5605.
47M. Cerruti, S. Fissolo, C. Carraro, C. Ricciardi, A. Majumdar and R. Maboudian, Langmuir 2008, 24, 10646.
48K. Yadav, A. C. Chou, R. K. Ulaganathan, H. D. Gao, H. M. Lee, C. Y. Pan and Y. T. Chen, Nanoscale, 2017, 9, 9457.
49W. Wen, Y. Song, X. Yan, C. Zhu, D. Du, S. Wang, A. M. Asiri and Y. Lin, Materials Today, 2018, 21, 164.
50 V. Yadav, S. Roy, P. Singh, Z. Khan and A. Jaiswal, Small, 2018, 15, 1803706.
51N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li and D. Wang, Adv. Mater., 2017, 29, 1606755.
52F. E. J. Ellis, Journal of Nutritional & Environmental Medicine, 2007, 16, 52.
53P. C. Turner, Scientifica, 2013, 2013, 152879.
54Y. H. Leong, A. A. Latiff, N. I. Ahmad and A. Rosma, Mycotoxin Res., 2012, 28, 79.
55A. A. Ghazali, A. Abdulmughni, A. K. Muhammed, A. Mansoob, M. I. M. Ibrahim, A. A. Nehmi, A. A. Bareda, A. M. Alhadrami, S. O. Sherif and M. A. A. Wahhab, World Journal of Medical Sciences, 2014, 4, 570.
56H. C. Wu, R. Santella, Hepat Mon., 2012, 12, 7238.
57A. V. Jager, F. G. Tonin, G. Z. Baptista, P. C. M. C. Souto, C. A. F. Oliveira, Int. J. Hyg. Environ. Health, 2016, 219, 294.
58A. C. Manetta, Aflatoxins: Their Measure and Analysis, Aflatoxins-Detection, Measurement and Control, 2011, 93
59H. E. Indyk, J. E. Wood, B. D. Gill, International Dairy Journal, 2021, 121, 105119.
60J. Zhang, Y. K. Xia, M. Chen, D. Z. Wu, S. X. Cai, M. M. Liu, W. H. He and J. H. Chen, Sens. Actuators B, 2016, 235, 79.
61 M. W. Xiao, X. L. Bai, Y. M. Liu, L. Yang and L. X. Liao, J. Chromatogr A., 2018, 1569, 222.
62G. Istamboulié, N. Paniel, L. Zara, L. R. Granados, L. Barthelmebs and T. Noguer, Talanta, 2016, 146, 464.
63K.Y. Goud, A. Hayat, G. Catanante, M. Satyanarayana, K.V. Gobi, J. L. Marty, Electrochim. Acta, 2017, 244, 96.
64C. Wang, J. Qian, K. An, C. Ren, X. Lu, N. Hao and K. Wang, Biosens. Bioelectron., 2018, 108, 69.
65X. Tang, P. Li, Q. Zhang, Z. Zhang, W. Zhang and J. Jiang, Anal. Chem., 2017, 89, 11520.
66Y. Shao, H. Duan, L. Guo, Y. Leng, W. Lai and Y. Xiong, Analytica Chimica Acta, 2018, 1025, 163.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊