跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪加城
研究生(外文):Jia-Cheng Hong
論文名稱:PSII複合體光捕捉動力學的理論研究
論文名稱(外文):A Theoretical Study on Dynamics of Light Harvesting in Photosystem II Supercomplex
指導教授:鄭原忠
指導教授(外文):Yuan-Chung Cheng
口試委員:金必耀許昭萍
口試委員(外文):BIH-YAW JINChao-Ping Hsu
口試日期:2023-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:104
中文關鍵詞:光合作用系統 II激發能轉移光捕捉系統能量曲面
外文關鍵詞:PSIIEETlight harvesting systemenergy surface
DOI:10.6342/NTU202301637
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光合作用系統 II (PSII)仰賴一個巨大的天線複合體用以蒐集充足的光能,這些光能能夠驅動光合作用系統II中的反應中心 (RCs)。在這個光捕捉的過程中,太陽光會激發天線複合體中的色素分子,將光能轉換成激發能。然而,在激發能從天線複合體轉移到RCs的過程中,蛋白質結構的振動會擾動各個色素分子的激發能,從而在PSII上形成一個波動的能量曲面。此外,巨大的天線複合體中的色素分子數目遠遠超過RC中的數目,這樣的差異使得巨大的天線複合體具有更高的自由度,同時也產生了相對應的熵效應。即便在這些限制下,PSII仍能在光捕捉的過程中保持高量子效率。因此,我們需要瞭解大自然使用了哪些策略。了解這些策略對於我們理解PSII如何在限制條件下實現高效能光捕捉至關重要。為此,我們建立了一個光合作用系統II激發能轉移的簡化群集模型,我們能夠建立有效的內能能量曲面。從這個能量曲面上,我們發現在群集中有一些特殊的時標分離(timescale separation)的性質,降低了激發能在天線複合體中的自由度並促進激發能進入反應中心。另外,光合作用系統II在其主要的能量轉移路徑上設計了精巧的能量梯度,這些優化能量曲面的設計是用來達成高效地光捕捉。同時,PSII還利用熱能來克服激發能擾動所產生的障礙。透過研究PSII能量曲面的優化設計,我們可以為未來設計大型高效光捕捉系統提供一些有價值的指引。
Photosystem II (PSII) relies on a large antenna complex to collect sufficient light energy to power its reaction centers (RCs). In this light harvesting process, molecular excitation must pass through the fluctuating energy surface where the static disorder perturb site energies, and overcome unfavorable entropic effects to be transferred from the large antenna to the much smaller RC with low energy loss. It is thus of significant importance to uncover the strategies that the nature applied to achieve the remarkably high quantum efficiency of PSII under the constrains. To this end, we constructed a coarse-grained model for exciton energy transfer in PSII, which allows us to establish an effective internal energy surface for excitation energy transfer in the PSII. We found that the energy landscape exhibits timescale separation characteristics among the clusters, which suppresses the entropic effect and facilitates the energy transfer to the RC. Further investigation revealed that the energy surface is optimized for efficient light harvesting and tolerating static disorder of site energy by using a specifically designed energy gradient along the main energy-transfer pathways and utilization of thermal energy to overcome the barriers. The optimal energy landscape for EET in the PSII provides important insight towards how to achieve highly efficient energy harvesting in a large and fluctuating system.
Verification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xix
Denotation xxi
Chapter 1 Introduction 1
1.1 Light harvesting process in PSII . . . . . . . . . . . . . . . . . . . . 1
1.2 The constraints for light harvesting in PSIIsc. . . . . . . . . . . . . 4
1.3 The EET dynamics in PSIIsc. . . . . . . . . . . . . . . . . . . . . 7
1.4 Theorical Simulation of EET dynamics in PSII . . . . . . . . . . . . 8
1.5 The outline of this work . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 2 Theoritical description of EET dynamics in photosynthetic system 13
2.1 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Construction of effecitve Hamiltonian . . . . . . . . . . . . . . . . . 18
2.3 Conbined Generalized Föster and modified Redfield method . . . . . 19
2.4 Simulation of absorption spectrum . . . . . . . . . . . . . . . . . . . 22
2.5 Simulation of migration time . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 3 Construction of effective model and model validation 27
3.1 Construction of effective Hamiltonian . . . . . . . . . . . . . . . . . 28
3.2 Spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Fitted site energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Slow EET dynamics in LHCII . . . . . . . . . . . . . . . . . . . . 35
3.4 Model validation for EET dynamics in PSIIsc. . . . . . . . . . . . 40
3.4.1 Migration time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter 4 The effective internal energy surface in PSIIsc 43
4.1 Static disorder effect in light harvesting . . . . . . . . . . . . . . . . 44
4.2 Effective internal energy surface of PSIIsc. . . . . . . . . . . . . . 47
4.2.1 Construction of effective internal energy surface . . . . . . . . . . . 49
4.2.2 High barriers in effective internal energy surface . . . . . . . . . . . 53
4.3 Timescale separation on EET dynamics in PSIIsc . . . . . . . . . . 56
4.3.1 EET dynamics in upper side of PSIIsc . . . . . . . . . . . . . . . . 57
4.3.2 Energy transfer trajectories to RC . . . . . . . . . . . . . . . . . . . 60
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Chapter 5 Inter PSIIsc EET on the thylakoid membrane 65
5.1 The crystal parameters of PSIIscs on the thylakoid membrane . . . . 65
5.2 Migration time between two adjacent PSIIscs . . . . . . . . . . . . 67
5.2.1 Low light adaptive condition . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 High light adaptive condition . . . . . . . . . . . . . . . . . . . . . 72
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Chapter 6 The factors govering the QY of light harvesting 79
6.1 Site energies effect on QY . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 The level of static effect on QY . . . . . . . . . . . . . . . . . . . . 85
6.3 Excitonic coupling effect on QY . . . . . . . . . . . . . . . . . . . . 86
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Chapter 7 Conclusion 93
References 95
[1] Roberta Croce and Herbert van Amerongen. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science, 369(6506):eaay2058, 2020.
[2] Roman Kouřil, Jan P Dekker, and Egbert J Boekema. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta Bioenerg., 1817(1):2–12, 2012.
[3] Cristina Pagliano, Guido Saracco, and James Barber. Structural, functional and auxiliary proteins of photosystem ii. Photosynth. Res., 116:167–188, 2013.
[4] Xiaodong Su, Jun Ma, Xuepeng Wei, Peng Cao, Dongjie Zhu, Wenrui Chang, Zhenfeng Liu, Xinzheng Zhang, and Mei Li. Structure and assembly mechanism of plant c2s2m2type psIILHCII supercomplex. Science, 357(6353):815–820, 2017.
[5] Jan P Dekker and Egbert J Boekema. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta Bioenerg.,1706(12): 12–39, 2005.
[6] ShouTing Hsieh, Lu Zhang, DeWei Ye, Xuhui Huang, and YuanChung Cheng. A theoretical study on the dynamics of light harvesting in the dimeric photosystem II core complex: regulation and robustness of energy transfer pathways. Faraday Discussions, 216:94–115, 2019.
[7] Roberta Croce and Herbert Van Amerongen. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol., 10(7):492–501, 2014.
[8] William P Bricker, Prathamesh M Shenai, Avishek Ghosh, Zhengtang Liu, Miriam Grace M Enriquez, Petar H Lambrev, HoweSiang Tan, Cynthia S Lo, Sergei Tretiak, Sebastian FernandezAlberti, et al. Nonradiative relaxation of photoexcited chlorophylls: theoretical and experimental study. Sci. Rep., 5(1):13625, 2015.
[9] Eric A Arsenault, Yusuke Yoneda, Masakazu Iwai, Krishna K Niyogi, and Graham R Fleming. The role of mixed vibronic qyqx states in green light absorption of lightharvesting complex II. Nat. Commun, 11(1):6011, 2020.
[10] Akihito Ishizaki and Graham R Fleming. Insights into photosynthetic energy transfer gained from freeenergy structure: Coherent transport, incoherent hopping, and vibrational assistance revisited. J. Phys. Chem. B ., 125(13):3286–3295, 2021.
[11] Gregory D Scholes, Graham R Fleming, Alexandra OlayaCastro,and Rienk Van Grondelle. Lessons from nature about solar light harvesting. Nat. Chem., 3(10):763–774, 2011.
[12] Gregory D Scholes, Graham R Fleming, Lin X Chen, Alán AspuruGuzik,AndreasBuchleitner, David F Coker, Gregory S Engel, Rienk Van Grondelle, AkihitoIshizaki, David M Jonas, et al. Using coherence to enhance function in chemical and biophysical systems. Nature, 543(7647):647–656, 2017.
[13] Elena Meneghin, Andrea Volpato, Lorenzo Cupellini, Luca Bolzonello, Sandro Jurinovich, Vincenzo Mascoli, Donatella Carbonera, Benedetta Mennucci, and Elisabetta Collini. Coherence in carotenoidtochlorophyll energy transfer. Nat. Commun., 9(1):3160, 2018.
[14] Tammie Nelson, Sebastian FernandezAlberti, Adrian E Roitberg, and Sergei Tretiak. Electronic delocalization, vibrational dynamics, and energy transfer in organicchromophores. J. Phys. Chem. Lett., 8(13):3020–3031, 2017.
[15] Margherita Maiuri, Evgeny E Ostroumov, Rafael G Saer, Robert E Blankenship, and Gregory D Scholes. Coherent wavepackets in the fenna–matthews–olson complex are robust to excitonicstructure perturbations caused by mutagenesis. Nat. Chem., 10(2):177–183, 2018.
[16] Tammie R Nelson, Alexander J White, Josiah A Bjorgaard, Andrew E Sifain, Yu Zhang, Benjamin Nebgen, Sebastian FernandezAlberti, Dmitry Mozyrsky, Adrian E Roitberg, and Sergei Tretiak. Nonadiabatic excitedstate molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials. Chem. Rev., 120(4):2215–2287, 2020.
[17] PeiYun Yang and Jianshu Cao. Steadystate analysis of lightharvesting energy transfer driven by incoherent light: From dimers to networks. J. Phys. Chem. Lett., 11(17):7204–7211, 2020.
[18] Lili Wang, Marco A Allodi, and Gregory S Engel. Quantum coherences reveal excitedstate dynamics in biophysical systems. Nat. Rev. Chem., 3(8):477–490, 2019.
[19] JeanLuc Brédas, Edward H Sargent, and Gregory D Scholes. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater., 16(1):35–44, 2017.
[20] HongGuang Duan, Valentyn I Prokhorenko, Richard J Cogdell, Khuram Ashraf, Amy L Stevens, Michael Thorwart, and RJ Dwayne Miller. Nature does not rely on longlived electronic quantum coherence for photosynthetic energy transfer. Proc. Natl. Acad. Sci., 114(32):8493–8498, 2017.
[21] Hiroyuki Tamura, Keisuke Saito, and Hiroshi Ishikita. The origin of unidirectional charge separation in photosynthetic reaction centers: nonadiabatic quantum dynamics of exciton and charge in pigment–protein complexes. Chem. Sci., 12(23):8131– 8140, 2021.
[22] David Mauzerall and Nancy L Greenbaum. The absolute size of a photosynthetic unit. Biophys. Acta, Bioenerg., 974(2):119–140, 1989.
[23] Gregory D Scholes, Courtney A DelPo, and Bryan Kudisch. Entropy reorders polariton states. J. Phys. Chem. Lett., 11(15):6389–6395, 2020.
[24] Xiche Hu, Ana Damjanović, Thorsten Ritz, and Klaus Schulten. Architecture and mechanism of the lightharvesting apparatus of purple bacteria. Proc. Natl. Acad. Sci. U.S.A., 95(11):5935–5941, 1998.
[25] Graham R Fleming and Rienk van Grondelle. Femtosecond spectroscopy of photosynthetic lightharvesting systems. Curr. Opin. Struct. Biol., 7(5):738–748, 1997.
[26] Xiche Hu, Thorsten Ritz, Ana Damjanović, Felix Autenrieth, and Klaus Schulten. Photosynthetic apparatus of purple bacteria. Quart. Rev. Biophys., 35(1):1–62, 2002.
[27] JianRen Shen et al. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol, 66(66):23–48, 2015.
[28] Richard John Cogdell, Alastair Thomas Gardiner, Hideki Hashimoto, and Tatas Hardo Panintingjati Brotosudarmo. A comparative look at the first few milliseconds of the light reactions of photosynthesis. Photochem. Photobiol. Sci., 7(10):1150–1158, 2008.
[29] Tihana Mirkovic, Evgeny E Ostroumov, Jessica M Anna, Rienk Van Grondelle, Govindjee, and Gregory D Scholes. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev., 117(2):249–293, 2017.
[30] Koen Broess, Gediminas Trinkunas, Chantal D van der Weijde, Jan P Dekker, Arie van Hoek, Herbert van Amerongen, et al. Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys. J., 91(10):3776–3786, 2006.
[31] Natalia P Pawlowicz, ML Groot, IHM Van Stokkum, Jacques Breton, and Rienk van Grondelle. Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy. Biophys. J., 93(8):2732–2742, 2007.
[32] Stefano Caffarri, Koen Broess, Roberta Croce, and Herbert van Amerongen. Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys. J., 100(9):2094–2103, 2011.
[33] Yutaka Shibata, Shunsuke Nishi, Keisuke Kawakami, JianRen Shen, and Thomas Renger. Photosystem II does not possess a simple excitation energy funnel: timeresolved fluorescence spectroscopy meets theory. J. Am. Chem. Soc., 135(18):6903– 6914, 2013.
[34] Thanh Nhut Do, Hoang Long Nguyen, Stefano Caffarri, and HoweSiang Tan. Twodimensional electronic spectroscopy of the qx to qy relaxation of chlorophylls a in photosystem II core complex. Chem. Phys., 156(14):145102, 2022.
[35] Thanh Nhut Do, Hoang Long Nguyen, Parveen Akhtar, Kai Zhong, Thomas LC Jansen, Jasper Knoester, Stefano Caffarri, Petar H Lambrev, and HoweSiang Tan. Ultrafast excitation energy transfer dynamics in the LHCII–CP29–CP24 subdomain of plant photosystem II. J. Phys. Chem. Lett., 13:4263–4271, 2022.
[36] Doran IG Bennett, Kapil Amarnath, and Graham R Fleming. A structurebased model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J. Am. Chem. Soc., 135(24):9164–9173, 2013.
[37] Lu Zhang, DanielAdriano Silva, Houdao Zhang, Alexander Yue, YiJing Yan, and Xuhui Huang. Dynamic protein conformations preferentially drive energy transfer along the active chain of the photosystem II reaction centre. Nat. Commun., 5(1):1–9, 2014.
[38] Kapil Amarnath, Doran IG Bennett, Anna R Schneider, and Graham R Fleming. Multiscale model of light harvesting by photosystem ii in plants. Proc. Natl. Acad. Sci. U.S.A., 113(5):1156–1161, 2016.
[39] Christoph Kreisbeck and Alán AspuruGuzik. Efficiency of energy funneling in the photosystem ii supercomplex of higher plants. Chem. Sci., 7(7):4174–4183, 2016.
[40] Vladimir Novoderezhkin, Alessandro Marin, and Rienk van Grondelle. Intraand intermonomeric transfers in the light harvesting LHCII complex: the redfield– förster picture. Phys. Chem. Chem. Phys., 13(38):17093–17103, 2011.
[41] Vladimir I Novoderezhkin and Rienk van Grondelle. Physical origins and models of energy transfer in photosynthetic lightharvesting. Phys. Chem. Chem. Phys., 12(27):7352–7365, 2010.
[42] Mino Yang and Graham R Fleming. Influence of phonons on exciton transfer dynamics: comparison of the redfield, förster, and modified redfield equations. Chem. Phys., 282(1):163 180, 2002.
[43] Frank C Spano. The spectral signatures of frenkel polarons in hand jaggregates. Acc. Chem. Res., 43(3):429–439, 2010.
[44] YuanChung Cheng and Graham R Fleming. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem., 60(1):241–262, 2009.
[45] ME Madjet, A Abdurahman, and T Renger. Interpigment coulomb couplings from abinitio transition charges: application to strongly coupled pigments in photosynthetic antennae and reaction centers. J. Phys. Chem. B ., 110:17268, 2006.
[46] Thomas Renger. Theory of excitation energy transfer: from structure to function. Photosynthesis. Research., 102(2):471–485, 2009.
[47] Gregory D Scholes, Carles Curutchet, Benedetta Mennucci, Roberto Cammi, and Jacopo Tomasi. How solvent controls electronic energy transfer and light harvesting. J. Phys. Chem. B ., 111(25):6978–6982, 2007.
[48] Vladimir I Novoderezhkin. Excitation dynamics in photosynthetic lightharvesting complex b850: exact solution versus redfield and förster limits. Phys. Chem. Chem. Phys., 25(20):14219–14231, 2023.
[49] Gregory D Scholes. Longrange resonance energy transfer in molecular systems. Ann. Rev. Phys. Chem., 54(1):57–87, 2003.
[50] Seogjoo Jang, Marshall D Newton, and Robert J Silbey. Multichromophoric förster resonance energy transfer. Phys. Rev. Lett., 92(21):218301, 2004.
[51] Jian Ma and Jianshu Cao. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. i. full cumulant expansions and systembath entanglement. J. Chem. Phys., 142(9), 2015.
[52] Jian Ma, Jeremy Moix, and Jianshu Cao. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. ii. hybrid cumulant expansion. J. Chem. Phys., 142(9), 2015.
[53] Jeremy M Moix, Jian Ma, and Jianshu Cao. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. iii. exact stochastic path integral evaluation. J. Chem. Phys., 142(9), 2015.
[54] Wei Min Zhang, Torsten Meier, Vladimir Chernyak, and Shaul Mukamel. Excitonmigration and threepulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J. Chem. Phys., 108(18):7763–7774, 1998.
[55] YuHsien HwangFu, Wei Chen, and YuanChung Cheng. A coherent modified redfield theory for excitation energy transfer in molecular aggregates. Chem. Phys., 447:46–53, 2015.
[56] Peter Hamm. Principles of nonlinear optical spectroscopy: A practical approach or: Mukamel for dummies. University of Zurich, 41(5):77, 2005.
[57] Frank Müh, Dominik Lindorfer, Marcel Schmidt am Busch, and Thomas Renger. Towards a structurebased exciton hamiltonian for the CP29 antenna of photosystem II. Phys. Chem. Chem. Phys., 16(24):11848–11863, 2014.
[58] Hiroshi Haramoto, Makoto Matsumoto, and Pierre L'Ecuyer. A fast jump ahead algorithm for linear recurrences in a polynomial space. In Sequences and Their ApplicationsSETA 2008: 5th International Conference Lexington, KY, USA, September 1418, 2008 Proceedings 5, pages 290–298. Springer, 2008.
[59] Frank Müh, Melanie Plöckinger, and Thomas Renger. Electrostatic asymmetry in the reaction center of photosystem II. J. Phys. Chem. Lett., 8(4):850–858, 2017.
[60] Frank Müh, Melanie Plöckinger, Helmut Ortmayer, Marcel Schmidt Am Busch, Dominik Lindorfer, Julian Adolphs, and Thomas Renger. The quest for energy traps in the CP43 antenna of photosystem II. J. Photochem. Photobiol. B: Biol., 152:286–300, 2015.
[61] Frank Müh and Thomas Renger. Refined structurebased simulation of plant lightharvesting complex II: linear optical spectra of trimers and aggregates. Biochim. Biophys. Acta Bioenerg., 1817(8):1446–1460, 2012.
[62] Adam G Koziol, Tudor Borza, KenIchiro Ishida, Patrick Keeling, Robert W Lee, and Dion G Durnford. Tracing the evolution of the lightharvesting antennae in chlorophyll a/bcontaining organisms. Plant Physiol., 143(4):1802–1816, 2007.
[63] Vladimir I Novoderezhkin, Elisabet Romero, Jan P Dekker, and Rienk van Grondelle. Multiple chargeseparation pathways in photosystem II: Modeling of transient absorption kinetics. ChemPhysChem, 12(3):681–688, 2011.
[64] Grzegorz Raszewski and Thomas Renger. Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J. Am. Chem. Soc., 130(13):4431–4446, 2008.
[65] Mahboobe Jassas, Tonu Reinot, Adam Kell, and Ryszard Jankowiak. Toward an understanding of the excitonic structure of the CP47 antenna protein complex of photosystem II revealed via circularly polarized luminescence. J. Phys. Chem. B ., 121(17):4364–4378, 2017.
[66] Maria J Schilstra, Jon Nield, Wolfgang Dörner, Ben Hankamer, Maria Carradus, Laura Barter, James Barber, and David R Klug. Similarity between electron donor side reactions in the solubilized photosystem II–LHC II supercomplex and photosystemIIcontaining membranes. Photosynth. Res., 60(2):191–198, 1999.
[67] Chern Chuang, Jasper Knoester, and Jianshu Cao. Scaling relations and optimization of excitonic energy transfer rates between onedimensional molecular aggregates. J. Phys. Chem. B, 118(28):7827–7834, 2014.
[68] Roman Kouřil, Emilie Wientjes, Jelle B Bultema, Roberta Croce, and Egbert J Boekema. Highlight vs. lowlight: effect of light acclimation on photosystem II composition and organization in arabidopsis thaliana. Biochim. Biophys. Acta Bioenerg., 1827(3):411–419, 2013.
[69] LiMing Tan, Jie Yu, Tomoaki Kawakami, Masayuki Kobayashi, Peng Wang, ZhengYu WangOtomo, and JianPing Zhang. New insights into the mechanism of uphill excitation energy transfer from core antenna to reaction center in purple photosynthetic bacteria. J. Phys. Chem. Lett., 9(12):3278–3284, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top