|
[1] Roberta Croce and Herbert van Amerongen. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science, 369(6506):eaay2058, 2020. [2] Roman Kouřil, Jan P Dekker, and Egbert J Boekema. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta Bioenerg., 1817(1):2–12, 2012. [3] Cristina Pagliano, Guido Saracco, and James Barber. Structural, functional and auxiliary proteins of photosystem ii. Photosynth. Res., 116:167–188, 2013. [4] Xiaodong Su, Jun Ma, Xuepeng Wei, Peng Cao, Dongjie Zhu, Wenrui Chang, Zhenfeng Liu, Xinzheng Zhang, and Mei Li. Structure and assembly mechanism of plant c2s2m2type psIILHCII supercomplex. Science, 357(6353):815–820, 2017. [5] Jan P Dekker and Egbert J Boekema. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta Bioenerg.,1706(12): 12–39, 2005. [6] ShouTing Hsieh, Lu Zhang, DeWei Ye, Xuhui Huang, and YuanChung Cheng. A theoretical study on the dynamics of light harvesting in the dimeric photosystem II core complex: regulation and robustness of energy transfer pathways. Faraday Discussions, 216:94–115, 2019. [7] Roberta Croce and Herbert Van Amerongen. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol., 10(7):492–501, 2014. [8] William P Bricker, Prathamesh M Shenai, Avishek Ghosh, Zhengtang Liu, Miriam Grace M Enriquez, Petar H Lambrev, HoweSiang Tan, Cynthia S Lo, Sergei Tretiak, Sebastian FernandezAlberti, et al. Nonradiative relaxation of photoexcited chlorophylls: theoretical and experimental study. Sci. Rep., 5(1):13625, 2015. [9] Eric A Arsenault, Yusuke Yoneda, Masakazu Iwai, Krishna K Niyogi, and Graham R Fleming. The role of mixed vibronic qyqx states in green light absorption of lightharvesting complex II. Nat. Commun, 11(1):6011, 2020. [10] Akihito Ishizaki and Graham R Fleming. Insights into photosynthetic energy transfer gained from freeenergy structure: Coherent transport, incoherent hopping, and vibrational assistance revisited. J. Phys. Chem. B ., 125(13):3286–3295, 2021. [11] Gregory D Scholes, Graham R Fleming, Alexandra OlayaCastro,and Rienk Van Grondelle. Lessons from nature about solar light harvesting. Nat. Chem., 3(10):763–774, 2011. [12] Gregory D Scholes, Graham R Fleming, Lin X Chen, Alán AspuruGuzik,AndreasBuchleitner, David F Coker, Gregory S Engel, Rienk Van Grondelle, AkihitoIshizaki, David M Jonas, et al. Using coherence to enhance function in chemical and biophysical systems. Nature, 543(7647):647–656, 2017. [13] Elena Meneghin, Andrea Volpato, Lorenzo Cupellini, Luca Bolzonello, Sandro Jurinovich, Vincenzo Mascoli, Donatella Carbonera, Benedetta Mennucci, and Elisabetta Collini. Coherence in carotenoidtochlorophyll energy transfer. Nat. Commun., 9(1):3160, 2018. [14] Tammie Nelson, Sebastian FernandezAlberti, Adrian E Roitberg, and Sergei Tretiak. Electronic delocalization, vibrational dynamics, and energy transfer in organicchromophores. J. Phys. Chem. Lett., 8(13):3020–3031, 2017. [15] Margherita Maiuri, Evgeny E Ostroumov, Rafael G Saer, Robert E Blankenship, and Gregory D Scholes. Coherent wavepackets in the fenna–matthews–olson complex are robust to excitonicstructure perturbations caused by mutagenesis. Nat. Chem., 10(2):177–183, 2018. [16] Tammie R Nelson, Alexander J White, Josiah A Bjorgaard, Andrew E Sifain, Yu Zhang, Benjamin Nebgen, Sebastian FernandezAlberti, Dmitry Mozyrsky, Adrian E Roitberg, and Sergei Tretiak. Nonadiabatic excitedstate molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials. Chem. Rev., 120(4):2215–2287, 2020. [17] PeiYun Yang and Jianshu Cao. Steadystate analysis of lightharvesting energy transfer driven by incoherent light: From dimers to networks. J. Phys. Chem. Lett., 11(17):7204–7211, 2020. [18] Lili Wang, Marco A Allodi, and Gregory S Engel. Quantum coherences reveal excitedstate dynamics in biophysical systems. Nat. Rev. Chem., 3(8):477–490, 2019. [19] JeanLuc Brédas, Edward H Sargent, and Gregory D Scholes. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater., 16(1):35–44, 2017. [20] HongGuang Duan, Valentyn I Prokhorenko, Richard J Cogdell, Khuram Ashraf, Amy L Stevens, Michael Thorwart, and RJ Dwayne Miller. Nature does not rely on longlived electronic quantum coherence for photosynthetic energy transfer. Proc. Natl. Acad. Sci., 114(32):8493–8498, 2017. [21] Hiroyuki Tamura, Keisuke Saito, and Hiroshi Ishikita. The origin of unidirectional charge separation in photosynthetic reaction centers: nonadiabatic quantum dynamics of exciton and charge in pigment–protein complexes. Chem. Sci., 12(23):8131– 8140, 2021. [22] David Mauzerall and Nancy L Greenbaum. The absolute size of a photosynthetic unit. Biophys. Acta, Bioenerg., 974(2):119–140, 1989. [23] Gregory D Scholes, Courtney A DelPo, and Bryan Kudisch. Entropy reorders polariton states. J. Phys. Chem. Lett., 11(15):6389–6395, 2020. [24] Xiche Hu, Ana Damjanović, Thorsten Ritz, and Klaus Schulten. Architecture and mechanism of the lightharvesting apparatus of purple bacteria. Proc. Natl. Acad. Sci. U.S.A., 95(11):5935–5941, 1998. [25] Graham R Fleming and Rienk van Grondelle. Femtosecond spectroscopy of photosynthetic lightharvesting systems. Curr. Opin. Struct. Biol., 7(5):738–748, 1997. [26] Xiche Hu, Thorsten Ritz, Ana Damjanović, Felix Autenrieth, and Klaus Schulten. Photosynthetic apparatus of purple bacteria. Quart. Rev. Biophys., 35(1):1–62, 2002. [27] JianRen Shen et al. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol, 66(66):23–48, 2015. [28] Richard John Cogdell, Alastair Thomas Gardiner, Hideki Hashimoto, and Tatas Hardo Panintingjati Brotosudarmo. A comparative look at the first few milliseconds of the light reactions of photosynthesis. Photochem. Photobiol. Sci., 7(10):1150–1158, 2008. [29] Tihana Mirkovic, Evgeny E Ostroumov, Jessica M Anna, Rienk Van Grondelle, Govindjee, and Gregory D Scholes. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev., 117(2):249–293, 2017. [30] Koen Broess, Gediminas Trinkunas, Chantal D van der Weijde, Jan P Dekker, Arie van Hoek, Herbert van Amerongen, et al. Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys. J., 91(10):3776–3786, 2006. [31] Natalia P Pawlowicz, ML Groot, IHM Van Stokkum, Jacques Breton, and Rienk van Grondelle. Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy. Biophys. J., 93(8):2732–2742, 2007. [32] Stefano Caffarri, Koen Broess, Roberta Croce, and Herbert van Amerongen. Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys. J., 100(9):2094–2103, 2011. [33] Yutaka Shibata, Shunsuke Nishi, Keisuke Kawakami, JianRen Shen, and Thomas Renger. Photosystem II does not possess a simple excitation energy funnel: timeresolved fluorescence spectroscopy meets theory. J. Am. Chem. Soc., 135(18):6903– 6914, 2013. [34] Thanh Nhut Do, Hoang Long Nguyen, Stefano Caffarri, and HoweSiang Tan. Twodimensional electronic spectroscopy of the qx to qy relaxation of chlorophylls a in photosystem II core complex. Chem. Phys., 156(14):145102, 2022. [35] Thanh Nhut Do, Hoang Long Nguyen, Parveen Akhtar, Kai Zhong, Thomas LC Jansen, Jasper Knoester, Stefano Caffarri, Petar H Lambrev, and HoweSiang Tan. Ultrafast excitation energy transfer dynamics in the LHCII–CP29–CP24 subdomain of plant photosystem II. J. Phys. Chem. Lett., 13:4263–4271, 2022. [36] Doran IG Bennett, Kapil Amarnath, and Graham R Fleming. A structurebased model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J. Am. Chem. Soc., 135(24):9164–9173, 2013. [37] Lu Zhang, DanielAdriano Silva, Houdao Zhang, Alexander Yue, YiJing Yan, and Xuhui Huang. Dynamic protein conformations preferentially drive energy transfer along the active chain of the photosystem II reaction centre. Nat. Commun., 5(1):1–9, 2014. [38] Kapil Amarnath, Doran IG Bennett, Anna R Schneider, and Graham R Fleming. Multiscale model of light harvesting by photosystem ii in plants. Proc. Natl. Acad. Sci. U.S.A., 113(5):1156–1161, 2016. [39] Christoph Kreisbeck and Alán AspuruGuzik. Efficiency of energy funneling in the photosystem ii supercomplex of higher plants. Chem. Sci., 7(7):4174–4183, 2016. [40] Vladimir Novoderezhkin, Alessandro Marin, and Rienk van Grondelle. Intraand intermonomeric transfers in the light harvesting LHCII complex: the redfield– förster picture. Phys. Chem. Chem. Phys., 13(38):17093–17103, 2011. [41] Vladimir I Novoderezhkin and Rienk van Grondelle. Physical origins and models of energy transfer in photosynthetic lightharvesting. Phys. Chem. Chem. Phys., 12(27):7352–7365, 2010. [42] Mino Yang and Graham R Fleming. Influence of phonons on exciton transfer dynamics: comparison of the redfield, förster, and modified redfield equations. Chem. Phys., 282(1):163 180, 2002. [43] Frank C Spano. The spectral signatures of frenkel polarons in hand jaggregates. Acc. Chem. Res., 43(3):429–439, 2010. [44] YuanChung Cheng and Graham R Fleming. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem., 60(1):241–262, 2009. [45] ME Madjet, A Abdurahman, and T Renger. Interpigment coulomb couplings from abinitio transition charges: application to strongly coupled pigments in photosynthetic antennae and reaction centers. J. Phys. Chem. B ., 110:17268, 2006. [46] Thomas Renger. Theory of excitation energy transfer: from structure to function. Photosynthesis. Research., 102(2):471–485, 2009. [47] Gregory D Scholes, Carles Curutchet, Benedetta Mennucci, Roberto Cammi, and Jacopo Tomasi. How solvent controls electronic energy transfer and light harvesting. J. Phys. Chem. B ., 111(25):6978–6982, 2007. [48] Vladimir I Novoderezhkin. Excitation dynamics in photosynthetic lightharvesting complex b850: exact solution versus redfield and förster limits. Phys. Chem. Chem. Phys., 25(20):14219–14231, 2023. [49] Gregory D Scholes. Longrange resonance energy transfer in molecular systems. Ann. Rev. Phys. Chem., 54(1):57–87, 2003. [50] Seogjoo Jang, Marshall D Newton, and Robert J Silbey. Multichromophoric förster resonance energy transfer. Phys. Rev. Lett., 92(21):218301, 2004. [51] Jian Ma and Jianshu Cao. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. i. full cumulant expansions and systembath entanglement. J. Chem. Phys., 142(9), 2015. [52] Jian Ma, Jeremy Moix, and Jianshu Cao. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. ii. hybrid cumulant expansion. J. Chem. Phys., 142(9), 2015. [53] Jeremy M Moix, Jian Ma, and Jianshu Cao. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. iii. exact stochastic path integral evaluation. J. Chem. Phys., 142(9), 2015. [54] Wei Min Zhang, Torsten Meier, Vladimir Chernyak, and Shaul Mukamel. Excitonmigration and threepulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J. Chem. Phys., 108(18):7763–7774, 1998. [55] YuHsien HwangFu, Wei Chen, and YuanChung Cheng. A coherent modified redfield theory for excitation energy transfer in molecular aggregates. Chem. Phys., 447:46–53, 2015. [56] Peter Hamm. Principles of nonlinear optical spectroscopy: A practical approach or: Mukamel for dummies. University of Zurich, 41(5):77, 2005. [57] Frank Müh, Dominik Lindorfer, Marcel Schmidt am Busch, and Thomas Renger. Towards a structurebased exciton hamiltonian for the CP29 antenna of photosystem II. Phys. Chem. Chem. Phys., 16(24):11848–11863, 2014. [58] Hiroshi Haramoto, Makoto Matsumoto, and Pierre L'Ecuyer. A fast jump ahead algorithm for linear recurrences in a polynomial space. In Sequences and Their ApplicationsSETA 2008: 5th International Conference Lexington, KY, USA, September 1418, 2008 Proceedings 5, pages 290–298. Springer, 2008. [59] Frank Müh, Melanie Plöckinger, and Thomas Renger. Electrostatic asymmetry in the reaction center of photosystem II. J. Phys. Chem. Lett., 8(4):850–858, 2017. [60] Frank Müh, Melanie Plöckinger, Helmut Ortmayer, Marcel Schmidt Am Busch, Dominik Lindorfer, Julian Adolphs, and Thomas Renger. The quest for energy traps in the CP43 antenna of photosystem II. J. Photochem. Photobiol. B: Biol., 152:286–300, 2015. [61] Frank Müh and Thomas Renger. Refined structurebased simulation of plant lightharvesting complex II: linear optical spectra of trimers and aggregates. Biochim. Biophys. Acta Bioenerg., 1817(8):1446–1460, 2012. [62] Adam G Koziol, Tudor Borza, KenIchiro Ishida, Patrick Keeling, Robert W Lee, and Dion G Durnford. Tracing the evolution of the lightharvesting antennae in chlorophyll a/bcontaining organisms. Plant Physiol., 143(4):1802–1816, 2007. [63] Vladimir I Novoderezhkin, Elisabet Romero, Jan P Dekker, and Rienk van Grondelle. Multiple chargeseparation pathways in photosystem II: Modeling of transient absorption kinetics. ChemPhysChem, 12(3):681–688, 2011. [64] Grzegorz Raszewski and Thomas Renger. Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J. Am. Chem. Soc., 130(13):4431–4446, 2008. [65] Mahboobe Jassas, Tonu Reinot, Adam Kell, and Ryszard Jankowiak. Toward an understanding of the excitonic structure of the CP47 antenna protein complex of photosystem II revealed via circularly polarized luminescence. J. Phys. Chem. B ., 121(17):4364–4378, 2017. [66] Maria J Schilstra, Jon Nield, Wolfgang Dörner, Ben Hankamer, Maria Carradus, Laura Barter, James Barber, and David R Klug. Similarity between electron donor side reactions in the solubilized photosystem II–LHC II supercomplex and photosystemIIcontaining membranes. Photosynth. Res., 60(2):191–198, 1999. [67] Chern Chuang, Jasper Knoester, and Jianshu Cao. Scaling relations and optimization of excitonic energy transfer rates between onedimensional molecular aggregates. J. Phys. Chem. B, 118(28):7827–7834, 2014. [68] Roman Kouřil, Emilie Wientjes, Jelle B Bultema, Roberta Croce, and Egbert J Boekema. Highlight vs. lowlight: effect of light acclimation on photosystem II composition and organization in arabidopsis thaliana. Biochim. Biophys. Acta Bioenerg., 1827(3):411–419, 2013. [69] LiMing Tan, Jie Yu, Tomoaki Kawakami, Masayuki Kobayashi, Peng Wang, ZhengYu WangOtomo, and JianPing Zhang. New insights into the mechanism of uphill excitation energy transfer from core antenna to reaction center in purple photosynthetic bacteria. J. Phys. Chem. Lett., 9(12):3278–3284, 2018.
|