|
1.Alvarez, D., et al., IPF lung fibroblasts have a senescent phenotype. Am J Physiol Lung Cell Mol Physiol, 2017. 313(6): p. L1164-L1173. 2Quinn, C., A. Wisse, and S.T. Manns, Clinical course and management of idiopathic pulmonary fibrosis. Multidiscip Respir Med, 2019. 14: p. 35. 3Martinez, F.J., et al., Idiopathic pulmonary fibrosis. Nat Rev Dis Primers, 2017. 3: p. 17074. 4van Manen, M.J., et al., Optimizing quality of life in patients with idiopathic pulmonary fibrosis. Ther Adv Respir Dis, 2017. 11(3): p. 157-169. 5Kreuter, M., et al., The clinical course of idiopathic pulmonary fibrosis and its association to quality of life over time: longitudinal data from the INSIGHTS-IPF registry. Respir Res, 2019. 20(1): p. 59. 6Kreuter, M., et al., Health related quality of life in patients with idiopathic pulmonary fibrosis in clinical practice: insights-IPF registry. Respir Res, 2017. 18(1): p. 139. 7Chimenti, I., et al., Editorial: Fibrosis and Inflammation in Tissue Pathophysiology. Front Physiol, 2021. 12: p. 830683. 8Bringardner, B.D., et al., The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal, 2008. 10(2): p. 287-301. 9Wynn, T.A., Cellular and molecular mechanisms of fibrosis. J Pathol, 2008. 214(2): p. 199-210. 10Phan, T.H.G., et al., Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci, 2021. 78(5): p. 2031-2057. 11Shi, J., et al., Distinct Roles of Wnt/beta-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Mediators Inflamm, 2017. 2017: p. 3520581. 12Konigshoff, M., et al., Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One, 2008. 3(5): p. e2142. 13Kliment, C.R. and T.D. Oury, Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med, 2010. 49(5): p. 707-17. 14Knuppel, L., et al., A Novel Antifibrotic Mechanism of Nintedanib and Pirfenidone. Inhibition of Collagen Fibril Assembly. Am J Respir Cell Mol Biol, 2017. 57(1): p. 77-90. 15Karimi-Shah, B.A. and B.A. Chowdhury, Forced vital capacity in idiopathic pulmonary fibrosis--FDA review of pirfenidone and nintedanib. N Engl J Med, 2015. 372(13): p. 1189-91. 16Galli, J.A., et al., Pirfenidone and nintedanib for pulmonary fibrosis in clinical practice: Tolerability and adverse drug reactions. Respirology, 2017. 22(6): p. 1171-1178. 17Chen, C.H., et al., The safety of nintedanib for the treatment of interstitial lung disease: A systematic review and meta-analysis of randomized controlled trials. PLoS One, 2021. 16(5): p. e0251636. 18Pereira, C.A.C., et al., Safety and tolerability of nintedanib in patients with idiopathic pulmonary fibrosis in Brazil. J Bras Pneumol, 2019. 45(5): p. e20180414. 19Moor, C.C., et al., Patient expectations, experiences and satisfaction with nintedanib and pirfenidone in idiopathic pulmonary fibrosis: a quantitative study. Respir Res, 2020. 21(1): p. 196. 20Collins, B.F. and G. Raghu, Antifibrotic therapy for fibrotic lung disease beyond idiopathic pulmonary fibrosis. Eur Respir Rev, 2019. 28(153). 21Serra Lopez-Matencio, J.M., et al., Pharmacological Interactions of Nintedanib and Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis in Times of COVID-19 Pandemic. Pharmaceuticals (Basel), 2021. 14(8). 22Glassberg, M.K., Overview of idiopathic pulmonary fibrosis, evidence-based guidelines, and recent developments in the treatment landscape. Am J Manag Care, 2019. 25(11 Suppl): p. S195-S203. 23Millan-Billi, P., et al., Comorbidities, Complications and Non-Pharmacologic Treatment in Idiopathic Pulmonary Fibrosis. Med Sci (Basel), 2018. 6(3). 24Spruit, M.A., et al., Rehabilitation and palliative care in lung fibrosis. Respirology, 2009. 14(6): p. 781-7. 25Witt, O., et al., HDAC family: What are the cancer relevant targets? Cancer Lett, 2009. 277(1): p. 8-21. 26Yoon, S. and G.H. Eom, HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam Med J, 2016. 52(1): p. 1-11. 27Yang, X.J. and E. Seto, The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol, 2008. 9(3): p. 206-18. 28Branton, M.H. and J.B. Kopp, TGF-beta and fibrosis. Microbes Infect, 1999. 1(15): p. 1349-65. 29Bonewald, L.F., Regulation and regulatory activities of transforming growth factor beta. Crit Rev Eukaryot Gene Expr, 1999. 9(1): p. 33-44. 30Hagimoto, N., et al., TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol, 2002. 168(12): p. 6470-8. 31Yu, H., et al., Transgelin is a direct target of TGF-beta/Smad3-dependent epithelial cell migration in lung fibrosis. FASEB J, 2008. 22(6): p. 1778-89. 32Coker, R.K., et al., Transforming growth factors-beta 1, -beta 2, and -beta 3 stimulate fibroblast procollagen production in vitro but are differentially expressed during bleomycin-induced lung fibrosis. Am J Pathol, 1997. 150(3): p. 981-91. 33Coker, R.K., et al., Localisation of transforming growth factor beta1 and beta3 mRNA transcripts in normal and fibrotic human lung. Thorax, 2001. 56(7): p. 549-56. 34Tatler, A.L. and G. Jenkins, TGF-beta activation and lung fibrosis. Proc Am Thorac Soc, 2012. 9(3): p. 130-6. 35Khalil, N. and A.H. Greenberg, The role of TGF-beta in pulmonary fibrosis. Ciba Found Symp, 1991. 157: p. 194-207; discussion 207-11. 36Wu, C.F., et al., Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol, 2013. 182(1): p. 118-31. 37Lee, T.H., et al., Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFbeta signaling through TGFBR1 stabilization. Nat Commun, 2020. 11(1): p. 4254. 38Chang, Y.T., et al., DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Invest, 2016. 126(2): p. 721-31. 39Shih, Y.C., et al., Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation. Circ Res, 2018. 122(8): p. 1052-1068. 40Chen, Y.T., et al., Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol, 2014. 25(12): p. 2847-58. 41Zhang, W., et al., Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 attenuates TGFbeta1 induced lung and tumor fibrosis. Cell Death Dis, 2020. 11(9): p. 765. 42Sanders, Y.Y., et al., Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur Respir J, 2014. 43(5): p. 1448-58. 43Wang, Z., et al., Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? Eur Respir J, 2009. 34(1): p. 145-55. 44Yoon, S., G. Kang, and G.H. Eom, HDAC Inhibitors: Therapeutic Potential in Fibrosis-Associated Human Diseases. Int J Mol Sci, 2019. 20(6). 45Kee, H.J. and H. Kook, Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy. J Biomed Biotechnol, 2011. 2011: p. 928326. 46Lyu, X., et al., HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther Adv Chronic Dis, 2019. 10: p. 2040622319862697. 47Van Beneden, K., et al., HDAC inhibitors in experimental liver and kidney fibrosis. Fibrogenesis Tissue Repair, 2013. 6(1): p. 1. 48Campiani, G., et al., Harnessing the Role of HDAC6 in Idiopathic Pulmonary Fibrosis: Design, Synthesis, Structural Analysis, and Biological Evaluation of Potent Inhibitors. J Med Chem, 2021. 64(14): p. 9960-9988. 49Saito, S., et al., HDAC8 inhibition ameliorates pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2019. 316(1): p. L175-L186. 50Ho, T.C.S., A.H.Y. Chan, and A. Ganesan, Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. J Med Chem, 2020. 63(21): p. 12460-12484. 51Xu, S., et al., Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct Target Ther, 2021. 6(1): p. 54. 52Huang, Y.H., et al., Activation of Mir-29a in Activated Hepatic Stellate Cells Modulates Its Profibrogenic Phenotype through Inhibition of Histone Deacetylases 4. PLoS One, 2015. 10(8): p. e0136453. 53Lemos, M. and N. Stefanova, Histone Deacetylase 6 and the Disease Mechanisms of alpha-Synucleinopathies. Front Synaptic Neurosci, 2020. 12: p. 586453. 54LoPresti, P., HDAC6 in Diseases of Cognition and of Neurons. Cells, 2020. 10(1). 55Ran, J. and J. Zhou, Targeted inhibition of histone deacetylase 6 in inflammatory diseases. Thorac Cancer, 2019. 10(3): p. 405-412. 56Aldana-Masangkay, G.I. and K.M. Sakamoto, The role of HDAC6 in cancer. J Biomed Biotechnol, 2011. 2011: p. 875824. 57Li, T., et al., Histone deacetylase 6 in cancer. J Hematol Oncol, 2018. 11(1): p. 111. 58Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42. 59Gu, S., et al., Loss of alpha-Tubulin Acetylation Is Associated with TGF-beta-induced Epithelial-Mesenchymal Transition. J Biol Chem, 2016. 291(10): p. 5396-405. 60Williams, S.M., et al., Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol, 2014. 67: p. 112-25. 61Gatla, H.R., et al., Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int J Mol Sci, 2019. 20(5). 62Chen, X., et al., Histone deacetylase 6 inhibition mitigates renal fibrosis by suppressing TGF-beta and EGFR signaling pathways in obstructive nephropathy. Am J Physiol Renal Physiol, 2020. 319(6): p. F1003-F1014. 63Mora, A.L., et al., Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov, 2017. 16(11): p. 810. 64Korfei, M., et al., Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibitor panobinostat versus the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. PLoS One, 2018. 13(11): p. e0207915. 65Lederer, D.J. and F.J. Martinez, Idiopathic Pulmonary Fibrosis. N Engl J Med, 2018. 378(19): p. 1811-1823. 66Yu, C.W., et al., Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer's disease. J Med Chem, 2013. 56(17): p. 6775-91. 67Yu, C.W., et al., Quinazolin-2,4-dione-Based Hydroxamic Acids as Selective Histone Deacetylase-6 Inhibitors for Treatment of Non-Small Cell Lung Cancer. J Med Chem, 2019. 62(2): p. 857-874. 68Fruhauf, A. and F.J. Meyer-Almes, Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules, 2021. 26(17). 69Geurs, S., et al., Identification of mercaptoacetamide-based HDAC6 inhibitors via a lean inhibitor strategy: screening, synthesis, and biological evaluation. Chem Commun (Camb), 2022. 58(42): p. 6239-6242. 70Tavares, M.T., A.P. Kozikowski, and S. Shen, Mercaptoacetamide: A promising zinc-binding group for the discovery of selective histone deacetylase 6 inhibitors. Eur J Med Chem, 2021. 209: p. 112887. 71Lv, W., et al., Design and Synthesis of Mercaptoacetamides as Potent, Selective, and Brain Permeable Histone Deacetylase 6 Inhibitors. ACS Med Chem Lett, 2017. 8(5): p. 510-515. 72Wollin, L., et al., Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther, 2014. 349(2): p. 209-20. 73Okudela, K., et al., The role of p53 in bleomycin-induced DNA damage in the lung. A comparative study with the small intestine. Am J Pathol, 1999. 155(4): p. 1341-51. 74Chen, H., et al., Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats. Front Pharmacol, 2022. 13: p. 1070736. 75Tashiro, J., et al., Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front Med (Lausanne), 2017. 4: p. 118. 76Shan, B., et al., Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. J Biol Chem, 2008. 283(30): p. 21065-73. 77van Breemen, R.B. and Y. Li, Caco-2 cell permeability assays to measure drug absorption. Expert Opin Drug Metab Toxicol, 2005. 1(2): p. 175-85. 78Valenti, M.T., et al., The effect of bisphosphonates on gene expression: GAPDH as a housekeeping or a new target gene? BMC Cancer, 2006. 6: p. 49. 79Zhang, J.Y., et al., Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med, 2015. 12(1): p. 10-22. 80Weaver, R.J., et al., Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov, 2020. 19(2): p. 131-148. 81Garbuzenko, D.V. and N.O. Arefyev, Hepatic hydrothorax: An update and review of the literature. World J Hepatol, 2017. 9(31): p. 1197-1204.
|