|
[1]A.G. Hudetz, General Anesthesia and Human Brain Connectivity, Brain Connect. 2 (2012) 291–302. https://doi.org/10.1089/brain.2012.0107. [2]A.F. Merry, S.J. Mitchell, Complications of anaesthesia, Anaesthesia. 73 (2018) 7–11. https://doi.org/10.1111/anae.14135. [3]A.S. Patel, A. Bergman, B.W. Moore, U. Haglund, The Economic Burden of Complications Occurring in Major Surgical Procedures: a Systematic Review, Appl Health Econ Health Policy. 11 (2013) 577–592. https://doi.org/10.1007/s40258-013-0060-y. [4]M.B. Ferschl, A. Tung, B. Sweitzer, D. Huo, D.B. Glick, Preoperative Clinic Visits Reduce Operating Room Cancellations and Delays, Anesthesiology. 103 (2005) 855–859. https://doi.org/10.1097/00000542-200510000-00025. [5]R.M. Pearse, P.A. Clavien, N. Demartines, L.A. Fleisher, M. Grocott, et al., Global patient outcomes after elective surgery: Prospective cohort study in 27 low-, middle- and high-income countries, Br J Anaesth. 117 (2016) 601–609. https://doi.org/10.1093/bja/aew316. [6]M.P.W. Grocott, R.M. Pearse, Perioperative medicine: the future of anaesthesia?, (2012). [7]K.Y. Bilimoria, Y. Liu, J.L. Paruch, L. Zhou, T.E. Kmiecik, et al., Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons, J Am Coll Surg. 217 (2013) 833–842. [8]Y. le Manach, G. Collins, R. Rodseth, C. le Bihan-Benjamin, B. Biccard, et al., Preoperative Score to Predict Postoperative Mortality (POSPOM): Derivation and validation, Anesthesiology. 124 (2016) 570–579. https://doi.org/10.1097/ALN.0000000000000972. [9]J.E. Dalton, A. Kurz, A. Turan, E.J. Mascha, D.I. Sessler, et al., Development and Validation of a Risk Quantification Index for 30-Day Postoperative Mortality and Morbidity in Noncardiac Surgical Patients, Anesthesiology. 114 (2011) 1336–1344. https://doi.org/10.1097/ALN.0b013e318219d5f9. [10]D.I. Sessler, J.C. Sigl, P.J. Manberg, S.D. Kelley, A. Schubert, et al., Broadly Applicable Risk Stratification System for Predicting Duration of Hospitalization and Mortality, Anesthesiology. 113 (2010) 1026–1037. https://doi.org/10.1097/ALN.0b013e3181f79a8d. [11]B.L. Hill, R. Brown, E. Gabel, N. Rakocz, C. Lee, et al., An automated machine learning-based model predicts postoperative mortality using readily-extractable preoperative electronic health record data, Br J Anaesth. 123 (2019) 877–886. https://doi.org/10.1016/j.bja.2019.07.030. [12]C.K. Lee, I. Hofer, E. Gabel, P. Baldi, M. Cannesson, Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality, Anesthesiology. 129 (2018) 649–662. https://doi.org/10.1097/ALN.0000000000002186. [13]B.A. Fritz, Z. Cui, M. Zhang, Y. He, Y. Chen, et al., Deep-learning model for predicting 30-day postoperative mortality, Br J Anaesth. 123 (2019) 688–695. https://doi.org/10.1016/j.bja.2019.07.025. [14]J. Bucerius, J.F. Gummert, M.A. Borger, T. Walther, N. Doll, et al., Stroke after cardiac surgery: a risk factor analysis of 16,184 consecutive adult patients, Ann Thorac Surg. 75 (2003) 472–478. https://doi.org/10.1016/S0003-4975(02)04370-9. [15]K.B. Kaufmann, T. Loop, S. Heinrich, Risk factors for post‐operative pulmonary complications in lung cancer patients after video‐assisted thoracoscopic lung resection: Results of the German Thorax Registry, Acta Anaesthesiol Scand. 63 (2019) 1009–1018. https://doi.org/10.1111/aas.13388. [16]G.E. Weissman, R.A. Hubbard, L.H. Ungar, M.O. Harhay, C.S. Greene, et al., Inclusion of Unstructured Clinical Text Improves Early Prediction of Death or Prolonged ICU Stay, Crit Care Med. 46 (2018) 1125—1132. https://doi.org/10.1097/ccm.0000000000003148. [17]D. Zhang, C. Yin, J. Zeng, X. Yuan, P. Zhang, Combining structured and unstructured data for predictive models: a deep learning approach, BMC Med Inform Decis Mak. 20 (2020) 1–11. [18]D. Mayhew, V. Mendonca, B.V.S. Murthy, A review of ASA physical status–historical perspectives and modern developments, Anaesthesia. 74 (2019) 373–379. [19]ASA House of Delegates, ASA physical status classification system, ASA House of Delegates. (2014). https://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system (accessed June 5, 2022). [20]S.C. FARROW, F.G.R. FOWKES, J.N. LUNN, I.B. ROBERTSON, P. SAMUEL, EPIDEMIOLOGY IN ANAESTHESIA II: FACTORS AFFECTING MORTALITY IN HOSPITAL, Br J Anaesth. 54 (1982) 811–817. https://doi.org/10.1093/bja/54.8.811. [21]A. Sankar, S.R. Johnson, W.S. Beattie, G. Tait, D.N. Wijeysundera, Reliability of the American Society of Anesthesiologists physical status scale in clinical practice, Br J Anaesth. 113 (2014) 424–432. https://doi.org/10.1093/bja/aeu100. [22]B. Horvath, B. Kloesel, M.M. Todd, D.J. Cole, R.C. Prielipp, The Evolution, Current Value, and Future of the American Society of Anesthesiologists Physical Status Classification System, Anesthesiology. 135 (2021) 904–919. https://doi.org/10.1097/ALN.0000000000003947. [23]E.E. Hurwitz, M. Simon, S.R. Vinta, C.F. Zehm, S.M. Shabot, et al., Adding examples to the ASA-physical status classification improves correct assignment to patients, Anesthesiology. 126 (2017) 614–622. [24]C. Curatolo, A. Goldberg, D. Maerz, H.M. Lin, H. Shah, et al., ASA physical status assignment by non-anesthesia providers: Do surgeons consistently downgrade the ASA score preoperatively?, J Clin Anesth. 38 (2017) 123–128. https://doi.org/10.1016/j.jclinane.2017.02.002. [25]M.J.G. Sigakis, E.A. Bittner, J.P. Wanderer, Validation of a risk stratification index and risk quantification index for predicting patient outcomes: in-hospital mortality, 30-day mortality, 1-year mortality, and length-of-stay, Anesthesiology. 119 (2013) 525–540. [26]D.A. Hashimoto, E. Witkowski, L. Gao, O. Meireles, G. Rosman, Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations, Anesthesiology. 132 (2020) 379–394. [27]S. Kendale, P. Kulkarni, A.D. Rosenberg, J. Wang, Supervised Machine-learning Predictive Analytics for Prediction of Postinduction Hypotension, Anesthesiology. 129 (2018) 675–688. https://doi.org/10.1097/ALN.0000000000002374. [28]T. van den Bosch, A.-L.K. Warps, M.P.M. de Nerée tot Babberich, C. Stamm, B.F. Geerts, et al., Predictors of 30-Day Mortality Among Dutch Patients Undergoing Colorectal Cancer Surgery, 2011-2016, JAMA Netw Open. 4 (2021). https://doi.org/10.1001/jamanetworkopen.2021.7737. [29]H. Zhao, J. You, Y. Peng, Y. Feng, Machine Learning Algorithm Using Electronic Chart-Derived Data to Predict Delirium After Elderly Hip Fracture Surgeries: A Retrospective Case-Control Study, Front Surg. 8 (2021). https://doi.org/10.3389/fsurg.2021.634629. [30]Y. Wang, L. Lei, M. Ji, J. Tong, C.M. Zhou, et al., Predicting postoperative delirium after microvascular decompression surgery with machine learning, J Clin Anesth. 66 (2020). https://doi.org/10.1016/j.jclinane.2020.109896. [31]S. Lee, H.C. Lee, Y.S. Chu, S.W. Song, G.J. Ahn, et al., Deep learning models for the prediction of intraoperative hypotension, Br J Anaesth. 126 (2021) 808–817. https://doi.org/10.1016/j.bja.2020.12.035. [32]S. Datta, T.J. Loftus, M.M. Ruppert, C. Giordano, G.R. Upchurch, et al., Added Value of Intraoperative Data for Predicting Postoperative Complications: The MySurgeryRisk PostOp Extension, Journal of Surgical Research. 254 (2020) 350–363. https://doi.org/10.1016/j.jss.2020.05.007. [33]J. Ye, L. Yao, J. Shen, R. Janarthanam, Y. Luo, Predicting mortality in critically ill patients with diabetes using machine learning and clinical notes, BMC Med Inform Decis Mak. 20 (2020) 1–7. [34]A. Bonde, K.M. Varadarajan, N. Bonde, A. Troelsen, O.K. Muratoglu, et al., Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study, Lancet Digit Health. 3 (2021) e471–e485. https://doi.org/10.1016/S2589-7500(21)00084-4. [35]X. Yan, J. Goldsmith, S. Mohan, Z.A. Turnbull, R.E. Freundlich, et al., Impact of Intraoperative Data on Risk Prediction for Mortality After Intra-Abdominal Surgery, Anesth Analg. 134 (2021) 102–113. [36]A.R. Kang, J. Lee, W. Jung, M. Lee, S.Y. Park, et al., Development of a prediction model for hypotension after induction of anesthesia using machine learning, PLoS One. 15 (2020) e0231172. [37]T. Konishi, T. Goto, M. Fujiogi, N. Michihata, R. Kumazawa, et al., New machine learning scoring system for predicting postoperative mortality in gastroduodenal ulcer perforation: A study using a Japanese nationwide inpatient database, Surgery. (2021). https://doi.org/10.1016/J.SURG.2021.08.031. [38]A. Rajkomar, E. Oren, K. Chen, A.M. Dai, N. Hajaj, et al., Scalable and accurate deep learning with electronic health records, NPJ Digit Med. 1 (2018) 18. https://doi.org/10.1038/s41746-018-0029-1. [39]J.B. Bijker, S. Persoon, L.M. Peelen, K.G.M. Moons, C.J. Kalkman, et al., Intraoperative Hypotension and Perioperative Ischemic Stroke after General Surgery, Anesthesiology. 116 (2012) 658–664. https://doi.org/10.1097/ALN.0b013e3182472320. [40]M. Walsh, P.J. Devereaux, A.X. Garg, A. Kurz, A. Turan, et al., Relationship between Intraoperative Mean Arterial Pressure and Clinical Outcomes after Noncardiac Surgery, Anesthesiology. 119 (2013) 507–515. https://doi.org/10.1097/ALN.0b013e3182a10e26. [41]E.J. Mascha, D. Yang, S. Weiss, D.I. Sessler, Intraoperative Mean Arterial Pressure Variability and 30-day Mortality in Patients Having Noncardiac Surgery, Anesthesiology. 123 (2015) 79–91. https://doi.org/10.1097/ALN.0000000000000686. [42]A. Gregory, W.H. Stapelfeldt, A.K. Khanna, N.J. Smischney, I.J. Boero, et al., Intraoperative Hypotension Is Associated with Adverse Clinical Outcomes after Noncardiac Surgery, Anesth Analg. (2021) 1654–1665. https://doi.org/10.1213/ANE.0000000000005250. [43]B.A. Fritz, M. Abdelhack, C.R. King, Y. Chen, M.S. Avidan, Update to ‘Deep-learning model for predicting 30-day postoperative mortality’ (Br J Anaesth 2019; 123: 688–95), Br J Anaesth. 125 (2020) e230–e231. https://doi.org/10.1016/j.bja.2020.04.010. [44]T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Adv Neural Inf Process Syst, 2013: pp. 3111–3119. [45]J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: pp. 1532–1543. [46]M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, et al., Deep contextualized word representations, ArXiv Preprint ArXiv:1802.05365. (2018). [47]J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, ArXiv Preprint ArXiv:1810.04805. (2018). [48]Y. Si, J. Wang, H. Xu, K. Roberts, Enhancing clinical concept extraction with contextual embeddings, Journal of the American Medical Informatics Association. 26 (2019) 1297–1304. https://doi.org/10.1093/jamia/ocz096. [49]J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, et al., BioBERT: a pre-trained biomedical language representation model for biomedical text mining, (2019). https://doi.org/10.1093/bioinformatics/btz682. [50]E. Alsentzer, J.R. Murphy, W. Boag, W.-H. Weng, D. Jin, et al., Publicly available clinical BERT embeddings, ArXiv Preprint ArXiv:1904.03323. (2019). [51]Y.P. Chen, Y.Y. Chen, J.J. Lin, C.H. Huang, F. Lai, Modified bidirectional encoder representations from transformers extractive summarization model for hospital information systems based on character-level tokens (AlphaBERT): Development and performance evaluation, JMIR Med Inform. 8 (2020). https://doi.org/10.2196/17787. [52]P.-F. Chen, S.-M. Wang, W.-C. Liao, L.-C. Kuo, K.-C. Chen, et al., Automatic ICD-10 Coding and Training System: Deep Neural Network Based on Supervised Learning, JMIR Med Inform. 9 (2021) e23230. https://doi.org/10.2196/23230. [53]P.-F. Chen, L. Chen, Y.-K. Lin, G.-H. Li, F. Lai, et al., Predicting Postoperative Mortality With Deep Neural Networks and Natural Language Processing: Model Development and Validation, JMIR Med Inform. 10 (2022) e38241. https://doi.org/10.2196/38241. [54]E. Loper, S. Bird, Nltk: The natural language toolkit, ArXiv Preprint Cs/0205028. (2002). [55]N. v Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, Journal of Artificial Intelligence Research. 16 (2002) 321–357. [56]T. Saito, M. Rehmsmeier, The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets, PLoS One. 10 (2015) e0118432. [57]B. Ozenne, F. Subtil, D. Maucort-Boulch, The precision–recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases, J Clin Epidemiol. 68 (2015) 855–859. https://doi.org/https://doi.org/10.1016/j.jclinepi.2015.02.010. [58]E.R. DeLong, D.M. DeLong, D.L. Clarke-Pearson, Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, Biometrics. (1988) 837–845. [59]K. Boyd, K.H. Eng, C.D. Page, Area under the Precision-Recall Curve: Point Estimates and Confidence Intervals, in: H. Blockeel, K. Kersting, S. Nijssen, F. Železný (Eds.), Machine Learning and Knowledge Discovery in Databases, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013: pp. 451–466. [60]L. van der Maaten, G. Hinton, Visualizing data using t-SNE., Journal of Machine Learning Research. 9 (2008). [61]M. Jin, M.T. Bahadori, A. Colak, P. Bhatia, B. Celikkaya, et al., Improving hospital mortality prediction with medical named entities and multimodal learning, ArXiv Preprint ArXiv:1811.12276. (2018). [62]S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: pp. 4768–4777. [63]F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, et al., Scikit-learn: Machine learning in Python, The Journal of Machine Learning Research. 12 (2011) 2825–2830. [64]A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, et al., Pytorch: An imperative style, high-performance deep learning library, Adv Neural Inf Process Syst. 32 (2019). [65]J.E. Dalton, A. Kurz, A. Turan, E.J. Mascha, D.I. Sessler, et al., Development and Validation of a Risk Quantification Index for 30-Day Postoperative Mortality and Morbidity in Noncardiac Surgical Patients, Survey of Anesthesiology. 56 (2012) 193. [66]P.-F. Chen, T.-L. He, S.-C. Lin, Y.-C. Chu, C.-T. Kuo, et al., Training a Deep Contextualized Language Model for International Classification of Diseases, 10th Revision Classification via Federated Learning: Model Development and Validation Study, JMIR Med Inform. 10 (2022) e41342. https://doi.org/10.2196/41342. [67]P.-F. Chen, K.-C. Chen, W.-C. Liao, F. Lai, T.-L. He, et al., Automatic International Classification of Diseases Coding System: Deep Contextualized Language Model With Rule-Based Approaches, JMIR Med Inform. 10 (2022) e37557. https://doi.org/10.2196/37557. [68]Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, et al., RoBERTa: A Robustly Optimized BERT Pretraining Approach, (2019). [69]S.C. Huang, A. Pareek, S. Seyyedi, I. Banerjee, M.P. Lungren, Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, NPJ Digit Med. 3 (2020). https://doi.org/10.1038/s41746-020-00341-z. [70]B.J. Marafino, M. Park, J.M. Davies, R. Thombley, H.S. Luft, et al., Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data, JAMA Netw Open. 1 (2018). https://doi.org/10.1001/jamanetworkopen.2018.5097. [71]O.J. Bear Don’t Walk IV, T. Sun, A. Perotte, N. Elhadad, Clinically relevant pretraining is all you need, Journal of the American Medical Informatics Association. (2021). https://doi.org/10.1093/jamia/ocab086. [72]H.-I. Lin, M.C. Nguyen, Boosting minority class prediction on imbalanced point cloud data, Applied Sciences. 10 (2020) 973. [73]J.M. Johnson, T.M. Khoshgoftaar, Survey on deep learning with class imbalance, J Big Data. 6 (2019) 1–54. [74]B.K. Beaulieu-Jones, J.H. Moore, P.R.O.-A.A.L.S.C.T. CONSORTIUM, Missing data imputation in the electronic health record using deeply learned autoencoders, in: Pacific Symposium on Biocomputing 2017, World Scientific, 2017: pp. 207–218. [75]B. Xue, D. Li, C. Lu, C.R. King, T. Wildes, et al., Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications, JAMA Netw Open. 4 (2021). https://doi.org/10.1001/jamanetworkopen.2021.2240. [76]M.M. Ali, B.K. Paul, K. Ahmed, F.M. Bui, J.M.W. Quinn, et al., Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison, Comput Biol Med. 136 (2021) 104672. https://doi.org/10.1016/j.compbiomed.2021.104672. [77]N.A. Azit, S. Sahran, V.M. Leow, M. Subramaniam, S. Mokhtar, et al., Prediction of hepatocellular carcinoma risk in patients with type-2 diabetes using supervised machine learning classification model, Heliyon. 8 (2022) e10772. https://doi.org/10.1016/j.heliyon.2022.e10772. [78]S. Uddin, A. Khan, M.E. Hossain, M.A. Moni, Comparing different supervised machine learning algorithms for disease prediction, BMC Med Inform Decis Mak. 19 (2019) 281. https://doi.org/10.1186/s12911-019-1004-8. [79]C.M. Lynch, B. Abdollahi, J.D. Fuqua, A.R. de Carlo, J.A. Bartholomai, et al., Prediction of lung cancer patient survival via supervised machine learning classification techniques, Int J Med Inform. 108 (2017) 1–8. https://doi.org/10.1016/j.ijmedinf.2017.09.013.
|