跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾彥紳
研究生(外文):Yen-Shen Tseng
論文名稱:透過Fresnel 光學模擬來找出先進節點7奈米製程的最佳焦距製程參數範圍
論文名稱(外文):Optimal focal length search of advanced process nodes in 7nm lithography process based on numerical calculation of the Fresnel method
指導教授:曾雪峰曾雪峰引用關係
指導教授(外文):Snow H. Tseng
口試委員:黃定洧蕭惠心
口試委員(外文):Ding-wei HuangHui-Hsin Hsiao
口試日期:2023-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:38
中文關鍵詞:Fresnel
外文關鍵詞:Fresnel
DOI:10.6342/NTU202301175
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於疫情COVID-19影響和供應鏈短缺,並且伴隨著各種大量物聯網、車用半導體、雲端伺服器和深度學習伴隨著大量應用,因而造成半導體[2,3]需求大增,各國積極建設自己國家的半導體廠。其中,在中美貿易情況的惡劣環境下,中國大陸使用DUV可見光光刻機(193 nm波長光源),即使在良率極低的情況下,依然曝出7 nm製程節點,這結果更是令人興奮。在這份研究中,我們使用Fresnel 所提出的光學繞射理論[1,4,5],並搭配開發電腦MATLAB程式做數值計算,來計算並模擬分析DUV可見光光刻機在曝光7 nm製程電路設計圖案在光阻裡的模擬結果。希望能更進一步找出並了解DUV可見光光刻機曝光時候的7 nm製程下良率的最佳製程參數配置。
In this research, we used Matlab to simulate numerical calculation for the 7-nanometer deep ultraviolet (DUV) lithography process by the Fresnel diffraction theory. We used a 193-nanometer wavelength to etch the wafer pattern which was a simple vertical parallel arrangement of plural lines. As a result, we found the basic requirement for the 7-nanometer lithography process. It represented that the Fresnel propagation distance parameter had to meet 200-micrometer to 500-micrometer. We hoped it could be the suggestion for researchers or engineers to apply the DUV lithography process.
致謝............................................................................................... II
中文摘要............................................................................................. III
ABSTRACT ........................................................................................... IV
目錄................................................................................................. V
圖目錄............................................................................................... VI
表目錄............................................................................................... VII
第一章 序論 .......................................................................................... 1
1.1 研究動機.......................................................................................... 1
第二章 研究背景........................................................................................ 2
2.1 光學光刻與半導體製程的發展................................................................. 2
2.2 光刻機中使用之光學系統介紹................................................................. 6
2.3 DUV及EUV的介紹 ............................................................................... 11
第三章 模擬方法 ....................................................................................... 13
3.1 光學繞射光柵介紹................................................................................... 13
3.2 Fresnel method .................................................................................. 20
第四章 模擬結果分析 .................................................................................. 23
4.1 DUV顯影結果 ...................................................................................... 24
4.2 EUV顯影結果 ...................................................................................... 30
第五章 結論與未來展望 ................................................................................. 36
5.1 結論............................................................................................. 36
參考資料............................................................................................. 36
[1] Bourdillon, A., et al., A critical condition in Fresnel diffraction used for ultra-high resolution lithographic printing. Journal of Physics D: Applied Physics, 2000. 33(17): p. 2133.
[2] Deuter, V., et al., Computational proximity lithography with extreme ultraviolet radiation. Optics express, 2020. 28(18): p. 27000-27012.
[3] Muffoletto, R.P., J.M. Tyler, and J.E. Tohline, Shifted Fresnel diffraction for computational holography. Optics Express, 2007. 15(9): p. 5631-5640.
[4] Nesse, T., I. Simonsen, and B. Holst, Nanometer-resolution mask lithography with matter waves: Near-field binary holography. Physical Review Applied, 2019. 11(2): p. 024009.
[5] Tan, X., et al., One-step mask-based diffraction lithography for the fabrication of 3D suspended structures. Nanoscale Research Letters, 2018. 13: p. 1-9.
[6] Mack, C., Photoresist development. Fundamental Principles of Optical Lithography: The Science of Microfabrication, 2008: p. 257-296.
[7] Tobey, A., Wafer stepper steps up yield and resolution in IC lithography. 1979.
[8] Lyman, J., Optical lithography refuses to die. Electronics, 1985. 58(40): p. 36-39.
[9] Fiebach, A., A. Glitzky, and A. Linke, Uniform global bounds for solutions of an implicit Voronoi finite volume method for reaction–diffusion problems. Numerische Mathematik, 2014. 128: p. 31-72.
[10] Fuhrmann, J., et al., Acid diffusion effects between resists in freezing processes used for contact hole patterning. Microelectronic engineering, 2010. 87(5-8): p. 951-954.
[11] Fiebach, A., A. Glitzky, and A. Linke, Convergence of an implicit V oronoi finite volume method for reaction–diffusion problems. Numerical Methods for Partial Differential Equations, 2016. 32(1): p. 141-174.
[12] Thompson, L. and M. Bowden, The lithographic process: the physics. 1983, ACS Publications.
[13] Hu, Y., et al. Research on photo-alignment process of liquid crystal. in 10th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced and Extreme Micro-Nano Manufacturing Technologies. 2021. SPIE.
[14] Dill, F.H., et al., Characterization of positive photoresist. IEEE Transactions on electron devices, 1975. 22(7): p. 445-452.
[15] Shaw, J.M., et al., Negative photoresists for optical lithography. IBM journal of Research and Development, 1997. 41(1.2): p. 81-94.
[16] Popovic, Z.D., R.A. Sprague, and G.N. Connell, Technique for monolithic fabrication of microlens arrays. Applied optics, 1988. 27(7): p. 1281-1284.
[17] Sangwal, K., Etching of crystals: theory, experiment and application. 2012: Elsevier.
[18] Voelkel, R. Micro-optics: enabling technology for illumination shaping in optical lithography. in Optical Microlithography XXVII. 2014. SPIE.
[19] Meiling, H., et al. Development of the ASML EUV alpha demo tool. in Emerging Lithographic Technologies IX. 2005. International Society for Optics and Photonics.
[20] Chopra, J., Analysis of lithography based approaches in development of semi conductors. arXiv preprint arXiv:1502.05887, 2015.
[21] Harriott, L.R., Limits of lithography. Proceedings of the IEEE, 2001. 89(3): p. 366-374.
[22] de Zwart, G., et al. Performance of a step-and-scan system for DUV lithography. in Optical Microlithography X. 1997. International Society for Optics and Photonics.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文