( 您好!臺灣時間:2024/07/22 16:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Chun-Yung Hsu
論文名稱(外文):Impacts of Environmental Conditions and Phylogenetic Constraints on Moth Thermal Tolerances and Distributions
指導教授(外文):Sheng-Feng Shen
口試委員(外文):I-Ching ChenHui-Yu WangJen-Pan Huang
外文關鍵詞:Anthropogenic climate changethermal traitselevation distributionphylogenetic niche conservatismclimatic variability hypothesis
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
人為氣候變遷正在導致生物多樣性與生態系統的劇烈變動,更加凸顯深入了解物種對溫度變化反應的急迫性。本研究探討環境因素、演化過程和熱性狀之間複雜的交互作用,以及這些因素如何影響物種的分佈和對氣候變遷的韌性。我們在中國、臺灣和馬來西亞的山區進行了大規模的野外實驗,利用水浴槽實際測量蛾類的臨界溫度極限。我們在不同海拔高度設置Robinson式陷阱,收集物種的海拔分佈數據,並利用iButton記錄了當地的微氣候數據。我們使用系統發育比較方法和線性混合效應模型,以瞭解影響熱性狀和分佈的變量。與初始假設相反,我們發現環境條件比演化更能影響熱性狀和分佈,支持系統發育生態位保守主義(phylogenetic niche conservatism)的證據有限,這表示在決定蛾的溫度耐受性和分佈上,當前環境條件是比演化更關鍵的因素。我們也發現熱性狀和海拔分佈之間的顯著相關性,其中體型越大,溫度耐受範圍越窄。與經典的氣候變異度假說 (climate variability hypothesis)相反,我們的研究結果顯示,在影響溫度耐受範圍的環境條件中,平均和極端環境溫度比整體氣候變異更為重要,這表示在快速變遷的氣候下,需要繼續研究這些複雜的關係,對於制定有效的保育策略,以及增加我們對物種在環境變化下大尺度生理反應的理解至關重要。
Anthropogenic climate change is provoking substantial alterations in biodiversity and ecosystems, emphasizing the urgency for an in-depth understanding of species' responses to temperature fluctuations. This research delves into the intricate interaction between environmental elements, evolutionary processes, and species attributes, all of which play pivotal roles in determining species' distribution and resilience to climate change. We executed large-scale field investigations in the mountainous regions of China, Taiwan, and Malaysia, testing the critical thermal boundaries of moths using water baths. Elevation distribution data of species were gathered via Robinson's traps strategically placed along the elevation gradient, and iButtons were employed to document local microclimate data. To discern the critical variables affecting moth thermal characteristics and distribution, we utilized phylogenetically informed methodologies and linear mixed-effect models. Counter to our initial supposition, the data indicated that present environmental conditions exert a more considerable influence on moth thermal traits and distribution patterns than evolutionary lineage. The limited evidence we found for niche conservatism signifies a dominant role of current environmental conditions over hereditary traits in determining moth thermal tolerances and elevation distributions. Our research underscores notable associations between thermal tolerance range and moth distribution, with larger species showing more confined thermal tolerance ranges. Contrary to the classical climatic variability hypothesis, our study accentuates the critical influence of average and extreme environmental temperatures, more than overall climate variability, necessitating ongoing exploration of these intricate relationships amidst rapidly evolving climates. The insights from our research are paramount in devising effective conservation strategies and broadening our comprehension of species' wide-scale physiological adaptations to environmental shifts.
誌謝 i
中文摘要 ii
1.Introduction 1
2. Materials and Methods 5
2.1 Study Areas and Species 5
2.3 Estimating CTmax, CTmin, and thermal tolerance range 6
2.4 Elevation distributions of moths 8
2.5 Climatic data determination 8
2.6 Identification of moth species and morphological measurement 9
2.7 Phylogeny reconstruction 10
2.8 Testing for phylogenetic signal 12
2.9 Phylogenetic generalized least squares (PGLS) 13
2.10 Relationship between elevation distribution range size, thermal traits, body size, and environmental temperature 13
3. Results 14
4. Discussion 18
5. Reference 23
6. Figures 31
7. Tables 38
Addo-Bediako, A., Chown, S. L., & Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1445), 739–745.
Angilletta, M. J., Huey, R. B., & Frazier, M. R. (2010). Thermodynamic Effects on Organismal Performance: Is Hotter Better? Physiological and Biochemical Zoology, 83(2), 197–206.
Adopted, I. P. C. C. (2014). Climate change 2014 synthesis report. IPCC: Geneva, Szwitzerland, 1059-1072.
Araújo, M. B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). Heat freezes niche evolution. Ecology Letters, 16(9), 1206–1219.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1 - 48.
Bennett, J. M., Calosi, P., Clusella-Trullas, S., Martínez, B., Sunday, J., Algar, A. C., Araújo, M. B., Hawkins, B. A., Keith, S., Kühn, I., Rahbek, C., Rodríguez, L., Singer, A., Villalobos, F., Ángel Olalla-Tárraga, M., & Morales-Castilla, I. (2018). GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 5(1), Article 1.
Blomberg, S. P., Garland JR., T., & Ives, A. R. (2003). Testing for Phylogenetic Signal in Comparative Data: Behavioral Traits Are More Labile. Evolution, 57(4), 717–745.
Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., Maio, N. D., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., Plessis, L. du, Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., … Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 15(4), e1006650.
Calosi, P., Bilton, D. T., Spicer, J. I., Votier, S. C., & Atfield, A. (2010). What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). Journal of Animal Ecology, 79(1), 194–204.
Chown, S. L., & Gaston, K. J. (2016). Macrophysiology – progress and prospects. Functional Ecology, 30(3), 330–344.
Cooper, N., Freckleton, R. P., & Jetz, W. (2011). Phylogenetic conservatism of environmental niches in mammals. Proceedings of the Royal Society B: Biological Sciences, 278(1716), 2384–2391.
Dahlgaard, J., Loeschcke, V., Michalak, P., & Justesen, J. (1998). Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Functional Ecology, 12(5), 786–793.
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life. J. Murray.
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science, 332(6025), 53–58.
Dell, A. I., Pawar, S., & Savage, V. M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences, 108(26), 10591–10596.
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), 6668–6672.
Fischer, A. G. (1960). Latitudinal Variations in Organic Diversity. Evolution, 14(1), 64–81.
Forster, J., Hirst, A. G., & Atkinson, D. (2012). Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences, 109(47), 19310–19314.
Frazier, M. R., Huey, R. B., & Berrigan, D. (2006). Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better.” The American Naturalist, 168(4), 512–520.
Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence. The American Naturalist, 160(6), 712–726.
Freckleton, R. P., & Jetz, W. (2008). Space versus phylogeny: Disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society B: Biological Sciences, 276(1654), 21–30.
Gaston, K. J., & Chown, S. L. (1999). Elevation and Climatic Tolerance: A Test Using Dung Beetles. Oikos, 86(3), 584–590.
Gaston, K. J., Chown, S. L., Calosi, P., Bernardo, J., Bilton, D. T., Clarke, A., Clusella‐Trullas, S., Ghalambor, C. K., Konarzewski, M., Peck, L. S., Porter, W. P., Pörtner, H. O., Rezende, E. L., Schulte, P. M., Spicer, J. I., Stillman, J. H., Terblanche, J. S., & van Kleunen, M. (2009). Macrophysiology: A Conceptual Reunification. The American Naturalist, 174(5), 595–612.
Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., & Wang, G. (2006). Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integrative and Comparative Biology, 46(1), 5–17.
González-Tokman, D., Córdoba-Aguilar, A., Dáttilo, W., Lira-Noriega, A., Sánchez-Guillén, R. A., & Villalobos, F. (2020). Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95(3), 802–821.
Grigg, J. W., & Buckley, L. B. (2013). Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biology Letters, 9(2), 20121056.
Gutiérrez-Pesquera, L. M., Tejedo, M., Olalla-Tárraga, M. Á., Duarte, H., Nicieza, A., & Solé, M. (2016). Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. Journal of Biogeography, 43(6), 1166–1178.
Heled, J., & Bouckaert, R. R. (2013). Looking for trees in the forest: Summary tree from posterior samples. BMC Evolutionary Biology, 13(1), 221.
Hochachka, P. W., & Somero, G. N. (2002). Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press.
Huey, R. B., & Kingsolver, J. G. (1989). Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution, 4(5), 131–135.
Hutchinson, G. E. (1981). Introducción a la ecología de poblaciones. Blume.
Janzen, D. H. (1967). Why Mountain Passes are Higher in the Tropics. The American Naturalist, 101(919), 233–249.
Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1618), 20120341.
Kearney, M., & Porter, W. (2009). Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12(4), 334–350.
Kingsolver, J., & Huey, R. (2008). Size, temperature, and fitness: Three rules. Evolutionary Ecology Research.
Leal, M., & Gunderson, A. R. (2012). Rapid Change in the Thermal Tolerance of a Tropical Lizard. The American Naturalist, 180(6), 815–822.
Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5), 573–579.
Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11(10), 995–1003.
Mähn, L. A., Hof, C., Brandl, R., & Pinkert, S. (2023). Beyond latitude: Temperature, productivity and thermal niche conservatism drive global body size variation in Odonata. Global Ecology and Biogeography, 32(5), 656–667.
Martins, E. P., Diniz‐Filho, J. AlexandreF., & Housworth, E. A. (2002). ADAPTIVE CONSTRAINTS AND THE PHYLOGENETIC COMPARATIVE METHOD: A COMPUTER SIMULATION TEST. Evolution, 56(1), 1–13.
Olalla-Tárraga, M. Á., McInnes, L., Bini, L. M., Diniz-Filho, J. A. F., Fritz, S. A., Hawkins, B. A., Hortal, J., Orme, C. D. L., Rahbek, C., Rodríguez, M. Á., & Purvis, A. (2011). Climatic niche conservatism and the evolutionary dynamics in species range boundaries: Global congruence across mammals and amphibians. Journal of Biogeography, 38(12), 2237–2247.
Orme, D. (2023). The caper package: Comparative analysis of phylogenetics and evolution in R.
Overgaard, J., Kristensen, T. N., Mitchell, K. A., & Hoffmann, A. A. (2011). Thermal Tolerance in Widespread and Tropical Drosophila Species: Does Phenotypic Plasticity Increase with Latitude? The American Naturalist, 178(S1), S80–S96.
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), Article 6756.
Paradis, E., Blomberg, S. P., Bolker, B., Brown, J., Claude, J., Cuong, H. S., & Desper, R. (2023). Package ‘ape’. Analyses of phylogenetics and evolution. 2(4), 47.
Parmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 637–669.
Parmesan, C., Morecroft, M. D., Trisurat, Y., Adrian, R., Anshari, G. Z., Arneth, A., Gao, Q., Gonzalez, P., Harris, R., Price, J., Stevens, N., & Talukdar, G. H. (2022). Terrestrial and freshwater ecosystems and their services. In H.-O. Pörtner, D. C. Roberts, M. M. B. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Parmesan, C., & Yohe, G. (2003a). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), Article 6918.
Parmesan, C., & Yohe, G. (2003b). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), Article 6918.
Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371.
Physiology, I. C. on C. (1987). Comparative Physiology: Life in Water and on Land. Springer Science & Business Media.
Pinheiro, J., & Bates, D. (2006). Mixed-Effects Models in S and S-PLUS. Springer Science & Business Media.
Pintanel, P., Tejedo, M., Merino-Viteri, A., Almeida-Reinoso, F., Salinas-Ivanenko, S., López-Rosero, A. C., Llorente, G. A., & Gutiérrez-Pesquera, L. M. (2022). Elevational and local climate variability predicts thermal breadth of mountain tropical tadpoles. Ecography, 2022(5).
Pörtner, H.-O., Roberts, D. C., Tignor, M. M. B., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., & Rama, B. (Eds.). (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 2, 217–223.
Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic Signal, Evolutionary Process, and Rate. Systematic Biology, 57(4), 591–601.
Seebacher, F., & Franklin, C. E. (2012). Determining environmental causes of biological effects: The need for a mechanistic physiological dimension in conservation biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1596), 1607–1614.
Seebacher, F., White, C. R., & Franklin, C. E. (2015). Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 5(1), Article 1.
Sgrò, C. M., Terblanche, J. S., & Hoffmann, A. A. (2016). What Can Plasticity Contribute to Insect Responses to Climate Change? Annual Review of Entomology, 61(1), 433–451.
Shah, A. A., Gill, B. A., Encalada, A. C., Flecker, A. S., Funk, W. C., Guayasamin, J. M., Kondratieff, B. C., Poff, N. L., Thomas, S. A., Zamudio, K. R., & Ghalambor, C. K. (2017). Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology, 31(11), 2118–2127.
Shipley, B. (2013). The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology, 94(3), 560–564.
Skelly, D. K., Joseph, L. N., Possingham, H. P., Freidenburg, L. K., Farrugia, T. J., Kinnison, M. T., & Hendry, A. P. (2007). Evolutionary Responses to Climate Change. Conservation Biology, 21(5), 1353–1355.
Somero, G. N. (2010). The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’ Journal of Experimental Biology, 213(6), 912–920.
Stillwell, R. C., & Fox, C. W. (2005). Complex Patterns of Phenotypic Plasticity: Interactive Effects of Temperature During Rearing and Oviposition. Ecology, 86(4), 924–934.
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2010). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 1823–1830.
Teder, T., Taits, K., Kaasik, A., & Tammaru, T. (2022). Limited sex differences in plastic responses suggest evolutionary conservatism of thermal reaction norms: A meta-analysis in insects. Evolution Letters, 6(6), 394–411.
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), Article 6970.
Wahlberg, N., & Wheat, C. W. (2008). Genomic Outposts Serve the Phylogenomic Pioneers: Designing Novel Nuclear Markers for Genomic DNA Extractions of Lepidoptera. Systematic Biology, 57(2), 231–242.
Wallace, A. R. (1891). Natural Selection and Tropical Nature: Essays on Descriptive and Theoretical Biology. Macmillan and Company.
Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19(12), 639–644.
Wiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top