跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 01:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李俐槿
研究生(外文):Li-Chin Lee
論文名稱:臺灣山地河流中溶解性有機碳的動態變化及其與無機氮的耦合關係
論文名稱(外文):DOC Dynamic and Its Coupling with DIN in Small Mountainous Rivers, Taiwan
指導教授:黃誌川黃誌川引用關係湯瑪士 海恩
指導教授(外文):Jr-Chuan HuangThomas Hein
口試委員:夏復國李宗祐加布里埃爾 魏格霍夫弗朗茨 澤特納
口試委員(外文):Fuh-Kwo ShiahTsung-Yu LeeGabriele WeigelhoferFranz Zehetner
口試日期:2023-07-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:地理環境資源學系
學門:社會及行為科學學門
學類:地理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:118
中文關鍵詞:溶解性有機碳溶解性無機氮沖刷假說生態化學計量熱力學限制小型山地集水區臺灣
外文關鍵詞:Dissolved organic carbon (DOC)Dissolved inorganic nitrogen (DIN)flushing hypothesisEcological stoichiometryThermodynamic constraintSmall mountainous rivers (SMRs)Taiwan
DOI:10.6342/NTU202302541
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
溶解性有機碳(dissolved organic carbon,DOC)為水中微生物成長的能量來源,調節各種生物和化學作用,是維持溪流生態系結構和功能運作的關鍵物質。然而,目前人們對於河流中DOC的瞭解仍然相當有限,包含DOC在河網的傳輸過程,以及它與氮的耦合循環。尤其在降雨豐沛、地形陡峭的亞熱帶高山型島嶼溪流,DOC的相關研究更是缺乏。因此,本研究旨在探討臺灣山地河流的內部與外部作用,如何共同影響DOC的動態變化及其與溶解性無機氮(dissolved inorganic nitrogen,DIN)的耦合循環。結果顯示,臺灣河川中的DOC具有低濃度、高輸出量的特性。與世界大型河流相比,年徑流量、坡度和土壤有機碳(soil organic carbon,SOC),仍是估計DOC輸出量的有效因子,但其影響的強度與方式卻與世界其他河流截然不同。SOC是臺灣河流中DOC的重要來源,其含量主要受植群分布的影響,沿海拔垂直變化;而陡峭的地形,造成集水區普遍土壤淺薄且流速快,進而限制了DOC的生產和累積。颱風期間,濃度與流量的關係,呈現順時針的遲滯迴圈,表示濱岸帶或下坡處,是水文歷線上升段DOC的主要來源。過去的研究指出,水生系統中,DOC與DIN之間普遍會呈現非線性的負相關。然而,我們研究發現,臺灣河川在溶氧充足的狀態下,不論是低度或高度人為干擾,都不會出現這樣的反向關係,顯示可能存在碳限制的狀況;唯有在高度人為干擾,且溶氧不足的狀態下,才會出現DOC與NO₃⁻-N之間非線性的負相關,同時,過量的DIN會以NH₄⁺-N的形式累積,控制機制也從能量限制轉變為氧化還原限制。本論文闡述了高山型島嶼溪流中,控制DOC動態變化,以及DOC與DIN關係轉變的主導因素,為瞭解環境變遷下河流碳氮循環,提供了新的基礎科學知識。
Dissolved organic carbon (DOC) provides energy for microbial growth and regulates various ecological and chemical processes in aquatic ecosystems. However, our knowledge of riverine DOC dynamics and its coupling with nitrogen remains limited, especially in subtropical small mountainous rivers (SMRs) characterized by abundant rainfall and steep slope. This dissertation aims to unravel how external drivers and internal processes affect DOC dynamics and its coupling with dissolved inorganic nitrogen (DIN) in Taiwan SMRs. Our results showed that Taiwan SMRs have low DOC concentration but high yield. Compared to rivers worldwide, the annual runoff, slope, and soil organic carbon (SOC) have demonstrated their efficacy as reliable predictors for estimating DOC yields, aligning with expectations, although they exert different influences. The presence of SOC stocks associated with elevation-dependent biomes is likely a key regulatory factor governing the supply of DOC, while the influence of slope appears to play a role in limiting the generation of DOC. Additionally, the observed clockwise hysteresis in concentration-discharge relationships provides evidence that the riparian zone or downslope area is the main source of DOC on the rising limb of the hydrograph. Furthermore, the commonly recognized inverse relationships between DOC and DIN are not present in the well‑oxygenated watersheds, regardless of low or high human disturbance. The significant inverse relationship between DOC-NO₃⁻-N would only be evident in watersheds that are highly disturbed and characterized by low levels of dissolved oxygen. The transition of DOC-DIN relations from energetic to redox constraints in low-DOC rivers might be strongly controlled by the availability of dissolved oxygen in rivers. Overall, this dissertation elucidates the dominant factors controlling DOC dynamics and the transition of DOC-DIN relationships in Taiwan SMRs. These findings provide a solid foundation for assessing the distribution and fate of carbon and nitrogen in riverine environments amidst the rapidly changing conditions of our world.
PhD dissertation acceptance certificate i
Affidavit ii
Preface iii
Table of contents iv
List of figure vi
List of table x
List of publications xi
摘要 xiv
Abstract xv
Kurzfassung xvi
1 Introduction 1
2 Literature review 5
2.1 Global carbon cycle 5
2.2 The mysterious missing carbon 7
2.3 The roles of rivers in global C cycle 9
2.4 Riverine DOC 13
2.4.1 Global patterns in riverine DOC concentrations and fluxes 14
2.4.2 Factors affecting riverine DOC export 15
2.4.3 Riverine DOC sources and composition 16
2.4.4 Fraction of biodegradable riverine DOC 23
2.4.5 DOC variation along the river continuum 27
2.4.6 Riverine DOC estimations on global and watershed scale 33
2.5 Riverine DOC and DIN coupling 35
3 Topic 1: Unusual Roles of Discharge, Slope and SOC in DOC Transport in Small Mountainous Rivers, Taiwan 41
Abstract 42
3.1 Introduction 43
3.2 Material and methods 44
3.2.1 Background of studied SMRs 44
3.2.2 Water sampling and DOC measurement 46
3.2.3 DOC Flux estimation 47
3.3 Results and Discussion 47
3.3.1 DOC concentrations and yields 47
3.3.2 DOC concentrations in SMRs and other rivers 52
3.3.3 DOC yields in subtropical SMRs and other rivers 52
3.3.4 Controlling Factors of DOC estimations in SMRs 54
3.3.5 Conceptual model of DOC export in Taiwan 56
3.4 Conclusions 57
4 Topic 2: Transition of Carbon-Nitrogen Coupling under Different Anthropogenic Disturbances in Subtropical Small Mountainous Rivers 59
Abstract 60
4.1 Introduction 61
4.2 Material and methods 63
4.2.1 Background of SMRs in Taiwan 63
4.2.2 Stream water sampling and analysis 65
4.2.3 Flux estimation 66
4.3 Results 67
4.3.1 Riverine DOC, NO₃⁻-N, and NH₄⁺-N concentrations/yields 67
4.3.2 Stoichiometric ratios and relations among DOC, NO₃⁻-N, and NH₄⁺-N 71
4.4 Discussion 75
4.4.1 Enrichment in riverine DOC, NO3--N, and NH4+-N concentrations and yield 75
4.4.2 Transition of DOC-DIN relationships in Taiwan SMRs 77
4.5 Conclusions 79
5 Conclusions and outlook 82
References 87
Appendix A: Supplement material with topic 1 105
A1.1 Data Acquisition for Studied SMRs 106
A1.2 DOC Flux estimation 107
A1.3 Correlation between DOC yields and environmental factors 109
References 111
Appendix B: Supplement material with topic 2 112
Aitkenhead-Peterson, J.A., Alexander, J.E., Clair, T.A., 2005. Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: Identifying controlling factors. Global Biogeochemical Cycles 19 (4): GB4016. http://dx.doi.org/10.1029/2004gb002438.
Aitkenhead-Peterson, J.A., McDowell, W.H., 2000. Soil C : N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles 14 (1): 127-138. http://dx.doi.org/10.1029/1999gb900083.
Alin, S.R., Aalto, R., Goni, M.A., Richey, J.E., Dietrich, W.E., 2008. Biogeochemical characterization of carbon sources in the Strickland and Fly rivers, Papua New Guinea. Journal of Geophysical Research 113 (F1): F01S05. http://dx.doi.org/10.1029/2006jf000625.
Apsite, E., Klavins, M., 1998. Assessment of the changes of cod and color in rivers of Latvia during the last twenty years. Environment International 24 (5-6): 637-643. http://dx.doi.org/10.1016/S0160-4120(98)00039-7.
Arrieta, J.M., Mayol, E., Hansman, R.L., Herndl, G.J., Dittmar, T., Duarte, C.M., 2015. Ocean chemistry. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348 (6232): 331-3. http://dx.doi.org/10.1126/science.1258955.
Atkins, M.L., Santos, I.R., Maher, D.T., 2017. Seasonal exports and drivers of dissolved inorganic and organic carbon, carbon dioxide, methane and delta(13)C signatures in a subtropical river network. Sci Total Environ 575: 545-563. http://dx.doi.org/10.1016/j.scitotenv.2016.09.020.
Aufdenkampe, A.K., Mayorga, E., Raymond, P.A., Melack, J.M., Doney, S.C., Alin, S.R., et al., 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9 (1): 53-60. http://dx.doi.org/10.1890/100014.
Avery, G.B., Willey, J.D., Kieber, R.J., Shank, G.C., Whitehead, R.F., 2003. Flux and bioavailability of Cape Fear River and rainwater dissolved organic carbon to Long Bay, southeastern United States. Global Biogeochemical Cycles 17 (2). http://dx.doi.org/10.1029/2002GB001964.
Bao, H., Lee, T.Y., Huang, J.C., Feng, X., Dai, M., Kao, S.J., 2015. Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon. Sci Rep 5: 16217. http://dx.doi.org/10.1038/srep16217.
Battin, T.J., Lauerwald, R., Bernhardt, E.S., Bertuzzo, E., Gener, L.G., Hall, R.O., Jr., et al., 2023. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature 613 (7944): 449-459. http://dx.doi.org/10.1038/s41586-022-05500-8.
Battin, T.J., Luyssaert, S., Kaplan, L.A., Aufdenkampe, A.K., Richter, A., Tranvik, L.J., 2009. The boundless carbon cycle. Nature Geoscience 2 (9): 598-600. http://dx.doi.org/10.1038/ngeo618.
Berner, R.A., Lasaga, A.C., Garrels, R.M., 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science 283 (7): 641-683. http://dx.doi.org/10.2475/ajs.283.7.641.
Bernhardt, E.S., Heffernan, J.B., Grimm, N.B., Stanley, E.H., Harvey, J.W., Arroita, M., et al., 2018. The metabolic regimes of flowing waters. Limnology and Oceanography 63: S99-S118. http://dx.doi.org/10.1002/lno.10726.
Bernhardt, E.S., Likens, G.E., 2002. Dissolved Organic Carbon Enrichment Alters Nitrogen Dynamics in a Forest Stream. Ecology 83 (6): 1689-1700. http://dx.doi.org/10.1890/0012-9658(2002)083[1689:Docean]2.0.Co;2.
Bernhardt, E.S., Likens, G.E., Buso, D.C., Driscoll, C.T., 2003. In-stream uptake dampens effects of major forest disturbance on watershed nitrogen export. Proc Natl Acad Sci U S A 100 (18): 10304-8. http://dx.doi.org/10.1073/pnas.1233676100.
Birkel, C., Soulsby, C., Tetzlaff, D., 2014. Integrating parsimonious models of hydrological connectivity and soil biogeochemistry to simulate stream DOC dynamics. Journal of Geophysical Research-Biogeosciences 119 (5): 1030-1047. http://dx.doi.org/10.1002/2013jg002551.
Burgermeister, J., 2007. Missing carbon mystery: Case solved? (0708): 36-37.
Burgin, A.J., Hamilton, S.K., 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5 (2): 89-96. http://dx.doi.org/10.1890/1540-9295(2007)5[89:Hwotro]2.0.Co;2.
Burgin, A.J., Yang, W.H., Hamilton, S.K., Silver, W.L., 2011. Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Frontiers in Ecology and the Environment 9 (1): 44-52. http://dx.doi.org/10.1890/090227.
Butman, D., Stackpoole, S., Stets, E., McDonald, C.P., Clow, D.W., Striegl, R.G., 2016. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proc Natl Acad Sci U S A 113 (1): 58-63. http://dx.doi.org/10.1073/pnas.1512651112.
Cai, W.J., 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Ann Rev Mar Sci 3: 123-45. http://dx.doi.org/10.1146/annurev-marine-120709-142723.
Cai, Y.H., Guo, L.D., Wang, X.R., Aiken, G., 2015. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006-2008. Journal of Geophysical Research-Biogeosciences 120 (11): 2273-2288. http://dx.doi.org/10.1002/2015jg003139.
Canadell, J.G., Le Quere, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., et al., 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104 (47): 18866-70. http://dx.doi.org/10.1073/pnas.0702737104.
Carey, A.E., 2005. Organic carbon yields from small, mountainous rivers, New Zealand. Geophysical Research Letters 32 (15). http://dx.doi.org/10.1029/2005gl023159.
Carey, C.C., Doubek, J.P., McClure, R.P., Hanson, P.C., 2017. Oxygen dynamics control the burial of organic carbon in a eutrophic reservoir. Limnology and Oceanography Letters 3 (3): 293-301. http://dx.doi.org/10.1002/lol2.10057.
Carter, A.M., Blaszczak, J.R., Heffernan, J.B., Bernhardt, E.S., 2021. Hypoxia dynamics and spatial distribution in a low gradient river. Limnology and Oceanography 66 (6): 2251-2265. http://dx.doi.org/10.1002/lno.11751.
Casas-Ruiz, J.P., Catalán, N., Gómez-Gener, L., von Schiller, D., Obrador, B., Kothawala, D.N., et al., 2017. A tale of pipes and reactors: Controls on the in-stream dynamics of dissolved organic matter in rivers. Limnology and Oceanography 62 (S1): S85-S94. http://dx.doi.org/10.1002/lno.10471.
Casas‐Ruiz, J.P., Spencer, R.G.M., Guillemette, F., Schiller, D., Obrador, B., Podgorski, D.C., et al., 2020. Delineating the Continuum of Dissolved Organic Matter in Temperate River Networks. Global Biogeochemical Cycles 34 (8). http://dx.doi.org/10.1029/2019gb006495.
Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., et al., 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389 (6647): 153-158. http://dx.doi.org/10.1038/38229.
Chang, C.T., Song, C.E., Lee, L.C., Chan, S.C., Liao, C.S., Liou, Y.S., et al., 2021. Influence of landscape mosaic structure on nitrate and phosphate discharges: An island-wide assessment in subtropical mountainous Taiwan. Landscape and Urban Planning 207. http://dx.doi.org/10.1016/j.landurbplan.2020.104017.
Chapman, S.J., Thurlow, M., 1998. Peat respiration at low temperatures. Soil Biology & Biochemistry 30 (8-9): 1013-1021. http://dx.doi.org/10.1016/S0038-0717(98)00009-1.
Chen, C.P., Juang, K.W., Cheng, C.H., Pai, C.W., 2016. Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan. Bot Stud 57 (1): 32. http://dx.doi.org/10.1186/s40529-016-0147-5.
Clair, T.A., Pollock, T.L., Ehrman, J.M., 1994. Exports of carbon and nitrogen from river basins in Canada's Atlantic Provinces. Global Biogeochemical Cycles 8 (4): 441-450. http://dx.doi.org/10.1029/94gb02311.
Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., et al., 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10 (1): 171-184. http://dx.doi.org/10.1007/s10021-006-9013-8.
Connolly, C.T., Khosh, M.S., Burkart, G.A., Douglas, T.A., Holmes, R.M., Jacobson, A.D., et al., 2018. Watershed slope as a predictor of fluvial dissolved organic matter and nitrate concentrations across geographical space and catchment size in the Arctic. Environmental Research Letters 13 (10). http://dx.doi.org/10.1088/1748-9326/aae35d.
Cory, R.M., Kaplan, L.A., 2012. Biological lability of streamwater fluorescent dissolved organic matter. Limnology and Oceanography 57 (5): 1347-1360. http://dx.doi.org/10.4319/lo.2012.57.5.1347.
Cory, R.M., Kling, G.W., 2018. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnology and Oceanography Letters 3 (3): 102-116. http://dx.doi.org/10.1002/lol2.10060.
Cory, R.M., Ward, C.P., Crump, B.C., Kling, G.W., 2014. Carbon cycle. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345 (6199): 925-8. http://dx.doi.org/10.1126/science.1253119.
Covino, T., Golden, H.E., Li, H.Y., Tang, J., 2018. Aquatic Carbon-Nutrient Dynamics as Emergent Properties of Hydrological, Biogeochemical, and Ecological Interactions: Scientific Advances. Water Resour Res 54 (10): 7138-7142. http://dx.doi.org/10.1029/2018WR023588.
Creed, I.F., McKnight, D.M., Pellerin, B.A., Green, M.B., Bergamaschi, B.A., Aiken, G.R., et al., 2015. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. Canadian Journal of Fisheries and Aquatic Sciences 72 (8): 1272-1285. http://dx.doi.org/10.1139/cjfas-2014-0400.
Dai, M., Yin, Z., Meng, F., Liu, Q., Cai, W.J., 2012. Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Current Opinion in Environmental Sustainability 4 (2): 170-178. http://dx.doi.org/10.1016/j.cosust.2012.03.003.
David, M.B., Vance, G.F., 1991. Chemical Character and Origin of Organic-Acids in Streams and Seepage Lakes of Central Maine. Biogeochemistry 12 (1): 17-41.
Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440 (7081): 165-73. http://dx.doi.org/10.1038/nature04514.
Demars, B.O.L., 2019. Hydrological pulses and burning of dissolved organic carbon by stream respiration. Limnology and Oceanography 64 (1): 406-421. http://dx.doi.org/10.1002/lno.11048.
Dick, J.J., Tetzlaff, D., Birkel, C., Soulsby, C., 2015. Modelling landscape controls on dissolved organic carbon sources and fluxes to streams. Biogeochemistry 122 (2-3): 361-374. http://dx.doi.org/10.1007/s10533-014-0046-3.
Dodds, W.K., 2007. Trophic state, eutrophication and nutrient criteria in streams. Trends Ecol Evol 22 (12): 669-76. http://dx.doi.org/10.1016/j.tree.2007.07.010.
Dodds, W.K., Marti, E., Tank, J.L., Pontius, J., Hamilton, S.K., Grimm, N.B., et al., 2004. Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia 140 (3): 458-67. http://dx.doi.org/10.1007/s00442-004-1599-y.
Dodds, W.K., Whiles, M.R., 2020. Carbon. Freshwater Ecology, pp. 371-394.
Dosskey, M.G., Bertsch, P.M., 1994. Forest Sources and Pathways of Organic-Matter Transport to a Blackwater Stream - a Hydrologic Approach. Biogeochemistry 24 (1): 1-19.
Drake, T.W., Raymond, P.A., Spencer, R.G.M., 2018. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnology and Oceanography Letters 3 (3): 132-142. http://dx.doi.org/10.1002/lol2.10055.
Dumont, E., Harrison, J.A., Kroeze, C., Bakker, E.J., Seitzinger, S.P., 2005. Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: Results from a spatially explicit, global model. Global Biogeochemical Cycles 19 (4): GB4S02. http://dx.doi.org/10.1029/2005gb002488.
Erlandsson, M., Buffam, I., Folster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G.A., et al., 2008. Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology 14 (5): 1191-1198. http://dx.doi.org/10.1111/j.1365-2486.2008.01551.x.
Evans, C.D., Chapman, P.J., Clark, J.M., Monteith, D.T., Cresser, M.S., 2006. Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biology 12 (11): 2044-2053. http://dx.doi.org/10.1111/j.1365-2486.2006.01241.x.
Fakour, H., Lo, S.L., Lin, T.F., 2016. Impacts of Typhoon Soudelor (2015) on the water quality of Taipei, Taiwan. Sci Rep 6: 25228. http://dx.doi.org/10.1038/srep25228.
Falkowski, P., 2000. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 290 (5490): 291-296. http://dx.doi.org/10.1126/science.290.5490.291.
Fellman, J.B., Hood, E., Edwards, R.T., D'Amore, D.V., 2009. Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. Journal of Geophysical Research-Biogeosciences 114. http://dx.doi.org/10.1029/2008jg000790.
Fellman, J.B., Hood, E., Spencer, R.G.M., 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnology and Oceanography 55 (6): 2452-2462. http://dx.doi.org/10.4319/lo.2010.55.6.2452.
Fellman, J.B., Spencer, R.G.M., Raymond, P.A., Pettit, N.E., Skrzypek, G., Hernes, P.J., et al., 2014. Dissolved organic carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape. Ecology 95 (9): 2622-2632. http://dx.doi.org/10.1890/13-1360.1.
Findlay, S.E.G., Parr, T.B., 2017. Dissolved Organic Matter. Methods in Stream Ecology: 21-36. http://dx.doi.org/10.1016/b978-0-12-813047-6.00002-4.
Findlay, S.E.G., Sinsabaugh, R.L., 2003. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. In: Stuart Findlay RS, editor. Elsevier Science, USA.
Finlay, J.C., Kendall, C., 2007. Stable Isotope Tracing of Temporal and Spatial Variability in Organic Matter Sources to Freshwater Ecosystems. Stable Isotopes in Ecology and Environmental Science, pp. 283-333.
Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B., Fenner, N., 2001a. Export of organic carbon from peat soils. Nature 412 (6849): 785. http://dx.doi.org/10.1038/35090628.
Freeman, C., Fenner, N., Ostle, N.J., Kang, H., Dowrick, D.J., Reynolds, B., et al., 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430 (6996): 195-8. http://dx.doi.org/10.1038/nature02707.
Freeman, C., Ostle, N., Kang, H., 2001b. An enzymic 'latch' on a global carbon store. Nature 409 (6817): 149. http://dx.doi.org/10.1038/35051650.
Friedlingstein, P., Jones, M.W., O'Sullivan, M., Andrew, R.M., Bakker, D.C.E., Hauck, J., et al., 2022. Global Carbon Budget 2021. Earth System Science Data 14 (4): 1917-2005. http://dx.doi.org/10.5194/essd-14-1917-2022.
Fuß, T., Behounek, B., Ulseth, A.J., Singer, G.A., 2017. Land use controls stream ecosystem metabolism by shifting dissolved organic matter and nutrient regimes. Freshwater Biology 62 (3): 582-599. http://dx.doi.org/10.1111/fwb.12887.
Futter, M.N., Butterfield, D., Cosby, B.J., Dillon, P.J., Wade, A.J., Whitehead, P.G., 2007. Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. Water Resources Research 43 (2). http://dx.doi.org/10.1029/2006wr004960.
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., et al., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320 (5878): 889-92. http://dx.doi.org/10.1126/science.1136674.
Galy, V., Peucker-Ehrenbrink, B., Eglinton, T., 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521 (7551): 204-7. http://dx.doi.org/10.1038/nature14400.
Goodale, C.L., Aber, J.D., Vitousek, P.M., McDowell, W.H., 2005. Long-term Decreases in Stream Nitrate: Successional Causes Unlikely; Possible Links to DOC? Ecosystems 8 (3): 334-337. http://dx.doi.org/10.1007/s10021-003-0162-8.
Graeber, D., Tenzin, Y., Stutter, M., Weigelhofer, G., Shatwell, T., von Tümpling, W., et al., 2021. Bioavailable DOC: reactive nutrient ratios control heterotrophic nutrient assimilation—An experimental proof of the macronutrient-access hypothesis. Biogeochemistry 155 (1): 1-20. http://dx.doi.org/10.1007/s10533-021-00809-4.
Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451 (7176): 293-6. http://dx.doi.org/10.1038/nature06592.
Guo, L., Cai, Y., Belzile, C., Macdonald, R.W., 2010. Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. Biogeochemistry 107 (1-3): 187-206. http://dx.doi.org/10.1007/s10533-010-9545-z.
Hall, R.O., Hotchkiss, E.R., 2017. Stream Metabolism. Methods in Stream Ecology, pp. 219-233.
Hansen, A.M., Kraus, T.E.C., Pellerin, B.A., Fleck, J.A., Downing, B.D., Bergamaschi, B.A., 2016. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Oceanography 61 (3): 1015-1032. http://dx.doi.org/10.1002/lno.10270.
Harrison, A.F., Taylor, K., Scott, A., Poskitt, J., Benham, D., Grace, J., et al., 2008. Potential effects of climate change on DOC release from three different soil types on the Northern Pennines UK: examination using field manipulation experiments. Global Change Biology 14 (3): 687-702. http://dx.doi.org/10.1111/j.1365-2486.2007.01504.x.
Harrison, J.A., Caraco, N., Seitzinger, S.P., 2005. Global patterns and sources of dissolved organic matter export to the coastal zone: Results from a spatially explicit, global model. Global Biogeochemical Cycles 19 (4): n/a-n/a. http://dx.doi.org/10.1029/2005gb002480.
Helton, A.M., Ardon, M., Bernhardt, E.S., 2015. Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns. Ecol Lett 18 (10): 1049-56. http://dx.doi.org/10.1111/ele.12487.
Hilton, R.G., Galy, A., Hovius, N., Chen, M.C., Horng, M.J., Chen, H.Y., 2008. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nature Geoscience 1 (11): 759-762. http://dx.doi.org/10.1038/ngeo333.
Hilton, R.G., Galy, V., Gaillardet, J., Dellinger, M., Bryant, C., O'Regan, M., et al., 2015. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524 (7563): 84-7. http://dx.doi.org/10.1038/nature14653.
Hilton, R.G., West, A.J., 2020. Mountains, erosion and the carbon cycle. Nature Reviews Earth & Environment 1 (6): 284-299. http://dx.doi.org/10.1038/s43017-020-0058-6.
Hood, E., Gooseff, M.N., Johnson, S.L., 2006. Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon. Journal of Geophysical Research 111 (G1). http://dx.doi.org/10.1029/2005jg000082.
Hope, D., Billett, M.F., Cresser, M.S., 1994. A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84 (3): 301-24. http://dx.doi.org/10.1016/0269-7491(94)90142-2.
Hope, D., Billett, M.F., Milne, R., Brown, T.A.W., 1997. Exports of Organic Carbon in British Rivers. Hydrological Processes 11 (3): 325-344. http://dx.doi.org/10.1002/(sici)1099-1085(19970315)11:3<325::Aid-hyp476>3.0.Co;2-i.
Hosen, J.D., Allen, G.H., Amatulli, G., Breitmeyer, S., Cohen, M.J., Crump, B.C., et al., 2021. River network travel time is correlated with dissolved organic matter composition in rivers of the contiguous United States. Hydrological Processes 35 (5). http://dx.doi.org/10.1002/hyp.14124.
Houghton, R.A., 2014. The Conyemporary Carbon Cycle. Treatise on Geochemistry (Second Edition). 10. Elsevier, pp. 399-435.
Huang, J.C., Lee, T.Y., Kao, S.J., Hsu, S.C., Lin, H.J., Peng, T.R., 2012a. Land use effect and hydrological control on nitrate yield in subtropical mountainous watersheds. Hydrology and Earth System Sciences 16 (3): 699-714. http://dx.doi.org/10.5194/hess-16-699-2012.
Huang, J.C., Lee, T.Y., Lee, J.Y., 2014. Observed magnified runoff response to rainfall intensification under global warming. Environmental Research Letters 9 (3): 034008. http://dx.doi.org/10.1088/1748-9326/9/3/034008.
Huang, J.C., Lee, T.Y., Lin, T.C., Hein, T., Lee, L.C., Shih, Y.T., et al., 2016. Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan. Biogeosciences 13 (6): 1787-1800. http://dx.doi.org/10.5194/bg-13-1787-2016.
Huang, J.C., Yu, C.K., Lee, J.Y., Cheng, L.W., Lee, T.Y., Kao, S.J., 2012b. Linking typhoon tracks and spatial rainfall patterns for improving flood lead time predictions over a mesoscale mountainous watershed. Water Resources Research 48 (9): W09540. http://dx.doi.org/10.1029/2011wr011508.
Huang, T.H., Fu, Y.H., Pan, P.Y., Chen, C.T.A., 2012c. Fluvial carbon fluxes in tropical rivers. Current Opinion in Environmental Sustainability 4 (2): 162-169. http://dx.doi.org/10.1016/j.cosust.2012.02.004.
Huang, W., McDowell, W.H., Zou, X., Ruan, H., Wang, J., Li, L., 2013. Dissolved organic carbon in headwater streams and riparian soil organic carbon along an altitudinal gradient in the Wuyi Mountains, China. PLoS One 8 (11): e78973. http://dx.doi.org/10.1371/journal.pone.0078973.
Huang, W.L., 2021. Determining the controlling factors of NO3 / NH4 uptake metrics by structural equation modeling in steep subtropical headwater catchments. Department of Geography. Mster Thesis. National Taiwan University.
Huntington, T.G., Aiken, G.R., 2013. Export of dissolved organic carbon from the Penobscot River basin in north-central Maine. Journal of Hydrology 476: 244-256. http://dx.doi.org/10.1016/j.jhydrol.2012.10.039.
Huntington, T.G., Balch, W.M., Aiken, G.R., Sheffield, J., Luo, L.F., Roesler, C.S., et al., 2016. Climate change and dissolved organic carbon export to the Gulf of Maine. Journal of Geophysical Research-Biogeosciences 121 (10): 2700-2716. http://dx.doi.org/10.1002/2015jg003314.
IPCC. 2013. IPCC, 2013: Climate Change 2013: The Physical Science Basis. . In: Stocker TF, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, (eds.), editors, Cambridge University Press, Cambridge, United ingdom and New York, NY, USA, , pp. 1535.
IPCC. 2015. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.
IPCC. 2022. Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: P.R. Shukla JS, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley,, editor, Cambridge, UK and New York, NY, USA.
Jaiswal, D., Pandey, J., 2019. Anthropogenically enhanced sediment oxygen demand creates mosaic of oxygen deficient zones in the Ganga River: Implications for river health. Ecotoxicol Environ Saf 171: 709-720. http://dx.doi.org/10.1016/j.ecoenv.2019.01.039.
Jaiswal, D., Pandey, J., 2021. Human-driven changes in sediment-water interactions may increase the degradation of ecosystem functioning in the Ganga River. Journal of Hydrology 598. http://dx.doi.org/10.1016/j.jhydrol.2021.126261.
Jannasch, H.W., 1967. Growth of Marine Bacteria at Limiting Concentrations of Organic Carbon in Seawater1. Limnology and Oceanography 12 (2): 264-271. http://dx.doi.org/10.4319/lo.1967.12.2.0264.
Judge, G.G., Hill, R.C., Griffiths, W.E., Lutkepohl, H., Lee, T.C., 1988. Introduction to the theory and practice of econometrics (2d ed.). New York: John Wiley, pp. 1024.
Kaiser, K., Canedo-Oropeza, M., McMahon, R., Amon, R.M.W., 2017. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci Rep 7 (1): 13064. http://dx.doi.org/10.1038/s41598-017-12729-1.
Kao, S.J., Hilton, R.G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J.C., et al., 2014. Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics 2 (1): 127-139. http://dx.doi.org/10.5194/esurf-2-127-2014.
Kao, S.J., Liu, K.K., 1997. Fluxes of dissolved and nonfossil particulate organic carbon from an Oceania small river (Lanyang Hsi) in Taiwan. Biogeochemistry 39 (3): 255-269. http://dx.doi.org/10.1023/A:1005864605382.
Kauppi, P.E., Mielikainen, K., Kuusela, K., 1992. Biomass and carbon budget of European forests, 1971 to 1990. Science 256 (5053): 70-4. http://dx.doi.org/10.1126/science.256.5053.70.
Khamis, K., Blaen, P.J., Comer-Warner, S., Hannah, D.M., MacKenzie, A.R., Krause, S., 2021. High-Frequency Monitoring Reveals Multiple Frequencies of Nitrogen and Carbon Mass Balance Dynamics in a Headwater Stream. Frontiers in Water 3. http://dx.doi.org/10.3389/frwa.2021.668924.
Knapik, H.G., Fernandes, C.V., de Azevedo, J.C., dos Santos, M.M., Dall'Agnol, P., Fontane, D.G., 2015. Biodegradability of anthropogenic organic matter in polluted rivers using fluorescence, UV, and BDOC measurements. Environ Monit Assess 187 (3): 104. http://dx.doi.org/10.1007/s10661-015-4266-3.
Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci U S A 107 (46): 19691-5. http://dx.doi.org/10.1073/pnas.1004933107.
Konohira, E., Yoshioka, T., 2005. Dissolved organic carbon and nitrate concentrations in streams: a useful index indicating carbon and nitrogen availability in catchments. Ecological Research 20 (3): 359-365. http://dx.doi.org/10.1007/s11284-005-0051-z.
Lambert, T., Perolo, P., Escoffier, N., Perga, M.-E., 2022. Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks. Biogeosciences 19 (1): 187-200. http://dx.doi.org/10.5194/bg-19-187-2022.
Lambert, T., Pierson-Wickmann, A.C., Gruau, G., Thibault, J.N., Jaffrezic, A., 2011. Carbon isotopes as tracers of dissolved organic carbon sources and water pathways in headwater catchments. Journal of Hydrology 402 (3-4): 228-238. http://dx.doi.org/10.1016/j.jhydrol.2011.03.014.
Lapierre, J.F., Guillemette, F., Berggren, M., del Giorgio, P.A., 2013. Increases in terrestrially derived carbon stimulate organic carbon processing and CO(2) emissions in boreal aquatic ecosystems. Nat Commun 4: 2972. http://dx.doi.org/10.1038/ncomms3972.
Ledesma, J.L.J., Kothawala, D.N., Bastviken, P., Maehder, S., Grabs, T., Futter, M.N., 2018. Stream Dissolved Organic Matter Composition Reflects the Riparian Zone, Not Upslope Soils in Boreal Forest Headwaters. Water Resources Research 54 (6): 3896-3912. http://dx.doi.org/10.1029/2017wr021793.
Lee, L.C., Hsu, T.C., Lee, T.Y., Shih, Y.T., Lin, C.Y., Jien, S.H., et al., 2019. Unusual Roles of Discharge, Slope and SOC in DOC Transport in Small Mountainous Rivers, Taiwan. Sci Rep 9 (1): 1574. http://dx.doi.org/10.1038/s41598-018-38276-x.
Lee, T.-Y., Lee, L.-C., Huang, J.-C., Jien, S.-H., Hein, T., Zehetner, F., et al., 2017. The dynamics and export of dissolved organic carbon from subtropical small mountainous rivers during typhoon and non-typhoon periods. Biogeosciences Discussions: 1-34. http://dx.doi.org/10.5194/bg-2017-105.
Lee, T.Y., Huang, J.C., Kao, S.J., Tung, C.P., 2013. Temporal variation of nitrate and phosphate transport in headwater catchments: the hydrological controls and land use alteration. Biogeosciences 10 (4): 2617-2632. http://dx.doi.org/10.5194/bg-10-2617-2013.
Lee, T.Y., Shih, Y.T., Huang, J.C., Kao, S.J., Shiah, F.K., Liu, K.K., 2014. Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan. Biogeosciences 11 (19): 5307-5321. http://dx.doi.org/10.5194/bg-11-5307-2014.
Lee, W.S., Huang, J.C., Chang, C.T., Chan, S.C., Liou, Y.S., Liao, C.S., et al., 2020. Interaction among Controlling Factors on Riverine DIN Export in Small Mountainous Rivers of Taiwan: Inseparable Human-Landscape System. Water 12 (11). http://dx.doi.org/10.3390/w12112981.
Li, M.X., Peng, C.H., Wang, M., Xue, W., Zhang, K.R., Wang, K.F., et al., 2017. The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecological Indicators 80: 40-51. http://dx.doi.org/10.1016/j.ecolind.2017.04.049.
Li, M.X., Peng, C.H., Zhou, X.L., Yang, Y.Z., Guo, Y.R., Shi, G.H., et al., 2019. Modeling Global Riverine DOC Flux Dynamics From 1951 to 2015. Journal of Advances in Modeling Earth Systems 11 (2): 514-530. http://dx.doi.org/10.1002/2018ms001363.
Lin, T.C., Shaner, P.J.L., Wang, L.J., Shih, Y.T., Wang, C.P., Huang, G.H., et al., 2015. Effects of mountain tea plantations on nutrient cycling at upstream watersheds. Hydrology and Earth System Sciences 19 (11): 4493-4504. http://dx.doi.org/10.5194/hess-19-4493-2015.
Liu, F., Wang, D., 2022. Dissolved organic carbon concentration and biodegradability across the global rivers: A meta-analysis. Sci Total Environ 818: 151828. http://dx.doi.org/10.1016/j.scitotenv.2021.151828.
Liu, S., Maavara, T., Brinkerhoff, C.B., Raymond, P.A., 2022. Global Controls on DOC Reaction Versus Export in Watersheds: A Damköhler Number Analysis. Global Biogeochemical Cycles 36 (4). http://dx.doi.org/10.1029/2021gb007278.
Liu, S.C., Fu, C., Shiu, C.-J., Chen, J.-P., Wu, F., 2009. Temperature dependence of global precipitation extremes. Geophysical Research Letters 36 (17). http://dx.doi.org/10.1029/2009gl040218.
Lloret, E., Dessert, C., Pastor, L., Lajeunesse, E., Crispi, O., Gaillardet, J., et al., 2013. Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watersheds. Chemical Geology 351: 229-244. http://dx.doi.org/10.1016/j.chemgeo.2013.05.023.
Lorenz, D., Runkel, R.L., de Cicco, L., 2017. rloadest: river load estimation. U.S. Geological Survey, Mounds View, Minnesota, USA.
Lu, M.C., Chang, C.T., Lin, T.C., Wang, L.J., Wang, C.P., Hsu, T.C., et al., 2017. Modeling the terrestrial N processes in a small mountain catchment through INCA-N: A case study in Taiwan. Sci Total Environ 593-594: 319-329. http://dx.doi.org/10.1016/j.scitotenv.2017.03.178.
Ludwig, W., Probst, J.-L., Kempe, S., 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10 (1): 23-41. http://dx.doi.org/10.1029/95gb02925.
Lyons, W.B., Nezat, C.A., Carey, A.E., Hicks, D.M., 2002. Organic carbon fluxes to the ocean from high-standing islands. Geology 30 (5): 443-446. http://dx.doi.org/10.1130/0091-7613(2002)030<0443:Ocftto>2.0.Co;2.
Maier, H.R., Burch, M.D., Bormans, M., 2001. Flow management strategies to control blooms of the cyanobacterium,Anabaena circinalis, in the River Murray at Morgan, South Australia. Regulated Rivers: Research & Management 17 (6): 637-650. http://dx.doi.org/10.1002/rrr.623.
Maranger, R., Jones, S.E., Cotner, J.B., 2018. Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pipe. Limnology and Oceanography Letters 3 (3): 89-101. http://dx.doi.org/10.1002/lol2.10080.
Marwick, T.R., Tamooh, F., Teodoru, C.R., Borges, A.V., Darchambeau, F., Bouillon, S., 2015. The age of river-transported carbon: A global perspective. Global Biogeochemical Cycles 29 (2): 122-137. http://dx.doi.org/10.1002/2014gb004911.
Massicotte, P., Asmala, E., Stedmon, C., Markager, S., 2017. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans. Sci Total Environ 609: 180-191. http://dx.doi.org/10.1016/j.scitotenv.2017.07.076.
Matiatos, I., Wassenaar, L.I., Monteiro, L.R., Venkiteswaran, J.J., Gooddy, D.C., Boeckx, P., et al., 2021. Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. Communications Earth & Environment 2 (1). http://dx.doi.org/10.1038/s43247-021-00121-x.
Mayorga, E., Seitzinger, S.P., Harrison, J.A., Dumont, E., Beusen, A.H.W., Bouwman, A.F., et al., 2010. Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling & Software 25 (7): 837-853. http://dx.doi.org/10.1016/j.envsoft.2010.01.007.
McCallister, S.L., del Giorgio, P.A., 2012. Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams. Proc Natl Acad Sci U S A 109 (42): 16963-8. http://dx.doi.org/10.1073/pnas.1207305109.
McCallister, S.L., Ishikawa, N.F., Kothawala, D.N., 2018. Biogeochemical tools for characterizing organic carbon in inland aquatic ecosystems. Limnology and Oceanography Letters 3 (6): 444-457. http://dx.doi.org/10.1002/lol2.10097.
McDowell, W.H., Asbury, C.E., 1994. Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnology and Oceanography 39 (1): 111-125. http://dx.doi.org/10.4319/lo.1994.39.1.0111.
McDowell, W.H., McDowell, W.G., Potter, J.D., Ramirez, A., 2019. Nutrient export and elemental stoichiometry in an urban tropical river. Ecol Appl 29 (2): e01839. http://dx.doi.org/10.1002/eap.1839.
McDowell, W.H., Zsolnay, A., Aitkenhead-Peterson, J.A., Gregorich, E.G., Jones, D.L., Jodemann, D., et al., 2006. A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biology & Biochemistry 38 (7): 1933-1942. http://dx.doi.org/10.1016/j.soilbio.2005.12.018.
McGlynn, B.L., McDonnell, J.J., 2003. Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Research 39 (4): 1090. http://dx.doi.org/10.1029/2002wr001525.
McKnight, D.M., Aiken, G.R., Smith, R.L., 1991. Aquatic fulvic acids in microbially based ecosystems: Results from two desert lakes in Antarctica. Limnology and Oceanography 36 (5): 998-1006. http://dx.doi.org/10.4319/lo.1991.36.5.0998.
Mei, Y., Hornberger, G.M., Kaplan, L.A., Newbold, J.D., Aufdenkampe, A.K., 2014. The delivery of dissolved organic carbon from a forested hillslope to a headwater stream in southeastern Pennsylvania, USA. Water Resources Research 50 (7): 5774-5796. http://dx.doi.org/10.1002/2014wr015635.
Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science 282 (4): 401-450. http://dx.doi.org/10.2475/ajs.282.4.401.
Meyers, P.A., Lallier-Verges, E., 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. Journal of Paleolimnology 21 (3): 345-372. http://dx.doi.org/Doi 10.1023/A:1008073732192.
Milliman, J.D., Farnsworth, K.L., 2011. River Discharge to the Coastal Ocean: A Global Synthesis: Cambridge University Press.
Milliman, J.D., Syvitski, J.P.M., 1992. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology 100 (5): 525-544. http://dx.doi.org/10.1086/629606.
Mirus, B.B., Ebel, B.A., Mohr, C.H., Zegre, N., 2017. Disturbance Hydrology: Preparing for an Increasingly Disturbed Future. Water Resources Research 53 (12): 10007-10016. http://dx.doi.org/10.1002/2017wr021084.
Monteith, D.T., Stoddard, J.L., Evans, C.D., de Wit, H.A., Forsius, M., Hogasen, T., et al., 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450 (7169): 537-40. http://dx.doi.org/10.1038/nature06316.
Mosher, J.J., Kaplan, L.A., Podgorski, D.C., McKenna, A.M., Marshall, A.G., 2015. Longitudinal shifts in dissolved organic matter chemogeography and chemodiversity within headwater streams: a river continuum reprise. Biogeochemistry 124 (1-3): 371-385. http://dx.doi.org/10.1007/s10533-015-0103-6.
Nadelhoffer, K.J., Emmett, B.A., Gundersen, P., Kjonaas, O.J., Koopmans, C.J., Schleppi, P., et al., 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398 (6723): 145-148. http://dx.doi.org/Doi 10.1038/18205.
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology 10 (3): 282-290. http://dx.doi.org/10.1016/0022-1694(70)90255-6.
Pagano, T., Bida, M., Kenny, J.E., 2014. Trends in Levels of Allochthonous Dissolved Organic Carbon in Natural Water: A Review of Potential Mechanisms under a Changing Climate. Water 6 (10): 2862-2897. http://dx.doi.org/10.3390/w6102862.
Parajka, J., Viglione, A., Rogger, M., Salinas, J.L., Sivapalan, M., Blöschl, G., 2013. Comparative assessment of predictions in ungauged basins – Part 1: Runoff-hydrograph studies. Hydrology and Earth System Sciences 17 (5): 1783-1795. http://dx.doi.org/10.5194/hess-17-1783-2013.
Paul, M.J., Meyer, J.L., 2008. Streams in the Urban Landscape. Urban Ecology, pp. 207-231.
Ping, C.L., Michaelson, G.J., Jorgenson, M.T., Kimble, J.M., Epstein, H., Romanovsky, V.E., et al., 2008. High stocks of soil organic carbon in the North American Arctic region. Nature Geoscience 1 (9): 615-619. http://dx.doi.org/10.1038/ngeo284.
Plont, S., O’Donnell, B.M., Gallagher, M.T., Hotchkiss, E.R., 2020. Linking carbon and nitrogen spiraling in streams. Freshwater Science 39 (1): 126-136. http://dx.doi.org/10.1086/707810.
Popkin, G., 2015. The hunt for the world's missing carbon. Nature 523 (7558): 20-2. http://dx.doi.org/10.1038/523020a.
Qualls, R.G., Haines, B.L., 1992. Biodegradability of Dissolved Organic-Matter in Forest Throughfall, Soil Solution, and Stream Water. Soil Science Society of America Journal 56 (2): 578-586.
Raymond, P.A., Bauer, J.E., 2001. DOC cycling in a temperate estuary: A mass balance approach using natural Δ14C and δ13C isotopes. Limnology and Oceanography 46 (3): 655-667. http://dx.doi.org/10.4319/lo.2001.46.3.0655.
Raymond, P.A., McClelland, J.W., Holmes, R.M., Zhulidov, A.V., Mull, K., Peterson, B.J., et al., 2007. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers. Global Biogeochemical Cycles 21 (4). http://dx.doi.org/10.1029/2007GB002934.
Raymond, P.A., Saiers, J.E., Sobczak, W.V., 2016. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97 (1): 5-16. http://dx.doi.org/10.1890/14-1684.1.
Raymond, P.A., Spencer, R.G.M., 2015. Riverine DOM. Biogeochemistry of Marine Dissolved Organic Matter, pp. 509-533.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., et al., 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience 6 (8): 597-607. http://dx.doi.org/10.1038/Ngeo1830.
Regnier, P., Resplandy, L., Najjar, R.G., Ciais, P., 2022. The land-to-ocean loops of the global carbon cycle. Nature 603 (7901): 401-410. http://dx.doi.org/10.1038/s41586-021-04339-9.
Repeta, D.J., 2015. Chemical Characterization and Cycling of Dissolved Organic Matter. In: Hansell DAaC, C. A., editor. Biogeochemistry of Marine Dissolved Organic Matter. Elsevier Inc., San Diego, CA, pp. 21-63.
Roberts, B.J., Mulholland, P.J., Hill, W.R., 2007. Multiple Scales of Temporal Variability in Ecosystem Metabolism Rates: Results from 2 Years of Continuous Monitoring in a Forested Headwater Stream. Ecosystems 10 (4): 588-606. http://dx.doi.org/10.1007/s10021-007-9059-2.
Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin, F.S., 3rd, Lambin, E.F., et al., 2009. A safe operating space for humanity. Nature 461 (7263): 472-5. http://dx.doi.org/10.1038/461472a.
Rodríguez-Cardona, B., Wymore, A.S., McDowell, W.H., 2016. DOC:NO3−ratios and NO3−uptake in forested headwater streams. Journal of Geophysical Research: Biogeosciences 121 (1): 205-217. http://dx.doi.org/10.1002/2015jg003146.
Rodríguez-Cardona, B.M., Wymore, A.S., McDowell, W.H., 2021. Nitrate uptake enhanced by availability of dissolved organic matter in tropical montane streams. Freshwater Science 40 (1): 65-76. http://dx.doi.org/10.1086/713070.
Royer, T.V., David, M.B., 2005. Export of dissolved organic carbon from agricultural streams in Illinois, USA. Aquatic Sciences 67 (4): 465-471. http://dx.doi.org/10.1007/s00027-005-0781-6.
Runkel, R.L., Crawford, C.G., Cohn, T.A., 2004. Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers. U.S. Geological Survey Techniques and Methods Book 4, pp. 69.
Sarmiento, J.L., Gruber, N., 2002. Sinks for anthropogenic carbon. Physics Today 55 (8): 30-36. http://dx.doi.org/10.1063/1.1510279.
Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R., Kapos, V., 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5 (1): 81-91. http://dx.doi.org/10.4155/cmt.13.77.
Schiff, S.L., Aravena, R., Trumbore, S.E., Dillon, P.J., 1990. Dissolved Organic-Carbon Cycling in Forested Watersheds - a Carbon Isotope Approach. Water Resources Research 26 (12): 2949-2957. http://dx.doi.org/DOI 10.1029/WR026i012p02949.
Schindler, D.W., 1999. Carbon cycling: The mysterious missing sink. Nature 398 (6723): 105-107.
Schlesinger, W.H., Bernhardt, E.S., 2013. Biogeochemistry: Elsevier.
Schlesinger, W.H., Melack, J.M., 1981. Transport of organic carbon in the world's rivers. Tellus 33 (2): 172-187. http://dx.doi.org/10.1111/j.2153-3490.1981.tb01742.x.
Schmidt, B.H.M., Wang, C.P., Chang, S.C., Matzner, E., 2010. High precipitation causes large fluxes of dissolved organic carbon and nitrogen in a subtropical montane Chamaecyparis forest in Taiwan. Biogeochemistry 101 (1-3): 243-256. http://dx.doi.org/10.1007/s10533-010-9470-1.
Schnabel, R.R., Dell, C.J., Shaffer, J.A., 2002. Filter, inoculum and time effects on measurements of biodegradable water soluble organic carbon in soil. Soil Biology and Biochemistry 34 (5): 737-739. http://dx.doi.org/10.1016/s0038-0717(01)00223-1.
Seitzinger, S., Harrison, J.A., Böhlke, J.K., Bouwman, A.F., Lowrance, R., Peterson, B., et al., 2006. Denitrification across Landscapes and Waterscapes: A Synthesis. Ecological Applications 16 (6): 2064-2090. http://dx.doi.org/10.1890/1051-0761(2006)016[2064:Dalawa]2.0.Co;2.
Seitzinger, S.P., Harrison, J.A., Dumont, E., Beusen, A.H.W., Bouwman, A.F., 2005. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochemical Cycles 19 (4): GB4S01. http://dx.doi.org/10.1029/2005gb002606.
Servais, P., Anzil, A., Ventresque, C., 1989. Simple method for determination of biodegradable dissolved organic carbon in water. Appl Environ Microbiol 55 (10): 2732-4. http://dx.doi.org/10.1128/AEM.55.10.2732-2734.1989.
Shi, G., Peng, C., Wang, M., Shi, S., Yang, Y., Chu, J., et al., 2016. The Spatial and Temporal Distribution of Dissolved Organic Carbon Exported from Three Chinese Rivers to the China Sea. PLoS One 11 (10): e0165039. http://dx.doi.org/10.1371/journal.pone.0165039.
Shih, Y.T., Chen, P.H., Lee, L.C., Liao, C.S., Jien, S.H., Shiah, F.K., et al., 2018. Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river. Hydrology and Earth System Sciences 22 (12): 6579-6590. http://dx.doi.org/10.5194/hess-22-6579-2018.
Shih, Y.T., Lee, T.Y., Huang, J.C., Kao, S.J., Chang. 2016. Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed. Sci Total Environ 560-561: 1-11. http://dx.doi.org/10.1016/j.scitotenv.2016.04.055.
Siegenthaler, U., Sarmiento, J.L., 1993. Atmospheric Carbon-Dioxide and the Ocean. Nature 365 (6442): 119-125. http://dx.doi.org/10.1038/365119a0.
Silver, W.L., Herman, D.J., Firestone, M.K., 2001. Dissimilatory Nitrate Reduction to Ammonium in Upland Tropical Forest Soils. Ecology 82 (9): 2410-2416. http://dx.doi.org/10.1890/0012-9658(2001)082[2410:Dnrtai]2.0.Co;2.
Spencer, R.G.M., Hernes, P.J., Ruf, R., Baker, A., Dyda, R.Y., Stubbins, A., et al., 2010. Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. Journal of Geophysical Research 115 (G3). http://dx.doi.org/10.1029/2009jg001180.
Stanley, E.H., Maxted, J.T., 2008. Changes in the dissolved nitrogen pool across land cover gradients in Wisconsin streams. Ecol Appl 18 (7): 1579-90. http://dx.doi.org/10.1890/07-1379.1.
Stanley, E.H., Powers, S.M., Lottig, N.R., Buffam, I., Crawford, J.T., 2012. Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshwater Biology 57: 26-42. http://dx.doi.org/10.1111/j.1365-2427.2011.02613.x.
Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., et al., 2015. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347 (6223): 1259855. http://dx.doi.org/10.1126/science.1259855.
Stegen, J.C., Johnson, T., Fredrickson, J.K., Wilkins, M.J., Konopka, A.E., Nelson, W.C., et al., 2018. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nat Commun 9 (1): 585. http://dx.doi.org/10.1038/s41467-018-02922-9.
Stephens, B.B., Gurney, K.R., Tans, P.P., Sweeney, C., Peters, W., Bruhwiler, L., et al., 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316 (5832): 1732-5. http://dx.doi.org/10.1126/science.1137004.
Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters. New York: John Wiley & Sons.
Stutter, M.I., Graeber, D., Evans, C.D., Wade, A.J., Withers, P.J.A., 2018. Balancing macronutrient stoichiometry to alleviate eutrophication. Sci Total Environ 634: 439-447. http://dx.doi.org/10.1016/j.scitotenv.2018.03.298.
Tank, J.L., Martí, E., Riis, T., Schiller, D., Reisinger, A.J., Dodds, W.K., et al., 2017a. Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. Ecological Monographs 88 (1): 120-138. http://dx.doi.org/10.1002/ecm.1280.
Tank, J.L., Reisinger, A.J., Rosi, E.J., 2017b. Nutrient Limitation and Uptake. Methods in Stream Ecology, pp. 147-171.
Tans, P.P., Fung, I.Y., Takahashi, T., 1990. Observational contrains on the global atmospheric co2 budget. Science 247 (4949): 1431-8. http://dx.doi.org/10.1126/science.247.4949.1431.
Taylor, P.G., Townsend, A.R., 2010. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature 464 (7292): 1178-81. http://dx.doi.org/10.1038/nature08985.
Thouin, J.A., Wollheim, W.M., Vörösmarty, C.J., Jacobs, J.M., McDowell, W.H., 2009. The biogeochemical influences of NO3−, dissolved O2, and dissolved organic C on stream NO3− uptake. Journal of the North American Benthological Society 28 (4): 894-907. http://dx.doi.org/10.1899/08-183.1.
Tian, Y.Q., Yu, Q., Feig, A.D., Ye, C., Blunden, A., 2013. Effects of climate and land-surface processes on terrestrial dissolved organic carbon export to major U.S. coastal rivers. Ecological Engineering 54: 192-201. http://dx.doi.org/10.1016/j.ecoleng.2013.01.028.
Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54 (6): 2298-2314. http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2298.
Tranvik, L.J., Jansson, M., 2002. Climate change (Communication arising): Terrestrial export of organic carbon. Nature 415 (6874): 861-862.
Trulleyova, S., Rulik, M., 2004. Determination of biodegradable dissolved organic carbon in waters: comparison of batch methods. Sci Total Environ 332 (1-3): 253-60. http://dx.doi.org/10.1016/j.scitotenv.2004.04.018.
Vachon, D., Sponseller, R.A., Karlsson, J., 2021. Integrating carbon emission, accumulation and transport in inland waters to understand their role in the global carbon cycle. Glob Chang Biol 27 (4): 719-727. http://dx.doi.org/10.1111/gcb.15448.
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., Cushing, C.E., 1980. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 37 (1): 130-137. http://dx.doi.org/10.1139/f80-017.
Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., et al., 1997. Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecological Applications 7 (3): 737-750. http://dx.doi.org/10.1890/1051-0761(1997)007[0737:Haotgn]2.0.Co;2.
Vonk, J.E., Mann, P.J., Davydov, S., Davydova, A., Spencer, R.G.M., Schade, J., et al., 2013. High biolability of ancient permafrost carbon upon thaw. Geophysical Research Letters 40 (11): 2689-2693. http://dx.doi.org/10.1002/grl.50348.
Voss, B.M., Wickland, K.P., Aiken, G.R., Striegl, R.G., 2017. Biological and land use controls on the isotopic composition of aquatic carbon in the Upper Mississippi River Basin. Global Biogeochemical Cycles 31 (8): 1271-1288. http://dx.doi.org/10.1002/2017gb005699.
Wagner, S., Fair, J.H., Matt, S., Hosen, J.D., Raymond, P., Saiers, J., et al., 2019. Molecular Hysteresis: Hydrologically Driven Changes in Riverine Dissolved Organic Matter Chemistry During a Storm Event. Journal of Geophysical Research: Biogeosciences 124 (4): 759-774. http://dx.doi.org/10.1029/2018jg004817.
Wiegner, T.N., Tubal, R.L., MacKenzie, R.A., 2009. Bioavailability and export of dissolved organic matter from a tropical river during base- and stormflow conditions. Limnology and Oceanography 54 (4): 1233-1242. http://dx.doi.org/10.4319/lo.2009.54.4.1233.
Williams, C.J., Frost, P.C., Morales-Williams, A.M., Larson, J.H., Richardson, W.B., Chiandet, A.S., et al., 2016. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Glob Chang Biol 22 (2): 613-26. http://dx.doi.org/10.1111/gcb.13094.
Wilson, H.F., Xenopoulos, M.A., 2008. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geoscience 2 (1): 37-41. http://dx.doi.org/10.1038/ngeo391.
Worrall, F., Burt, T., 2004. Time series analysis of long-term river dissolved organic carbon records. Hydrological Processes 18 (5): 893-911. http://dx.doi.org/10.1002/hyp.1321.
Worrall, F., Burt, T.P., Jaeban, R.Y., Warburton, J., Shedden, R., 2002. Release of dissolved organic carbon from upland peat. Hydrological Processes 16 (17): 3487-3504. http://dx.doi.org/10.1002/hyp.1111.
Wymore, A.S., Coble, A.A., Rodríguez-Cardona, B., McDowell, W.H., 2016. Nitrate uptake across biomes and the influence of elemental stoichiometry: A new look at LINX II. Global Biogeochemical Cycles 30 (8): 1183-1191. http://dx.doi.org/10.1002/2016gb005468.
Wymore, A.S., Rodríguez-Cardona, B.M., Herreid, A., McDowell, W.H., 2019. LINX I and II: Lessons Learned and Emerging Questions. Frontiers in Environmental Science 7. http://dx.doi.org/10.3389/fenvs.2019.00181.
Wynn, J.G., Bird, M.I., 2007. C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Global Change Biology 13 (10): 2206-2217. http://dx.doi.org/10.1111/j.1365-2486.2007.01435.x.
Xenopoulos, M.A., Downing, J.A., Kumar, M.D., Menden-Deuer, S., Voss, M., 2017. Headwaters to oceans: Ecological and biogeochemical contrasts across the aquatic continuum. Limnology and Oceanography 62 (S1): S3-S14. http://dx.doi.org/10.1002/lno.10721.
Yeh, T.C., Liao, C.S., Chen, T.C., Shih, Y.T., Huang, J.C., Zehetner, F., et al., 2018. Differences in N loading affect DOM dynamics during typhoon events in a forested mountainous catchment. Sci Total Environ 633: 81-92. http://dx.doi.org/10.1016/j.scitotenv.2018.03.177.
Yoon, B., Raymond, P.A., 2012. Dissolved organic matter export from a forested watershed during Hurricane Irene. Geophysical Research Letters 39. http://dx.doi.org/10.1029/2012gl052785.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292 (5517): 686-93. http://dx.doi.org/10.1126/science.1059412.
Zarnetske, J.P., Bouda, M., Abbott, B.W., Saiers, J., Raymond, P.A., 2018. Generality of Hydrologic Transport Limitation of Watershed Organic Carbon Flux Across Ecoregions of the United States. Geophysical Research Letters 45 (21): 11,702-11,711. http://dx.doi.org/10.1029/2018gl080005.
Zurbrügg, R., Suter, S., Lehmann, M.F., Wehrli, B., Senn, D.B., 2013. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system. Biogeosciences 10 (1): 23-38. http://dx.doi.org/10.5194/bg-10-23-2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top