跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/25 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許緯豪
研究生(外文):Wei-Hao Hsu
論文名稱:從礦物低溫熱定年與應力分析來探討臺灣脊樑山脈剝蝕速率及臺灣南部大地構造演化
論文名稱(外文):The exhumation history of the Backbone Range and tectonic evolution of southern Taiwan: derived from stress analysis and low-temperature thermochronology
指導教授:陳于高陳于高引用關係
指導教授(外文):Yue-Gau Chen
口試委員:陳文山羅偉林啟文黃文正
口試委員(外文):Wen-Shan ChenWei LoChii-Wen LinWen-Jeng Huang
口試日期:2023-01-12
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:地質科學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:84
中文關鍵詞:同造山伸張構造擠壓構造低溫熱定年剝蝕臺灣
外文關鍵詞:Synorogenic extensionExtrusionLow-Temperature GeochronologyExhumationTaiwan
DOI:10.6342/NTU202300481
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
臺灣造山帶一直以來被認為是標準穩定造山的例子,由北而南碰撞,且5百萬年以來保持地形、地熱及快速剝蝕的穩定狀態。在穩定且快速剝蝕下,形成高海拔的中央山脈,接著發生重力垮塌造成造山帶中心呈現拉張的應力場。本研究利用同樣本中多種不同封存溫度的低溫熱定年法,來分析中央山脈東翼與玉山的剝蝕速率變化,並整合中央山脈晚期斷層野外調查及其古應力反演結果、GPS 應變速率與地震機制解的應力解釋,來討論前人所提出大地構造解釋的問題,再進一步針對臺灣南部山脈擡升的過程提出可能的演化假說。本研究的低溫熱定年結果,顯示中央山脈東翼不同緯度的橫斷面,雖然速率略有不同但呈現相似的三期剝蝕速率變化:第一期,早於2百萬年前,剝蝕速率相當緩慢(~0.1 mm/yr);第二期,在2-1.5百萬年前到0.5百萬年前,剝蝕速率呈現明顯加速(2.6–5 mm/yr);第三期,0.5百萬年前到現今,剝蝕速率呈現更進一步地加速(3.7–5 mm/yr)。此結果表示中央山脈呈現斷斷續續的剝蝕且其速率逐漸加快而非之前認為的穩定快速地剝蝕。本研究野外量測再配合GPS資料 及地震機制解,得到橫跨臺灣南部中央山脈與山脈西南部的應力場分布,結果反映了臺灣南部的西南向擠壓突出構造(extrusion),不過三度空間上的運動方式是中央山脈底下的下部地殼,向西南及垂直方向運動來調適北港高地與呂宋島弧碰撞的西北-東南向壓縮,下部地殼同時向西南及抬升運動造成中央山脈快速地剝蝕及上部地殼呈現東北-西南的伸張。最後本研究根據前人研究西南部擠壓構造始於晚更新世的結果與本研究低溫熱定年數據,推測此西南向擠壓構造的發生可能年輕於0.5百萬年內。
For a long time Taiwan orogen has been regarded as a classic example of the steady southward propagation of the collision model, having been reaching a topographic, thermal, and exhumational steady state for over 5 million years. The high topography of the Central Range is resulted from the steady high exhumation and was proposed to follow by gravitational collapse that caused the extension in the core of the Taiwan orogen. In order to challenge this classic collision model, this study estimates the exhumation rate along the eastern Central Range and Mountain Jade by multiple different low-temperature dating by the same rock samples. Moreover, this study integrated the data from field observations and paleostress inversion of the regional late-stage faults together with GPS strain rate and earthquake focal mechanisms. It helps reevaluate the previous tectonic interpretations and further provide a new hypothesis for the tectonic evolution of southern Taiwan. In low-temperature thermochronological data, three different latitudes that transect the eastern Central Range gain similar results and indicate three stages of exhumation: 1) slow cooling prior to ca. 2–1.5 Ma (~0.1 mm/yr); 2) an acceleration in exhumation rates from ca. 2–1.5 Ma to ca. 0.5 Ma (2.6–5 mm/yr); 3) a further acceleration in exhumation from ca. 0.5 Ma to present (3.7–5 mm/yr). Each transect shows punctuated exhumation with accelerated rates rather than steady exhumation. The scenarios of the tectonic evolution are based on the stress states in the deep crust southwest of the range and along the eastern and western flanks of the range, which are obtained from the paleostress inversion of 141 outcrop-scale faults and the strain rate and stress axes derived from GPS and earthquake focal mechanisms. This study interprets these stress states as reflecting a forceful extrusion of the southern Central Range where the lower crust is being pinched between the Peikang High and the Luzon Arc. Under such a stress state southern Taiwan accommodates the compression by southwest-directed lateral movement and uplift of the lower crust and results in the northeast extension of normal faults in the southern Central Range. Combining the results of the onset timing in the late Pleistocene for the tectonic extrusion in southwest Taiwanand the exhumation rate speeding up after 0.5 Ma, this study further infers that this southwestward extrusion process might occur younger than 0.5 Ma.
口試委員會審定書 ….................................................................................................. i
誌謝 …......................................................................................................................... ii
中文摘要 .................................................................................................................... iii
Abstract ...................................................................................................................... iv
Contents ..................................................................................................................... vi
List of Figures .......................................................................................................... viii
List of Tables ................................................................................................................x
Chapter 1 Introduction .............................................................................................. 1
1.1 Motivation ...................................................................................................... 1
1.2 Purpose ........................................................................................................... 5
1.3 Content of this Dissertation ............................................................................ 7
1.4 Method.............................................................................................................9
Chapter 2 Rapid exhumation of the eastern Central Range of the Taiwan orogenic belt: insights from low-temperature thermochronology........................ 13
Chapter 3 Synorogenic extension and extrusion in southern Taiwan: the Tectonic response to obliquely colliding Peikang High and the Luzon Arc........ 27
Chapter 4 Rapid exhumation of the southeastern Central Range of the Taiwan orogenic belt: insights from apatite (U/Th)/He dating …...................................... 49
4.1 Introduction .................................................................................................. 49
4.2 Apatite (U-Th)/He method............................................................................ 50
4.3 Result and Discussion................................................................................... 50
Chapter 5 Concluding Remarks ............................................................................. 57
Reference ................................................................................................................... 60
Appendix I ................................................................................................................. 66
Appendix II ............................................................................................................... 71
Angelier, J., 1979, Determination of the mean principal directions of stresses for a given fault population: Tectonophysics, v. 56, no. T17-T26.
Angelier, J., 1994, Fault slip analysis and palaeostress reconstruction, in Hancock, P. L., ed., Continental Deformation: Oxford, Pergamon Press.
Armijo, R., Tapponier, P., Mercier, J. L., and Han, T. L., 1986, Quaternary extension in southern Tibet: Field observations and tectonic implications: Journal of Geophysical Research, v. 91, p. 13,803-813,872.
Bertrand, E. A., Unsworth, M. J., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F. T., Türkoğlu, E., Hsu, H. L., and Hill, G. J., 2012, Magnetotelluric imaging beneath the Taiwan orogen: An arc‐continent collision: Journal of Geophysical Research: Solid Earth, v. 117, no. B1.
Beyssac, O., Simoes, M., Avouac, J.-P., Farley, K., Chen, Y.-G., Chan, Y.-C., and Goffe, B., 2007, Late Cenozoic metamorphic evolution and exhumation of Taiwan: Tectonics, v. 26, p. TC6001.
Byrne, T., and Liu, C.-S., 2002, Geology and Geophysics of an Arc-Continent Collision, Taiwan, Boulder, Colorado, Geological Society of America, 211 p.:
Cardozo, N., and Allmendinger, R. W., 2009, SSPX: A program to compute strain from displacement/velocity data: Computers & Geosciences, v. 35, no. 6, p. 1343-1357.
Carena, S., Suppe, J., and Kao, H., 2002, Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography: Geology, v. 30, no. 10, p. 935-983.
Chai, B. H. T., 1972, Structural and tectonic evolution of Taiwan: American Journal of Science, v. 272, p. 389-422.
Chen, A.-T., Shen, C.-C., Byrne, T. B., Sano, Y., Takahata, N., Yang, T. F., and Wang, Y., 2019, Mantle fluids associated with crustal-scale faulting in a continental subduction setting, Taiwan: Scientific reports, v. 9, no. 1, p. 1-7.
Chen, C.-H., 1994, Metamorphic facies map of Taiwan: Special publication of the Central Geological Survey, v. 2, p. 1-3.
Chen, C.-H., 2000, Geologic Map of Taiwan: Central Geological Survey, Ministry of Economic Affairs, scale 1:500,000.
Chen, K. H., Tai, H. J., Ide, S., Byrne, T. B., and Johnson, C. W., 2018, Tidal modulation and tectonic implications of tremors in Taiwan: Journal of Geophysical Research: Solid Earth, v. 123, no. 7, p. 5945-5964.
Chen, S. K., Wu, Y.-M., Hsu, Y.-J., and Chan, Y.-C., 2017, Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion: Geophysical Journal International, v. 210, no. 1, p. 228-239.
Chevalier, M. L., Tapponnier, P., Van Der Woerd, J., Leloup, P. H., Wang, S., Pan, J., Bai, M., Kali, E., Liu, X., and Li, H., 2020, Late Quaternary extension rates across the northern half of the Yadong‐Gulu rift: Implication for east‐west extension in southern Tibet: Journal of Geophysical Research: Solid Earth, v. 125, no. 7, p. e2019JB019106.
Chiang, C.-W., Chen, C.-C., Unsworth, M., Bertrand, E., Chow-Son, C., Kieu, T. D., and Hsu, H.-L., 2010, The deep electrical structure of southern Taiwan and its tectonic implications: TAO: Terrestrial, Atmospheric and Oceanic Sciences, v. 21, no. 6, p. 8.
Chiang, P.-H., Hsu, Y.-J., and Chang, W.-L., 2016, Fault modeling of the 2012 Wutai, Taiwan earthquake and its tectonic implications: Tectonophysics, v. 666, p. 66-75.
Ching, K.-E., Hsieh, M.-L., Johnson, K., Chen, K.-H., Rau, R.-J., and Yang, M., 2011, Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008: Journal Geophysical Research, v. 116, no. B08406.
Conand, C., Mouthereau, F., Ganne, J., Lin, A. T. S., Lahfid, A., Daudet, M., Mesalles, L., Giletycz, S., and Bonzani, M., 2020, Strain partitioning and exhumation in oblique Taiwan collision: Role of rift architecture and plate kinematics: Tectonics, v. 39, no. 4, p. e2019TC005798.
Crespi, J., Chan, Y.-C., and Swaim, M., 1996, Synorogenic extension and exhumation of the Taiwan hinterland: Geology, v. 24, no. 3, p. 247-250.
Dalmayrac, B., and Molnar, P., 1981, Parallel thrust and normal faulting in Peru and constraints on the state of stress: Earth and Planetary Science Letters, v. 55, p. 473-481.
Deffontaines, B., Lee, J.-C., Angelier, J., Carvalho, J., and Rudant, J.-P., 1994, New geomorphic data on the active Taiwan orogen: A multisource approach: Journal of Geophysical Research, v. 99, no. B10, p. 20,243-220,266.
Farley, K., Rusmore, M., and Bogue, S., 2001, Post-10 Ma uplift and exhumation of the northern Coast Mountains, British Columbia: Geology, v. 29, p. 99-102.
Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F., and Sump, E., 1995, Uplift an denudation of the central Alaska Range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters: Journal of Geophysical Research, v. 100, p. 20,175-120,191.
Fuller, C., Willett, S. D., Fisher, D. M., and Lu, C.-Y., 2006, A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry: Tectonophysics, v. 425, p. 1-24.
Ho, C. S., 1986, A synthesis of the geologic evolution of Taiwan: Tectonophysics, v. 125, p. 1-16.
Hsieh, H.-H., Chen, C.-H., Lin, P.-Y., and Yen, H.-Y., 2014, Curie point depth from spectral analysis of magnetic data in Taiwan: Journal of Asian Earth science, v. 90, p. 26-33.
Hsu, W.-H., Byrne, T. B., Lewis, J. C., Chen, Y.-G., and Yeh, P.-Y., 2022, Synorogenic extension and extrusion in southern Taiwan: Tectonophysics, v. 840, p. 229562.
Hsu, W.-H., Byrne, T. B., Ouimet, W., Lee, Y.-H., Chen, Y.-G., van Soest, M., and Hodges, K., 2016, Pleistocene onset of rapid, punctuated exhumation in the eastern Central Range of the Taiwan orogenic belt: Geology, v. 44, no. 9, p. 719-722.
Hsu, Y.-J., Lai, Y.-R., You, R.-J., Chen, H.-Y., Teng, L. S., Tsai, Y.-C., Tang, C.-H., and Su, H.-H., 2018, Detecting rock uplift across southern Taiwan mountain belt by integrated GPS and leveling data: Tectonophysics, v. 744, p. 275-284.
Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., and Chen, H.-Y., 2009, Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms: Tectonophysics.
Huang, C., and Byrne, T., 2014, Tectonic evolution of a major tectonostratigraphic boundary in an active accretionary wedge: an example from the Tulungwan Fault, southern Taiwan: Journal of Structural Geology.
Ide, S., Yabe, S., Tai, H. J., and Chen, K. H., 2015, Thrust‐type focal mechanisms of tectonic tremors in Taiwan: Evidence of subduction: Geophysical Research Letters, v. 42, no. 9, p. 3248-3256.
Ketcham, R., 2005, Forward and inverse modeling of low-temperature thermochronometry data: Reviews in Mineralogy & Geochemistry, v. 58, no. 1, p. 275-314.
Lacombe, O., Mouthereau, F., Angelier, J., and Deffontaines, B., 2001, Structural, geodetic and seismological evidence for tectonic escape in sw Taiwan: Tectonophysics, v. 333, p. 323-345.
Lee, C.-P., Hirata, N., Huang, B.-S., Huang, W.-G., and Tsai, Y.-B., 2010, Evidence of a highly attenuative aseismic zone in the active collision orogen of Taiwan: Tectonophysics, v. 489, p. 128-138.
Lee, C.-R., and Cheng, W.-T., Preliminary heat flow measurements in Taiwan, in Proceedings Proceedings of the Fourth Circum-Pacific Energy and Mineral Resources Conference, Singapore, 1986.
Lee, Y.-H., Byrne, T., Wang, W.-H., Lo, W., and Rau, R.-J., 2015, Simultaneous mountain building in the Taiwan orogenic belt: Geology, v. 43, p. 447-450.
Lee, Y.-H., Chen, C.-C., Liu, T.-K., Ho, H.-C., Lu, H.-Y., and Lo, W., 2006, Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt — From accretionary wedge deformation to arc–continental collision: Earth and Planetary Science Letters, v. 252, p. 413-422.
Lin, C.-H., 2000, Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan: Tectonophysics, v. 324, no. 3, p. 189-201.
Lin, C.-W., and Chen, W.-S., 2016, Geologic Map of Taiwan: Geological Society of Taiwan, scale 1:400,000.
Liu, C.-M., Song, S.-R., and Kuo, C.-H., 2015, Silica geothermometry applications in the Taiwan orogenic belt: Terrestrial, Atmospheric & Oceanic Sciences, v. 26, no. 4.
Liu, T.-K., 1982, Tectonic implication of fission track ages from the Central Range, Taiwan: Proceedings of the Geological Society of China, v. 25, p. 22-37.
Liu, T.-K., Hsieh, S., Chen, Y.-G., and Chen, W.-S., 2001, Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating: Earth and Planetary Science Letters, v. 186, p. 45-56.
Lo, C.-H., and Onstott, T. C., 1995, Rejuvenation of K-Ar systems for minerals in the Taiwan Mountain Belt: Earth and Planetary Science Letters, v. 131, p. 71-98.
McCaffrey, R., 1992, Oblique plate convergence, slip vectors, and forearc deformation: Journal of Geophysical Research: Solid Earth, v. 97, no. B6, p. 8905-8915.
Mesalles, L., Mouthereau, F., Bernet, M., Chang, C.-P., Tien-Shun Lin, A., Fillon, C., and Sengelen, X., 2014, From submarine continental accretion to arc-continent orogenic evolution: The thermal record in southern Taiwan: Geology, v. 42, no. 10, p. 907-910.
Molnar, P., and Lyon-Caen, H., 1988, Some simple physical aspects of the support, structure, and evolution of mountain belts, in Clark Jr., S. P., Burchfiel, B. C., and Suppe, J., eds., Processes in Continental Lithosphere, Geological Society of America Special Paper 218, p. 179-207.
Molnar, P., and Lyon-Caent, H., 1989, Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins: Geophysical Journal International, v. 99, no. 1, p. 123-153.
Parrish, R., 1983, Cenozoic thermal evolution and tectonics of the Coast Mountains of British Columbia 1. Fission-track dating, apparent uplift rates, and patterns of uplift: Tectonics, v. 2, no. 601-631.
Platt, J., 2007, From orogenic hinterlands to Mediterranean-style back-arc basins: a comparative analysis: Journal of the Geological Society, v. 164, no. 2, p. 297-311.
Platt, J., and England, P., 1994, Convective removal of lithosphere beneath mountain belts-Thermal and mechanical consequences: American Journal of Science, v. 294, no. 3.
Reiners, P., and Brandon, M. T., 2006, Using themochronology to understand orogenic erosion, Annual Reviews of Earth and Planetary Sciences, Volume 34: New Haven, Yale University.
Seyferth, M., and Henk, A., 2004, Syn-convergent exhumation and lateral extrusion in continental collision zones—insights from three-dimensional numerical models: Tectonophysics, v. 382, p. 1-29.
Simoes, M., Avouac, J.-P., Beyssac, O., Goffe, B., Farley, K., and Chen, Y.-G., 2007, Mountain building in Taiwan: a thermokinematic model: Journal of Geophysical Research, v. 112.
Simoes, M., Beyssac, O., and Chen, Y.-G., 2012, Late Cenozoic metamorphism and mountain building in Taiwan: a review: Journal of Asian Earth science.
Suarez, G., Molnar, P., and Burchfiel, B. C., 1983, Seismicity, fault plane solutions, depth of faulting, and active tectonics of the Andes of Peru, Ecuador, and southern Columbia: Journal of Geophysical Research, v. 88, p. 10,403-410,428.
Suppe, J., 1981, Mechanics of mountain building and metamorphism in Taiwan: Memoir of the Geological Society of China, v. 4, p. 67-89.
Suppe, J., 1984, Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan: Memoirs of the Geological Society of China, v. 6, p. 21-33.
Teng, L. S., 1990, Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan: Tectonophysics, v. 183, p. 57-76.
Tibaldi, A., and Bonali, F., 2018, Contemporary recent extension and compression in the central Andes: Journal of Structural Geology, v. 107, p. 73-92.
Tsao, S.-J., 1996, The geological significance of illite crystallinity, zircon fission-track ages and K-Ar ages of metasedimentary rocks of the Central RangeM.S.]: National Taiwan University, 272 p.
Tsao, S.-J., LI, T.-C., Tien, J.-L., Chen, C.-H., Liu, T.-K., and Chen, C.-H., 1992, Illite crystallinity and fission track ages along the east Central Cross Island Highway of Taiwan: Acta Geological Taiwanica, v. 30, p. 45-64.
Wagner, G. A., 1977, Cooling ages derived by apatite fission-track, mica Rb-Sr and K-Ar dating; the uplift and cooling history of the Central Alps: Mem. Inst. Geol. Mineral., Univ. of Padova, v. 30, p. 1-27.
Wagner, G. A., and Reimer, G. M., 1972, Fission track tectonics: the tectonic interpretation of fission track apatite ages: Earth and Planetary Science Letters, v. 14, p. 263-268.
Wang, Y.-J., Ma, K.-F., Mouthereau, F., and Eberhart-Phillips, D., 2010, Three-dimensional Qp- and Qs-tomography beneath Taiwan orogenic belt: implications for tectonic and thermal structure: Geophysical Journal International, v. 180, no. 2, p. 891-910.
Willett, S., Fisher, D. M., Fuller, C., Yeh, E.-C., and Lu, C.-Y., 2003, Erosion rates and orgenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry: Geology, v. 31, no. 11, p. 945-948.
Willett, S. D., and Brandon, M. T., 2002, On steady states in mountain belts: Geology, v. 30, no. 2, p. 175-178.
Wintsch, R., Yang, H.-J., Li, X.-H., and Tung, K.-A., 2011, Geochronological evidence for a cold arc-continental collision: The Taiwan orogeny: Lithos, v. 125, p. 236-248.
Wu, Y.-M., Zhao, L., Chang, C.-H., and Hsu, Y.-J., 2008, Focal-mechanism determination in Taiwan by genetic algorithm: Bulletin of the Seismological Society of America, v. 98, no. 2, p. 651-661.
Yamato, P., Mouthereau, F., and Burov, E., 2009, Taiwan mountain building: insights from 2-D thermomechanical modeling of a rheologically stratified lithosphere: Geophysical Journal International, v. 176, p. 307-326.
Yin, A., Kapp, P. A., Murphy, M. A., Manning, C. E., Mark Harrison, T., Grove, M., Lin, D., Xi-Guang, D., and Cun-Ming, W., 1999, Significant late Neogene east-west extension in northern Tibet: Geology, v. 27, no. 9, p. 787-790.
Yu, S.-B., Cheng, H.-Y., and Kuo, L.-C., 1997, Velocity field of GPS stations in the Taiwan area: Tectonophysics, v. 274, p. 41-59.
Žalohar, J., 2009, T-TECTO 3.0 professional integrated software for structural analysis of fault-slip data: Introductory Tutorial, v. 56.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top