跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳旖妮
研究生(外文):Yi-Ni Chen
論文名稱:提高周遭噪訊監測的時間解析度與準確性: 應用於2018年台灣東部Mw 6.4的花蓮地震
論文名稱(外文):Toward Improving the Temporal Resolution and Accuracy of Ambient Noise Monitoring: Application to the 2018 Mw 6.4 Hualien Earthquake in Eastern Taiwan
指導教授:洪淑蕙
指導教授(外文):Shu-Huei Hung
口試委員:胡植慶郭陳澔梁文宗李恩瑞
口試委員(外文):Jyr-Ching HuHao Kuo-ChenWen-Tzong LiangEn-Jui Lee
口試日期:2023-01-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:149
中文關鍵詞:周遭噪訊互相關函數尾波干涉法去噪濾波移動時窗交叉頻譜法波形拉張法小波轉換同震靜態體積應變動態應力震後回復
外文關鍵詞:ambient noisecross correlation functioncoda wave interferometrydenoising filtermoving window cross spectrumtrace stretchingwavelet transformcoseismic volumetric static straindynamic stresspostseismic relaxation
DOI:10.6342/NTU202300475
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣東部的花蓮地區位處於易受頻繁地震威脅的聚合板塊邊界,2018年02月06日規模6.4的花蓮地震是近年造成較多人員傷亡的地震之一,本研究利用連續噪訊記錄結合尾波干涉法量測2017-2018年該區域的地殼速度擾動量,分析其時間與空間的變化分布並探討可能的成因。為了使測量的速度擾動(δv/v)變化 時間解析度能盡量短達數天之內,且同時維持其準確性與穩定性,本研究透過三個程序來達到此需求。首先,計算每天由三分量連續噪訊記錄組合配對的9分量互相關張量(cross-correlation tensor, CCT);第二,為了能夠以最少的疊加天數重建現時格林函數(current Green’s function, CGF),測試DOST和SVDWF兩種去噪濾波,作用於單天的CCTs和兩年CCT疊加平均的參考格林函數(reference Green’s function, RGF),抑制兩者波形的不一致性;第三,使用6種分別在時間域、頻率域與小波域常見的到時偏移測量方法,將尾波波形透過線性拉張、互相關或是非線性最佳擬合(dynamic time warping, DTW)量測CGF和RGF在次微震(secondary microseism)主要頻帶0.1-0.9 Hz區間的走時偏移(δτ),並評估各方法的表現。
比較未去噪和去噪處理的結果,發現經去噪濾波後,尤其是採用SVDWF,明顯地提高了單天CCT和RGF之間的波形一致性,進而在疊加天數為5天時就快速收斂得到穩定的CGF,獲得可信的 δv/v 估計值。六個方法中,小波交叉頻譜法(wavelet cross spectrum, WCS)測量的 δv/v 擾動振幅在不同站間距和去噪與否的情況下都最為穩定。WCS和DTW兩種方法都具有良好的時間辨析度,因此相較於移動時窗互相關法(moving-window cross correlation)和移動時窗交叉頻譜法(moving-window cross spectrum),在以線性回歸量測 δv/v 時具有更多的 δτ 控制點,所以不確定性較小。在站間距較小時,波形拉張法(trace stretching)和小波波形拉張法(wavelet trace stretching)也可獲得相對穩定的 δv/v,但當站間距太長就會出現過大的 δv/v。
所有測站的 δv/v 時間序列可以觀察到兩個主要現象,在花蓮地震發生當天突然的同震速度下降,隨後因震後回復而呈現指數回復趨勢。另一特徵是以一年週期主導的準週期性(quasi-periodic)擾動,與降雨所引起的孔隙壓力變化具高度相關性。站間距最長的測站對位於中央山脈東翼且遠離米崙斷層(Milun fault, MF)和嶺頂斷層(Linding fault, LF),同震速度變化的側向分布除了該測站對以外的其它測站對都顯示同震速度下降。HWA測站位於花蓮市MF南段的上盤,與該測站配對,站間路徑大致呈南北向平行海岸線的三個測站對呈現最為顯著的同震速度下降。這些路徑穿過MF南段和LF北段,附近區域在有限斷層模型滑移量推算的同震靜態體積應變分布呈現伸張應變增加,並且GPS測量得到的地表最大位移(peak ground displacement, PGD)和強地動的地表最大速度(peak ground velocity, PGV)也顯示有較強的振幅。同震速度下降數值以MF為中心呈南北向分布,以此為軸線逐漸往內陸遞減,在朝向內陸的路徑上較不明顯,與PGD和PGV的分布一致。因此我們推斷地殼深度3公里處所觀察到的同震速度下降可能是受到靜態體積應變伸張增加和瞬間動態應力導致地殼力學強度減弱的影響。
不僅是淺層地殼速度擾動,MF沿線上的地下水位和地表位移也具有突然的同震變化和震後逐漸恢復的趨勢,以黏滯力回復的指數函數型態來模擬速度回復的特徵時間,δv/v 和地表位移觀測的最佳擬合顯示回復時間約為1個月,但地下水位的回復時間僅16天,這表示 δv/v 震後變化趨勢主要是受到震後應力回復主導,而地下水位的變化則可能是通過地振動產生的孔隙快速地由含水層補給回復至靜水壓狀態所造成。
We employ noise-based coda wave interferometry to detect disturbance of crustal velocities in time and space and investigate its physical causes in the Hualien area of eastern Taiwan which is located in a plate convergent boundary and highly prone to frequent seismic risk. The investigation period spans from 2017 to 2018 when the deadly Hualien earthquake of magnitude 6.4 struck this area on 6 February 2018. To make the temporal resolution of our estimated velocity perturbations (δv/v) within a few days comparable with geodetic and other geophysical observations, and meanwhile retain their accuracy and stability, we exploit three aspects to meet our need. First, we compute the daily 9-component cross-correlation tensor (CCT) using continuous ambient noise recorded at pairs of the six three-component seismograph stations in the study region. Second, to minimize the number of consecutive days of CCT stack for reconstruction of the robust current Green’s function (CGF), the two denoising filters, named in short as DOST and SVDWF, are tested and exerted to suppress incoherent noise between the daily CCTs and two-year stacked CCT (hereinafter referred to as the reference Green’s function, RGF). Third, we evaluate the performance of the six methods commonly used for measuring the time-lapse shift (δτ) of coda at any given time-lag instant (τ) between the current CGF and RGF in the dominant secondary microseism frequency band of 0.1-0.9 Hz such that the negative slope of the least-squares linear regression of δτ versus τgives the best-estimated δv/v. The measurement of δτ as a function of τ is either made in time, Fourier (frequency), or wavelet domain, replying on linearly stretching, cross-correlating, or non-linear optimally matching (dynamic time warping, DTW) coda traces.
Comparing the results obtained with and without denoising, it is evident that the denoise filtering, particularly SVDWF, improves markedly the waveform coherence between each daily CCT and RGF which leads to a rapid convergence to the stable CGF up to five-day stack and thus the reliable δv/v estimate as well. Among the six methods, the δv/v measured by the wavelet cross-spectrum (WCS) method is most consistent and stable, regardless of the inter-distance of the paired stations, the amplitude of the perturbed velocity, and the kind of the denoising filters or non-denoising. Both the WCS and DTW methods have a good localization in time, and therefore more control points of δτ are readily measurable for linear regression of δv/v with a smaller uncertainty, compared to that measured by the moving window cross correlation (MWCC) and cross-spectrum (MWCS) methods. For the pair with a shorter inter-station distance, the trace stretching (TS) and wavelet trace stretching (WTS) methods also produce relatively stable δv/v; however, the excessively large δv/v fluctuation would emerge whenever the inter-distance is too long and/or the velocity perturbation is too subtle.
The temporal δv/v variations observed at all the stations reveal the two main features. One exhibits a sudden coseismic velocity drop on the date when the Hualien earthquake occurred, succeeding an exponential recovery due to postseismic viscous relaxation, while the other displays quasi-periodic fluctuations with a dominant annual period correlated well with the precipitation-induced pore pressure change. The lateral distribution of coseismic velocity change shows that the velocity decrease is omnipresent for all the station pairs except for the one of the longest inter-station distance mostly through the eastern limb of the Central Range away from the Milun fault (MF) and Linding fault (LF) zones. The most pronounced velocity drop occurs along the nearly N-S trending, coastline-parallel paths paired with station HWA, which is located in Hualien City on the hanging wall of the southern segment of the MF. These paths all traverse the southern MF and northern LF segments, where the nearby region experiences the greatly enhanced coseismic static dilatational strain induced by the slip distribution of the finite-fault model and the much stronger amplitudes of the GPS-derived peak ground displacement (PGD) and the peak ground velocity (PGV) inferred from seismic shaking. The coseismic velocity reduction becomes gradually less visible for the paths toward inland, consistent with the N-S elongated concentric distribution of the PGD and PGV values centered around the MF and outwardly decreasing in strength. We therefore deduce that the increased static dilatational strain and the mechanical properties weakened by transient dynamic stresses in the uppermost 3 km of the crust are responsible for our observed coseismic velocity reduction.
Not only δv/v but also the surface displacement along the MF and ground water level possesses the sudden coseismic change and gradual postseismic recovery, which we model as the sum of a constant term for the coseismic velocity reduction and an exponential term with a characteristic time of viscous relaxation for the transient velocity recovery. The relaxation time taken from the best-fit models is about 1 month for δv/v and the surface displacement, but shortened to 16 days for the ground water level. This finding suggests the δv/v recovery is primarily governed by postseismic stress relaxation through viscous creep. However, the faster recovery of the excessively reduced pore pressure may imply the hydrostatic condition at the water table as a result from the rapid aquifer recharge through the shaking-induced fractured conduit.
論文口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 viii
圖目錄 xi
表目錄 xiv
第1章 緒論 1
1.1 地震干涉 2
1.2 周遭噪訊互相關 3
1.3 尾波延時成像 (coda wave time-lapse imaging) 5
1.4 前人相關研究 7
1.5 2018花蓮地震 10
1.6 研究動機 14
第2章 噪訊互相關理論與尾波干涉原理 15
2.1 噪聲互相關函數與格林函數之關係 15
2.1.1 情況一 : 能量均分模態無退化 17
2.1.2 情況二,能量均分但有模態退化: 17
2.1.3 情況三 : 能量不均分但無模態退化 18
2.1.4 情況四 : 不均分且有模態退化 19
2.2 尾波干涉技術 20
第3章 資料選取分析流程與研究方法 25
3.1 研究區域觀測站與資料選取 25
3.2 資料分析流程 29
3.2.1 環境噪訊地震學python套件——Noisepy 30
3.2.2 重建經驗格林函數 31
3.2.3 尾波時窗選擇 34
3.2.4 參考與現時格林函數重建 36
3.3 去噪濾波 38
3.3.1 離散正交S轉換(DOST)濾波 38
3.3.2 奇異值分解維納濾波(SVDWF) 41
3.3.3 去噪濾波與疊加天數 44
3.4 相對走時偏移測量方法 46
3.4.1 波形拉張法 47
3.4.2 動態時間規整法 49
3.4.3 移動時窗互相關法 52
3.4.4 移動時窗交叉頻譜法 53
3.4.5 小波交叉頻譜法 55
3.2.6 小波拉張法 58
第4章 研究結果 59
4.1 比較去噪濾波對速度擾動結果的影響 59
4.2 比較尾波到時偏移測量法的速度擾動變化結果 62
4.3 測站速度擾動量的時序變化測量同震速度變化 67
第5章 討論 72
5.1 能量週期與影響深度 72
5.2 同震靜態體積應變變化 74
5.3 同震動態應力變化 76
5.4 震後復原現象 80
5.5 週期性速度擾動與孔隙壓力變化 84
第6章 結論 88
參考文獻 90
附錄A 各測站對未去噪、二種去噪濾波處理的互相關函數與六種尾波到時偏移量測量方法的組合結果 100
附錄B 各測站速度擾動模擬 145
Aki, K. (1957). Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bulletin of the Earthquake Research Institute, 35, 415-456.
Aki, K. (1965). A note on the use of microseisms in determining the shallow structures of the earth’s crust. Geophysics, 30(4), 665-666.
Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, 74(2), 615-631. doi:10.1029/jb074i002p00615
Aki, K., & Chouet, B. (1975). Origin of coda waves: Source, attenuation, and scattering effects. Journal of Geophysical Research, 80(23), 3322-3342. doi:10.1029/jb080i023p03322
Ardhuin, F., Gualtieri, L., & Stutzmann, E. (2015). How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s. Geophysical Research Letters, 42(3), 765-772. doi:10.1002/2014gl062782
Baig, A. M., Campillo, M., & Brenguier, F. (2009). Denoising seismic noise cross correlations. Journal of Geophysical Research, 114(B8). doi:10.1029/2008jb006085
Battisti, U., & Riba, L. (2016). Window-dependent bases for efficient representations of the Stockwell transform. Applied and Computational Harmonic Analysis, 40(2), 292-320. doi:10.1016/j.acha.2015.02.002
Brandes, C., & Tanner, D. C. (2020). Fault mechanics and earthquakes. In Understanding Faults (pp. 11-80).
Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. (2008a). Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations. science, 321(5895), 1478-1481. doi:10.1126/science.1160943
Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian, A. (2008b). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1(2), 126-130. doi:10.1038/ngeo104
Brenguier, F., Clarke, D., Aoki, Y., Shapiro, N. M., Campillo, M., & Ferrazzini, V. (2011). Monitoring volcanoes using seismic noise correlations. Comptes Rendus Geoscience, 343(8-9), 633-638. doi:10.1016/j.crte.2010.12.010
Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. science, 299(5606), 547-549. doi:10.1126/science.1078551
Chang, Y. H., Hung, S. H., & Chen, Y. L. (2019). A fast algorithm for automatic phase picker and event location: Application to the 2018 Hualien earthquake sequences. Terrestrial Atmospheric and Oceanic Sciences, 30(3), 435-448. doi:10.3319/Tao.2018.12.23.01
Chen, Y. N., Gung, Y. C., You, S. H., Hung, S. H., Chiao, L. Y., Huang, T. Y., . . . Jan, S. (2011). Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM. Geophysical Research Letters, 38. doi:10.1029/2010gl046290
Claerbout, J. F. (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2), 264-269.
Clarke, D., Zaccarelli, L., Shapiro, N. M., & Brenguier, F. (2011). Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophysical Journal International, 186(2), 867-882. doi:10.1111/j.1365-246X.2011.05074.x
Dieterich, J. (1994). A Constitutive Law for Rate of Earthquake Production and Its Application to Earthquake Clustering. Journal of Geophysical Research-Solid Earth, 99(B2), 2601-2618. doi:10.1029/93jb02581
Duputel, Z., Ferrazzini, V., Brenguier, F., Shapiro, N., Campillo, M., & Nercessian, A. (2009). Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Reunion) from January 2006 to June 2007. Journal of Volcanology and Geothermal Research, 184(1-2), 164-173. doi:10.1016/j.jvolgeores.2008.11.024
Feng, K. F., Huang, H. H., Hsu, Y. J., & Wu, Y. M. (2021). Controls on Seasonal Variations of Crustal Seismic Velocity in Taiwan Using Single‐Station Cross‐Component Analysis of Ambient Noise Interferometry. Journal of Geophysical Research: Solid Earth, 126(11). doi:10.1029/2021jb022650
Fowler, C. M. R., Fowler, C. M. R., & Fowler, M. (1990). The solid earth: an introduction to global geophysics: Cambridge University Press.
Froment, B., Campillo, M., Roux, P., Gouedard, P., Verdel, A., & Weaver, R. L. (2010). Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics, 75(5), Sa85-Sa93. doi:10.1190/1.3483102
Grêt, A., Snieder, R., & Özbay, U. U. (2006). Monitoring in situ stress changes in a mining environment with coda wave interferometry. Geophysical Journal International, 167(2), 504-508. doi:10.1111/j.1365-246x.2006.03097.x
Hadziioannou, C., Larose, E., Coutant, O., Roux, P., & Campillo, M. (2009). Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments. Journal of the Acoustical Society of America, 125(6), 3688-3695. doi:10.1121/1.3125345
Hadziioannou, C., Larose, E., Baig, A., Roux, P., & Campillo, M. (2011). Improving temporal resolution in ambient noise monitoring of seismic wave speed. Journal of Geophysical Research, 116(B7). doi:10.1029/2011jb008200
Hale, D. (2013). Dynamic warping of seismic images. Geophysics, 78(2), S105-S115. doi:10.1190/geo2012-0327.1
Herrera, R. H., & Van Der Baan, M. (2012). Short-time homomorphic wavelet estimation. Journal of Geophysics and Engineering, 9(6), 674-680. doi:10.1088/1742-2132/9/6/674
Hillers, G., Ben-Zion, Y., Campillo, M., & Zigone, D. (2015). Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise. Geophysical Journal International, 202(2), 920-932. doi:10.1093/gji/ggv151
Hobiger, M., Wegler, U., Shiomi, K., & Nakahara, H. (2016). Coseismic and post-seismic velocity changes detected by Passive Image Interferometry: comparison of one great and five strong earthquakes in Japan. Geophysical Journal International, 205(2), 1053-1073. doi:10.1093/gji/ggw066
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191. doi:10.1016/j.epsl.2014.02.026
Huang, H.-H., & Wang, Y. (2022). Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model. Terrestrial, Atmospheric and Oceanic Sciences, 33(1). doi:10.1007/s44195-022-00017-z
Huang, H. H., Lin, F. C., Schmandt, B., Farrell, J., Smith, R. B., & Tsai, V. C. (2015). The Yellowstone magmatic system from the mantle plume to the upper crust. science, 348(6236), 773-776. doi:10.1126/science.aaa5648
Jian, P.-R., & Wang, Y. (2022). Applying unsupervised machine-learning algorithms and MUSIC back-projection to characterize 2018–2022 Hualien earthquake sequence. Terrestrial, Atmospheric and Oceanic Sciences, 33(1). doi:10.1007/s44195-022-00026-y
Jian, P. R., Hung, S. H., & Meng, L. S. (2019). Rupture Behavior and Interaction of the 2018 Hualien Earthquake Sequence and Its Tectonic Implication. Seismological Research Letters, 90(1), 68-77. doi:10.1785/0220180241
Jiang, C. X., & Denolle, M. A. (2020). NoisePy: A New High-Performance Python Tool for Ambient-Noise Seismology. Seismological Research Letters, 91(3), 1853-1866. doi:10.1785/0220190364
Jiang, S. S., & Sawchuk, A. A. (1986). Noise Updating Repeated Wiener Filter and Other Adaptive Noise Smoothing Filters Using Local Image Statistics. Applied Optics, 25(14), 2326-2337. doi:10.1364/Ao.25.002326
Kilb, D., Gomberg, J., & Bodin, P. (2000). Triggering of earthquake aftershocks by dynamic stresses. Nature, 408(6812), 570-574. doi:10.1038/35046046
King, G. C. P., Stein, R. S., & Lin, J. (1994). Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953. Retrieved from ://WOS:A1994NQ99300036
Larose, E., Roux, P., Campillo, M., & Derode, A. (2008). Fluctuations of correlations and Green's function reconstruction: Role of scattering. Journal of Applied Physics, 103(11). doi:10.1063/1.2939267
Lee, E. J., Chen, P., Mu, D., Rau, R. J., & Lin, C. M. (2018). Coseismic Velocity Variations Associated with the 2018 Mw 6.4 Hualien Earthquake Estimated Using Repeating Earthquakes. Seismological Research Letters, 90(1), 118-130. doi:10.1785/0220180230
Lee, S. J., Lin, T. C., Liu, T. Y., & Wong, T. P. (2019). Fault‐to‐Fault Jumping Rupture of the 2018 Mw 6.4 Hualien Earthquake in Eastern Taiwan. Seismological Research Letters, 90(1), 30-39. doi:10.1785/0220180182
Li, Y., Itadera, K., Harada, M., & Ukawa, M. (2021). Modeling the coseismic groundwater level increase in the Oi well, central Japan. Earth, Planets and Space, 73(1). doi:10.1186/s40623-021-01489-y
Liang, C., & Langston, C. A. (2008). Ambient seismic noise tomography and structure of eastern North America. Journal of Geophysical Research, 113(B3). doi:10.1029/2007jb005350
Lin, F. C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1), 281-298. doi:10.1111/j.1365-246X.2008.03720.x
Lin, Y.-Y., Chen, D.-Y., Kuo, C.-H., Lin, C.-J., Chen, W.-Y., & Wen, Y.-Y. (2022). Orientation Corrections of a Borehole Seismometer Network in Taiwan Using Teleseismic Earthquakes. Seismological Research Letters, 93(3), 1532–1548. doi:10.1785/0220210248
Liu, C.-Y., Chia, Y., Chuang, P.-Y., Chiu, Y.-C., & Tseng, T.-L. (2018a). Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes. Hydrogeology Journal, 26(2), 451-465. doi:10.1007/s10040-017-1684-z
Liu, Z., Huang, J., Peng, Z., & Su, J. (2014). Seismic velocity changes in the epicentral region of the 2008 Wenchuan earthquake measured from three-component ambient noise correlation techniques. Geophysical Research Letters, 41(1), 37-42. doi:10.1002/2013gl058682
Liu, Z., Huang, J., He, P., & Qi, J. (2018b). Ambient Noise Monitoring of Seismic Velocity Around the Longmenshan Fault Zone From 10 Years of Continuous Observation. Journal of Geophysical Research: Solid Earth, 123(10), 8979-8994. doi:10.1029/2018jb015986
Lobkis, O. I., & Weaver, R. L. (2001). On the emergence of the Green's function in the correlations of a diffuse field. Journal of the Acoustical Society of America, 110(6), 3011-3017. doi:10.1121/1.1417528
Lobkis, O. I., & Weaver, R. L. (2003). Coda-wave interferometry in finite solids: Recovery of P-to-S conversion rates in an elastodynamic billiard. Physical Review Letters, 90(25). doi:10.1103/PhysRevLett.90.254302
Loevenbruck, A., Cattin, R., Le Pichon, X., Dominguez, S., & Michel, R. (2004). Coseismic slip resolution and post-seismic relaxation time of the 1999 Chi-Chi, Taiwan, earthquake as constrained by geological observations, geodetic measurements and seismicity. Geophysical Journal International, 158(1), 310-326. doi:10.1111/j.1365-246X.2004.02285.x
Müller, M. (2007). Dynamic Time Warping. In Information Retrieval for Music and Motion (pp. 69-84): Springer Berlin Heidelberg.
Mainsant, G., Larose, E., Brönnimann, C., Jongmans, D., Michoud, C., & Jaboyedoff, M. (2012). Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. Journal of Geophysical Research: Earth Surface, 117(F1), n/a-n/a. doi:10.1029/2011jf002159
Mao, S., Mordret, A., Campillo, M., Fang, H., & van der Hilst, R. D. (2020). On the measurement of seismic traveltime changes in the time–frequency domain with wavelet cross-spectrum analysis. Geophysical Journal International, 221(1), 550-568. doi:10.1093/gji/ggz495
Maurya, S., Taira, T. A., & Romanowicz, B. (2019). Location of Seismic “Hum” Sources Following Storms in the North Pacific Ocean. Geochemistry, Geophysics, Geosystems, 20(3), 1454-1467. doi:10.1029/2018gc008112
Melo, G., Malcolm, A., Mikesell, D., & van Wijk, K. (2013). Using SVD for improved interferometric Green's function retrieval. Geophysical Journal International, 194(3), 1596-1612. doi:10.1093/gji/ggt172
Mikesell, T. D., Malcolm, A. E., Yang, D., & Haney, M. M. (2015). A comparison of methods to estimate seismic phase delays: numerical examples for coda wave interferometry. Geophysical Journal International, 202(1), 347-360. doi:10.1093/gji/ggv138
Moreau, L., Stehly, L., Boué, P., Lu, Y., Larose, E., & Campillo, M. (2017). Improving ambient noise correlation functions with an SVD-based Wiener filter. Geophysical Journal International, 211(1), 418-426. doi:10.1093/gji/ggx306
Nishida, K. (2013). Earth's Background Free Oscillations. Annual Review of Earth and Planetary Sciences, 41(1), 719-740. doi:10.1146/annurev-earth-050212-124020
Obermann, A., Planes, T., Hadziioannou, C., & Campillo, M. (2016). Lapse-time-dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media. Geophysical Journal International, 207(1), 59-66. doi:10.1093/gji/ggw264
Obermann, A., & Hillers, G. (2019). Seismic time-lapse interferometry across scales. In Recent Advances in Seismology (pp. 65-143).
Perfettini, H., & Avouac, J. P. (2004). Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. Journal of Geophysical Research-Solid Earth, 109(B2). doi:10.1029/2003jb002488
Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring Velocity Variations in the Crust Using Earthquake Doublets - an Application to the Calaveras Fault, California. Journal of Geophysical Research, 89(Nb7), 5719-5731. doi:10.1029/JB089iB07p05719
Rivet, D., Campillo, M., Radiguet, M., Zigone, D., Cruz-Atienza, V., Shapiro, N. M., . . . Daub, E. (2014). Seismic velocity changes, strain rate and non-volcanic tremors during the 2009-2010 slow slip event in Guerrero, Mexico. Geophysical Journal International, 196(1), 447-460. doi:10.1093/gji/ggt374
Rivet, D., Brenguier, F., & Cappa, F. (2015). Improved detection of preeruptive seismic velocity drops at the Piton de La Fournaise volcano. Geophysical Research Letters, 42(15), 6332-6339. doi:10.1002/2015gl064835
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., & Fehler, M. C. (2005). Surface wave tomography from microseisms in Southern California. Geophysical Research Letters, 32(14). doi:10.1029/2005gl023155
Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43-49. doi:10.1109/tassp.1978.1163055
Sanchez-Sesma, F. J., & Campillo, M. (2006). Retrieval of the green's function from cross correlation: The canonical elastic problem. Bulletin of the Seismological Society of America, 96(3), 1182-1191. doi:10.1785/0120050181
Sanchez-Sesma, F. J., Perez-Ruiz, J. A., Campillo, M., & Luzon, F. (2006). Elastodynamic 2D Green function retrieval from cross-correlation: Canonical inclusion problem. Geophysical Research Letters, 33(13). doi:10.1029/2006gl026454
Savage, J. C., Svarc, J. L., & Yu, S.-B. (2007). Postseismic relaxation and aftershocks. Journal of Geophysical Research, 112(B6). doi:10.1029/2006jb004584
Schaff, D. P. (2012). Placing an Upper Bound on Preseismic Velocity Changes Measured by Ambient Noise Monitoring for the 2004 Mw 6.0 Parkfield Earthquake (California). Bulletin of the Seismological Society of America, 102(4), 1400-1416. doi:10.1785/0120110342
Schimmel, M., & Paulssen, H. (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophysical Journal International, 130(2), 497-505. doi:10.1111/j.1365-246X.1997.tb05664.x.
Schimmel, M., & Gallart, J. (2007). Frequency-dependent phase coherence for noise suppression in seismic array data. Journal of Geophysical Research: Solid Earth, 112(B4). doi:10.1029/2006jb004680
Sens-Schonfelder, C., & Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, 33(21). doi:Artn L21302
10.1029/2006gl027797
Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7). doi:10.1029/2004gl019491
Shyu, J. B. H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R., & Cheng, C.-T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3). doi:10.3319/tao.2015.11.27.02(tem)
Snieder, R., Gret, A., Douma, H., & Scales, J. (2002). Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity. science, 295. doi:10.1126/science.1070015
Snieder, R. (2004). Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4). doi:10.1103/PhysRevE.69.046610
Snieder, R. (2006). The Theory of Coda Wave Interferometry. pure and applied geophysics, 163(2-3), 455-473. doi:10.1007/s00024-005-0026-6
Stehly, L., Campillo, M., & Shapiro, N. M. (2006). A study of the seismic noise from its long-range correlation properties. Journal of Geophysical Research, 111(B10). doi:10.1029/2005jb004237
Stockwell, R. G., Mansinha, L., & Lowe, R. P. (1996). Localization of the complex spectrum: The S transform. Ieee Transactions on Signal Processing, 44(4), 998-1001. doi:10.1109/78.492555
Stockwell, R. G. (2007). A basis for efficient representation of the S-transform. Digital Signal Processing, 17(1), 371-393. doi:10.1016/j.dsp.2006.04.006
Talwani, P., Chen, L., & Gahalaut, K. (2007). Seismogenic permeability, ks. Journal of Geophysical Research, 112(B7). doi:10.1029/2006jb004665
Toda, S., Stein, R. S., Richards-Dinger, K., & Bozkurt, S. B. (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research-Solid Earth, 110(B5). doi:10.1029/2004jb003415
Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61-78. doi:10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2
Tsai, V. C. (2009). On establishing the accuracy of noise tomography travel-time measurements in a realistic medium. Geophysical Journal International, 178(3), 1555-1564. doi:10.1111/j.1365-246X.2009.04239.x
Tsai, V. C. (2010). The relationship between noise correlation and the Green's function in the presence of degeneracy and the absence of equipartition. Geophysical Journal International, 182(3), 1509-1514. doi:10.1111/j.1365-246x.2010.04693.x
Tung, H., Chen, H.-Y., Hsu, Y.-J., Hu, J.-C., Chang, Y.-H., & Kuo, Y.-T. (2019). Triggered slip on multifaults after the 2018 Mw 6.4 Hualien earthquake by continuous GPS and InSAR measurements. Terrestrial, Atmospheric and Oceanic sciences journal, 30, 285-300. doi:10.3319/TAO.2019.04.03.01
Uchida, N., & Burgmann, R. (2019). Repeating Earthquakes. Annual Review of Earth and Planetary Sciences, Vol 47, 47, 305-+. doi:10.1146/annurev-earth-053018-060119
Utsu, T., Ogata, Y., & Matsuura, R. S. (1995). The Centenary of the Omori Formula for a Decay Law of Aftershock Activity. Journal of Physics of the Earth, 43(1), 1-33. doi:10.4294/jpe1952.43.1
Viens, L., & Van Houtte, C. (2020). Denoising ambient seismic field correlation functions with convolutional autoencoders. Geophysical Journal International, 220(3), 1521-1535. doi:10.1093/gji/ggz509
Wang, C. Y., & Manga, M. (2010). Hydrologic responses to earthquakes and a general metric. Geofluids. doi:10.1111/j.1468-8123.2009.00270.x
Wang, C. Y., & Manga, M. (2014). Earthquakes and Water. In Encyclopedia of Complexity and Systems Science (pp. 1-38): Springer New York.
Wang, J., Tilmann, F., White, R. S., Soosalu, H., & Bordoni, P. (2008). Application of Multi-channel Wiener Filters to the Suppression of Ambient Seismic Noise in Passive Seismic Arrays. The Leading Edg, 27. doi:10.1190/1.2840372
Wang, Q.-Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T., & Aoki, Y. (2017). Seasonal Crustal Seismic Velocity Changes Throughout Japan. Journal of Geophysical Research: Solid Earth, 122(10), 7987-8002. doi:10.1002/2017jb014307
Wapenaar, K. (2004). Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters, 93(25). doi:10.1103/PhysRevLett.93.254301
Wapenaar, K., Slob, E., & Snieder, R. (2006). Unified Green's function retrieval by cross correlation. Physical Review Letters, 97(23). doi:10.1103/PhysRevLett.97.234301
Wapenaar, K., Slob, E., & Snieder, R. (2010). On seismic interferometry, the generalized optical theorem, and the scattering matrix of a point scatterer. Geophysics, 75(3), SA27-SA35. doi:10.1190/1.3374359
Weaver, R. L. (2005). Information from Seismic Noise. science, 307(5715), 1568-1569. doi:10.1126/science.1109834
Weaver, R. L., Hadziioannou, C., Larose, E., & Campillo, M. (2011). On the precision of noise correlation interferometry. Geophysical Journal International, 185(3), 1384-1392. doi:10.1111/j.1365-246X.2011.05015.x
Wegler, U., Lühr, B.-G., Snieder, R., & Ratdomopurbo, A. (2006). Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia). Geophysical Research Letters, 33(9). doi:10.1029/2006gl025928
Yu, T. C., & Hung, S. H. (2012). Temporal changes of seismic velocity associated with the 2006 Mw 6.1 Taitung earthquake in an arc-continent collision suture zone. Geophysical Research Letters, 39. doi:10.1029/2012GL051970
Yuan, C., Bryan, J., & Denolle, M. (2021). Numerical comparison of time-, frequency- and wavelet-domain methods for coda wave interferometry. Geophysical Journal International, 226(2), 828-846. doi:10.1093/gji/ggab140
Zhan, Z. W., Tsai, V. C., & Clayton, R. W. (2013). Spurious velocity changes caused by temporal variations in ambient noise frequency content. Geophysical Journal International, 194(3), 1574-1581. doi:10.1093/gji/ggt170
郭俊翔, 黃雋彥, 林哲民, 趙書賢, 林沛暘, 溫國樑, . . . Hsiao, N. c. (2018). 0206花蓮地震強地動記錄與近斷層波形特徵. 地工技術, 25-34.
吳欣玫 (2014),台灣中央山脈地區地震所引起淺層地殼速度與靜態應變體積擾動之相關性,國立臺灣大學理學院地質科學所碩士論文,共68頁。
戴汶珮 (2018),利用尾波干涉法分析地震及應變資料討論2013瑞穗地震前後地殼變化,國立臺灣大學理學院地質科學所碩士論文,共82頁。
Central Weather Bureau (CWB, Taiwan). (2012). Central Weather Bureau Seismographic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/T5
Institute of Earth Sciences, Academia Sinica, Taiwan (1996): Broadband Array in Taiwan for Seismology. Institute of Earth Sciences, Academia Sinica, Taiwan. Other/Seismic Network. doi:10.7914/SN/TW
電子全文 電子全文(網際網路公開日期:20260214)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊