跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張奕淳
研究生(外文):Yi-Chun Chang
論文名稱:磁控濺鍍CrN與CrN/Cr薄膜提升CoCrNiSi0.3中熵合金抗磨耗及抗腐蝕性質之研究
論文名稱(外文):Study on Improving the Corrosion and Wear Resistance of CoCrNiSi0.3 Medium-Entropy Alloy by Magnetron Sputtered CrN and CrN/Cr Films
指導教授:林新智林新智引用關係
指導教授(外文):Hsin-Chih Lin
口試委員:郭東昊林昆明許正勳
口試委員(外文):Dong-Hau KuoKun-Ming LinCheng-Hsun Hsu
口試日期:2023-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:119
中文關鍵詞:中熵合金磁控濺鍍法CrN薄膜磨耗試驗腐蝕試驗CrN/Cr多層膜
外文關鍵詞:Medium-Entropy AlloyMagnetron SputteringCrN thin filmWearCorrosionCrN/Cr multilayer
DOI:10.6342/NTU202301965
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究選取Co、Cr、Ni作為等中熵合金(MEA)體系,加入Si形成CoCrNiSi0.3 MEA。為了進一步提高其抗磨耗及抗腐蝕性,在表面沉積了單層CrN與多層CrN/Cr薄膜。為了提升硬度較低的 CoCrNiSi0.3基材與高硬度 CrN 薄膜之間的附著力,在 CoCrNiSi0.3基材上沉積了 Cr 中介層,以防止基材與薄膜之間因為晶體結構及熱膨脹係數差異過大而產生剝落。本實驗分為四個階段,第一階段改變CoCrNiSi0.3基材之退火時間,分別為15、30及60分鐘;第二階段則選用第一階段最佳參數作為後續鍍膜之基材,並改變CrN沉積時間,分別為2、2.5、3及3.5 小時;第三階段選用第二階段最佳參數,改變CrN沉積溫度,分別為225、250、275及300 oC;第四階段選用第三階段最佳參數,改為沉積CrN/Cr之多層膜,並改變CrN/Cr的層數,分別為1、2、及3層。此外,本研究藉由硬度試驗、磨耗試驗、腐蝕試驗及奈米壓痕等試驗以評估薄膜之性能,並使用低掠角薄膜繞射(GIXRD)、AFM、SEM、EBSD、EPMA與TEM等儀器,以進行成分與結構之分析。
實驗的第一階段我們首先透過改變CoCrNiSi0.3 MEA的退火時間,控制晶粒大小以得到最佳磨耗及腐蝕性質,實驗結果表明,當退火時間達30分鐘時,晶粒大小為17.5μm,可同時擁有良好的抗磨耗及抗腐蝕性質。第二階段我們改變CrN薄膜的沉積時間,實驗結果表明,CrN薄膜呈柱狀晶粒結構,薄膜生長速率約為2.022 μm/h。隨著沉積時間的增加,CrN薄膜厚度的增加和柱狀晶的細化提高了抗磨性和抗蝕性。沉積時間達3小時的CrN薄膜,可具有最佳的抗磨耗性質,磨耗率為2.249 x 10−5 mm3•m−1•N−1,以及最佳的耐腐蝕性,腐蝕電流密度為19.37 μA•cm–2、腐蝕極化阻抗為705.85 Ω•cm2。第三階段改變CrN薄膜的沉積溫度,實驗結果表明,隨著沉積溫度增加,使原子具有更高流動性,使薄膜緻密度逐漸增加,且缺陷密度大幅下降。沉積溫度達300oC的CrN薄膜,具有最佳的抗磨耗性質,磨耗率為0.583 x 10−5 mm3•m−1•N−1,以及最佳的抗腐蝕性質,腐蝕電流密度為4.51 μA•cm–2、腐蝕極化阻抗為857.92 Ω•cm2。第四階段改變沉積CrN/Cr多層薄膜的層數,實驗結果表明,隨著多層薄膜層數增加,添加Cr層導致CrN柱狀晶生長中斷,使晶粒逐漸細化,而多層結構可作為裂縫及腐蝕液傳遞的屏障,並且Cr層可提供良好的韌性、Cr2N過渡層可提升多層薄膜附著性,因此,沉積層數達三層的CrN/Cr多層薄膜,可具有最佳的抗磨耗性質,在2N及4N荷重下磨耗率分別為3.331 x 10−6 mm3•m−1•N−1、1.124 x 10−5 mm3•m−1•N−1,以及最佳的耐腐蝕性,腐蝕電流密度為0.73 μA•cm–2、腐蝕極化阻抗為962.35 Ω•cm2。
綜合以上分析結果,CoCrNiSi0.3 MEA經過磁控濺鍍法沉積CrN/Cr三層多層膜並調控至最佳時間與溫度參數下,能夠大幅提升表面性質,即使增加磨耗試驗之荷重至4N,也不會使薄膜產生剝落,且表面具有極高的疏水性,進一步使抗磨耗及抗腐蝕性質得到提升,達到提升使用性能與延長壽命之目的。
This study selected Co, Cr, and Ni as the equal-atomic medium entropy alloy (MEA) system, and Si was added to form CoCrNiSi0.3 MEA. To further improve its wear and corrosion properties, CrN film was sputtered on the surface. To enhance the adhesion between the low-hardness CoCrNiSi0.3 substrate and the high-hardness CrN film, a Cr interlayer was deposited on the CoCrNiSi0.3 substrate to prevent delamination due to significant differences in crystal structure and thermal expansion coefficient between the substrate and the film. The experiment was divided into four stages, the first stage changed the annealing time of the CoCrNiSi0.3 substrate, which was 15, 30, and 60 minutes, respectively. In the second stage, the best parameters of the first stage were selected as the substrate for subsequent coating, and the CrN deposition time was changed to 2, 2.5, 3, and 3.5 hours, respectively. In the third stage, the optimal parameters of the second stage were selected to change the CrN deposition temperature to 225, 250, 275, and 300 oC, respectively. In the fourth stage, the best parameters of the third stage were selected to deposit the multilayer film of CrN/Cr, and the cycle times of CrN and Cr layers were changed, which were 1, 2, and 3 times, respectively. Furthermore, the hardness test, wear test, corrosion test, and nanoindenter test were used to evaluate the performance of the CrN & CrN/Cr thin film, and instruments such as Grazing Incidence X-ray Diffraction (GIXRD), AFM, SEM, EBSD, EPMA, and TEM were used to analyze the composition and structure.
In the experiment’s first stage, we controlled the grain size to obtain the best wear and corrosive properties by changing the annealing time of CoCrNiSi0.3 MEA. The experimental results showed that when the annealing time reached 30 minutes, the grain size was 17.5μm, which could have well wear and corrosion resistance at the same time. In the second stage, we changed the deposition time of the CrN film layer, and the experimental results showed that the CrN film had a columnar grain structure, and the film growth rate was about 2.022 μm/h. With the increase of sputtering time, the increase of CrN film thickness and the refinement of columnar crystals improve wear resistance and corrosion resistance. The CrN film with a deposition time of 3 hours has the best wear resistance, with a wear rate of 2.249 x 10−5 mm3•m−1•N−1, and the best corrosion resistance, with a corrosion current density of 19.37 μA•cm–2 and a corrosion polarization impedance of 705.85 Ω•cm2. The third stage changes the deposition temperature of the CrN film layer. With the increase of sputtering temperature, the atoms enhance mobility, leading to progressive densification of the thin film and a substantial reduction in defect density. The CrN film with a deposition temperature of 300 oC has the best wear resistance, with a wear rate of 0.583 x 10−5 mm3•m−1•N−1, and the best corrosion resistance, with a corrosion current density of 4.51 μA•cm–2 and a corrosion polarization impedance of 857.92 Ω•cm2. The fourth stage changes to the multilayer film that deposits CrN/Cr. With the increase in the number of multilayer films, the introduction of a chromium (Cr) layer disrupts the growth of columnar crystals, leading to a gradual refinement of the grain size. The multilayer structure acts as a barrier against crack propagation and corrosive media, while the Cr layer provides excellent toughness. Moreover, the presence of a Cr2N transition layer enhances the adhesion of the multilayer film. A multilayer film composed of three layers of CrN/Cr has the best wear resistance, with a wear rate of 0.583 x 10−5 mm3•m−1•N−1 and 1.124 x 10−5 mm3•m−1•N−1 under 2N and 4N load, respectively, and the best corrosion resistance, with a corrosion current density of 4.51 μA•cm–2 and a corrosion polarization impedance of 857.92 Ω•cm2.
Based on the comprehensive analysis results, it has been found that by depositing a three-layer multilayer film of CrN/Cr on CoCrNiSi0.3 MEA using the magnetron sputtering technique and optimizing the time and temperature parameters, the surface properties can be significantly improved. Even under an increased load of 4N during wear tests, no film delamination occurs, and the surface exhibits high hydrophobicity. This further improves wear resistance and corrosion resistance, achieving the goal of enhancing performance and extending the lifespan.
摘 要 i
ABSTRACT iii
目 錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究簡介 2
第二章 文獻回顧 4
2.1 高熵合金 High-entropy alloy (HEA) 4
2.1.1 高熵合金特性 5
2.1.2 Co-Cr-Fe-Mn-Ni高熵合金[17] 7
2.1.3 Co-Cr-Ni中熵合金[25] 10
2.2 熱處理(Heat Treatment) 14
2.2.1 均質化 14
2.2.2 滾軋 15
2.2.3 退火 16
2.3 物理氣相沉積 (Physical Vapor Deposition) 20
2.3.1 真空蒸鍍法 20
2.3.2 離子蒸鍍法 22
2.3.3 分子束磊晶法 23
2.3.4 濺鍍法 24
2.3.4.1 直流(DC)磁控濺鍍法 25
2.3.4.2 射頻(RF)磁控濺鍍法 27
2.4 氮化鉻鍍層(Chromium Nitride) 30
2.4.1 氮化鉻鍍層之性能 30
2.4.2 氮化鉻鍍層之應用 31
2.4.3 氮化鉻與鉻的多層鍍層 32
第三章 研究流程與方法 35
3.1 實驗流程與試片製備 35
3.1.1 真空電弧熔煉 39
3.1.2 熱處理流程 40
3.1.3 直流磁控濺鍍法製備CrN&CrN/Cr薄膜 43
3.2 微結構觀察與機械、腐蝕性質分析 44
3.2.1 XRD相鑑定 44
3.2.2 微結構觀察與定量分析 45
3.2.3 表面硬度量測 47
3.2.4 原子力顯微鏡分析 48
3.2.5 磨耗試驗 49
3.2.6 極化腐蝕試驗 51
3.2.7 水接觸角分析 51
3.2.8 奈米壓痕試驗 52
3.2.9 殘留應力分析 53
3.2.10 缺陷密度量測 54
3.2.11 TEM影像分析 55
第四章 結果與討論 56
4.1 CoCrNiSi0.3之微結構與磨耗&腐蝕性質 56
4.1.1 CoCrNiSi0.3之微結構 56
4.1.2 CoCrNiSi0.3退火態之微結構 58
4.1.3 CoCrNiSi0.3磨耗試驗 60
4.1.4 CoCrNiSi0.3極化腐蝕試驗 61
4.2 改變沉積時間對CrN薄膜的影響 63
4.2.1 CrN沉積於不同時間下之微結構分析 63
4.2.2 CrN沉積於不同時間下殘留應力分析 66
4.2.3 CrN沉積於不同時間下磨耗試驗 68
4.2.3.1 磨耗性質分析 68
4.2.3.2 磨耗軌跡分析 69
4.2.4 CrN沉積於不同時間下極化腐蝕試驗 71
4.2.4.1 腐蝕性質分析 71
4.2.4.2 腐蝕後表面形貌觀察 72
4.2.5 CrN沉積於不同時間下缺陷密度量測 74
4.2.6 CrN沉積於不同時間下水接觸角分析 75
4.2.7 CrN沉積於不同時間下奈米壓痕試驗 76
4.2.8 CrN沉積於不同時間下TEM影像分析 77
4.3 改變沉積溫度對CrN薄膜的影響 78
4.3.1 CrN沉積於不同溫度下之微結構分析 78
4.3.2 CrN沉積於不同溫度下殘留應力分析 81
4.3.3 CrN沉積於不同溫度下磨耗試驗 83
4.3.3.1 磨耗性質分析 83
4.3.3.2 磨耗軌跡分析 84
4.3.4 CrN沉積於不同溫度下極化腐蝕試驗 86
4.3.4.1 腐蝕性質分析 86
4.3.4.2 腐蝕後表面形貌觀察 87
4.3.5 CrN沉積於不同溫度下缺陷密度量測 88
4.3.6 CrN沉積於不同溫度下水接觸角分析 89
4.3.7 CrN沉積於不同溫度下奈米壓痕試驗 91
4.4 改變CrN/Cr多層薄膜層數之影響 92
4.4.1 多層薄膜沉積於不同層數下之微結構分析 92
4.4.2 多層薄膜沉積於不同層數下磨耗試驗 95
4.4.2.1 磨耗性質分析 95
4.4.2.2 磨耗軌跡分析 97
4.4.3 多層薄膜沉積於不同層數下極化腐蝕試驗 100
4.4.3.1 多層薄膜沉積於不同層數下腐蝕性質分析 100
4.4.3.2 腐蝕後表面形貌觀察 101
4.4.4 多層薄膜沉積於不同層數下之缺陷密度量測 102
4.4.5 多層薄膜沉積於不同層數下水接觸角分析 103
4.4.6 多層薄膜沉積於不同層數下奈米壓痕試驗 104
4.4.7 多層薄膜沉積於不同層數下TEM影像分析 105
第五章 結論 109
參考文獻 111
[1]J. H.Kim, K. R.Lim, J. W.Won, Y. S.Na, andH.-S.Kim, “Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures,” Mater. Sci. Eng. A, vol. 712, pp. 108–113, Jan.2018, doi: 10.1016/J.MSEA.2017.11.081.
[2]S. J.Sun et al., “Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement,” Mater. Sci. Eng. A, vol. 712, pp. 603–607, Jan.2018, doi: 10.1016/j.msea.2017.12.022.
[3]S.Bajpai, B. E.MacDonald, T. J.Rupert, H.Hahn, E. J.Lavernia, and, D.Apelian, “Recent progress in the CoCrNi alloy system,” Materialia, vol. 24, p. 101476, Aug.2022, doi: 10.1016/j.mtla.2022.101476.
[4]J.Wang et al., “Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions,” Corros. Sci., vol. 177, p. 108973, Dec.2020, doi: 10.1016/j.corsci.2020.108973.
[5]K. P.Yu, S. H.Feng, C.Ding, P.Yu, andM. X.Huang, “Improving anti-corrosion properties of CoCrFeMnNi high entropy alloy by introducing Si into nonmetallic inclusions,” Corros. Sci., vol. 208, p. 110616, Nov.2022, doi: 10.1016/j.corsci.2022.110616.
[6]H.Chang et al., “Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off,” Mater. Des., vol. 197, p. 109202, Jan.2021, doi: 10.1016/j.matdes.2020.109202.
[7]J.Hou, M.Zhang, H.Yang, J.Qiao, and Y.Wu, “Surface strengthening in Al0.25CoCrFeNi high-entropy alloy by boronizing,” Mater. Lett., vol. 238, pp. 258–260, Mar.2019, doi: 10.1016/j.matlet.2018.12.029.
[8]B.Abdallah, M.Kakhia, W.Alssadat, andW.Zetoun, “Study of Power Effect on Structural, Mechanical Properties and Corrosion Behavior of CrN thin Films Deposited by Magnetron Sputtering,” Prot. Met. Phys. Chem. Surfaces, vol. 57, no. 1, pp. 80–87, Jan.2021, doi: 10.1134/S2070205120060027.
[9]Y. L.Chipatecua, J. J.Olaya, andD. F.Arias, “Corrosion behavior of CrN/Cr multilayers on stainless steel deposited by unbalanced magnetron sputtering,” Vacuum, vol. 86, no. 9, pp. 1393–1401, 2012, doi: 10.1016/j.vacuum.2012.01.016.
[10]P.Wieci, J.Smolik, H.Garbacz, andK. J.Kurzyd, “Surface & Coatings Technology Failure and deformation mechanisms during indentation in nanostructured Cr / CrN multilayer coatings,” vol. 240, pp. 23–31, 2014, doi: 10.1016/j.surfcoat.2013.12.006.
[11]J. W. Yeh, “Recent progress in high-entropy alloys,” Ann. Chim. Sci. des Mater., vol. 31, no. 6, pp. 633–648, 2006, doi: 10.3166/acsm.31.633-648.
[12]J. W.Yeh, Y. L. Chen, S. J. Lin, and S. K.Chen, “High-Entropy Alloys – A New Era of Exploitation,” Mater. Sci. Forum, vol. 560, pp. 1–9, Nov.2007, doi: 10.4028/www.scientific.net/MSF.560.1.
[13]M. Chuang, M. Tsai, W.Wang, S. Lin, and J.Yeh, “Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys,” Acta Mater., vol. 59, no. 16, pp. 6308–6317, 2011, doi: 10.1016/j.actamat.2011.06.041.
[14]W.Li, D.Xie, D.Li, Y.Zhang, Y.Gao, and P. K.Liaw, “Mechanical behavior of high-entropy alloys,” Prog. Mater. Sci., vol. 118, no. July 2020, p. 100777, 2021, doi: 10.1016/j.pmatsci.2021.100777.
[15]E. P.George, D.Raabe, andR. O. Ritchie, “High-entropy alloys,” Nat. Rev. Mater., vol. 4, no. 8, pp. 515–534, Jun.2019, doi: 10.1038/s41578-019-0121-4.
[16]S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails,” Curr. Sci., vol. 85, no. 10, pp. 1404–1406, 2003.
[17]Z.Zeng et al., “Mechanical properties of Cantor alloys driven by additional elements: a review,” J. Mater. Res. Technol., vol. 15, pp. 1920–1934, 2021, doi: 10.1016/j.jmrt.2021.09.019.
[18]K.Ming, X.Bi, and J.Wang, “Materials Characterization Microstructures and deformation mechanisms of Cr 26 Mn 20 Fe 20 Co 20 Ni 14 alloys,” Mater. Charact., vol. 134, no. October, pp. 194–201, 2017, doi: 10.1016/j.matchar.2017.10.022.
[19]I. Z. A.Iqra Zubair Awan, “Recovery, Recrystallization, and Grain-Growth,” J. Chem. Soc. Pakistan, vol. 41, no. 1, pp. 1–1, 2019, doi: 10.52568/000707/JCSP/41.01.2019.
[20]X. Y.Gu, Y. N.Dong, Y. X.Zhuang, and J.Wang, “Microstructure and Mechanical Properties of ­ CoCrFeMnNiSn x High ‑ Entropy Alloys,” pp. 292–301, 2020, doi: 10.1007/s12540-019-00328-w.
[21]Z. G.Zhu, K. H.Ma, X.Yang, andC. H.Shek, “Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100−)Co high entropy alloys,” J. Alloys Compd., vol. 695, pp. 2945–2950, Feb.2017, doi: 10.1016/j.jallcom.2016.11.376.
[22]M.Zhang, L.Zhang, J.Fan, P.Yu, and G.Li, “Materials Science & Engineering A Anomalous microstructure and excellent mechanical behaviors of ( CoCrFeNi ) 6-x-y Cr x Al y high-entropy alloy induced by Cr and Al addition,” Mater. Sci. Eng. A, vol. 752, no. February, pp. 63–74, 2019, doi: 10.1016/j.msea.2019.02.071.
[23]J.Hou, M.Zhang, S.Ma, P. K.Liaw, Y.Zhang, and J.Qiao, “Materials Science & Engineering A Strengthening in Al 0 . 25 CoCrFeNi high-entropy alloys by cold rolling,” Mater. Sci. Eng. A, vol. 707, no. July, pp. 593–601, 2017, doi: 10.1016/j.msea.2017.09.089.
[24]W. Wu, L.Guo, B.Guo, Y.Liu, and M.Song, “Materials Science & Engineering A Altered microstructural evolution and mechanical properties of CoCrFeNiMo 0 . 15 high-entropy alloy by cryogenic rolling,” Mater. Sci. Eng. A, vol. 759, no. February, pp. 574–582, 2019, doi: 10.1016/j.msea.2019.05.078.
[25]X. H. Du et al., “Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy,” Nat. Commun., vol. 11, no. 1, pp. 1–7, 2020, doi: 10.1038/s41467-020-16085-z.
[26]Z.Wu, H.Bei, G. M.Pharr, andE. P.George, “ScienceDirect Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures,” vol. 81, pp. 428–441, 2014, doi: 10.1016/j.actamat.2014.08.026.
[27]G.Laplanche, A.Kostka, C.Reinhart, J.Hunfeld, G.Eggeler, andE. P.George, “Acta Materialia Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi,” Acta Mater., vol. 128, pp. 292–303, 2017, doi: 10.1016/j.actamat.2017.02.036.
[28]W.Lu, X.Luo, Y.Yang, J.Zhang, and B.Huang, “Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy,” Mater. Chem. Phys., vol. 238, no. April, p. 121841, 2019, doi: 10.1016/j.matchemphys.2019.121841.
[29]Y. L.Zhao et al., “Acta Materialia Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy,” vol. 138, pp. 72–82, 2017, doi: 10.1016/j.actamat.2017.07.029.
[30]X. D.Xu et al., “Acta Materialia Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al 0 . 1 CoCrFeNi,” vol. 144, pp. 107–115, 2018, doi: 10.1016/j.actamat.2017.10.050.
[31]A. K.Bhargava and, M. K. Banerjee, “2.14 Heat-Treating Copper and Nickel Alloys,” in Comprehensive Materials Finishing, vol. 2–3, no. December 2016, Elsevier, 2017, pp. 398–420. doi: 10.1016/B978-0-12-803581-8.09196-7.
[32]P.Kusakin, A.Belyakov, R.Kaibyshev, andD.Molodov, “Effect of cold rolling on microstructure and mechanical properties of a Fe-23Mn-0.3C-1.5Al TWIP steel,” Adv. Mater. Res., vol. 922, no. March 2016, pp. 394–399, 2014, doi: 10.4028/www.scientific.net/AMR.922.394.
[33]W.Bergmann, “Recrystallisation and related annealing phenomena. Von F. J. Humphreys and M. Hatherly, 520 Seiten, Pergamon, Elsevier Science Ltd., Oxford 1995, Hardbound: US $ 130.00. ISBN 0-08-041884-8, Paperback: US $ 48.00, ISBN 0-08-042685-9,” Mater. Corros. und Korrosion, vol. 48, no. 9, pp. 648–649, Sep.1997, doi: 10.1002/maco.19970480915.
[34]J. Zhang, Y.Yi, S. Huang, X.Mao, and H.He, “Materials Science & Engineering A Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high-temperature compression deformation,” Mater. Sci. Eng. A, vol. 804, no. August 2020, p. 140650, 2021, doi: 10.1016/j.msea.2020.140650.
[35]J. C. M. Li, “Possibility of Subgrain Rotation during Recrystallization,” J. Appl. Phys., vol. 33, no. 10, pp. 2958–2965, Oct.1962, doi: 10.1063/1.1728543.
[36]F. J.Humphreys, “A new analysis of recovery, recrystallization, and grain growth,” Mater. Sci. Technol., vol. 15, no. 1, pp. 37–44, 1999, doi: 10.1179/026708399773002791.
[37]S. M. Rossnagel, “Thin film deposition with physical vapor deposition and related technologies,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 21, no. 5, pp. S74–S87, Sep.2003, doi: 10.1116/1.1600450.
[38]J. K.Hirvonen, “Ion beam assisted thin film deposition,” Mater. Sci. Reports, vol. 6, no. 6, pp. 215–274, Jul.1991, doi: 10.1016/0920-2307(91)90008-B.
[39]S.Naka andH.Okada, “Transparent Organic Light-Emitting Diodes with Top Electrode Using IonPlating Method NOVEMBER 2015 The usage of this PDF file must comply with the IEICE Provisions on Copyright .,” no. November 2015, doi: 10.1587/transaxle.E98.C.1035.
[40]J. R.Arthur, “Molecular beam epitaxy,” vol. 500, pp. 189–217, 2002.
[41]R. D. Arnell and, P. J. Kelly, “Recent advances in magnetron sputtering,” vol. 112, pp. 170–176, 1999.
[42]P. J. Kelly and, R. D. Arnell, “Magnetron sputtering : a review of recent developments and applications,” vol. 56, pp. 159–172, 2000.
[43]G.Bräuer, B.Szyszka, M.Vergöhl, andR.Bandorf, “Magnetron sputtering - Milestones of 30 years,” Vacuum, vol. 84, no. 12, pp. 1354–1359, 2010, doi: 10.1016/j.vacuum.2009.12.014.
[44]D. K.Maurya, A.Sardarinejad, andK.Alameh, “Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview,” pp. 756–771, 2014, doi: 10.3390/coatings4040756.
[45]S.Tan, X.Zhang, X.Wu, F.Fang, andJ.Jiang, “Comparison of chromium nitride coatings deposited by DC and RF magnetron sputtering,” Thin Solid Films, vol. 519, no. 7, pp. 2116–2120, 2011, doi: 10.1016/j.tsf.2010.10.067.
[46]A. Majeed, J.He, L.Jiao, X.Zhong, and, Z.Sheng, “Surface properties and biocompatibility of nanostructured TiO 2 film deposited by RF magnetron sputtering,” no. November 2015, doi: 10.1186/s11671-015-0732-7.
[47]A.Kondo, T.Oogami, K.Sato, andY.Tanaka, “Structure and properties of cathodic arc ion plated CrN coatings for copper machining cutting tools,” vol. 178, pp. 238–244, 2004, doi: 10.1016/j.surfcoat.2003.09.039.
[48]Y.Chen et al., “Friction and Wear Behavior of CrN Coating on 316L Stainless Steel in Liquid Sodium at Elevated Temperature,” Tribol. Int., vol. 143, Mar.2020, doi: 10.1016/j.triboint.2019.106079.
[49]P.Panjan, “Industrial applications of CrN ( PVD ) coatings, deposited at high and low temperatures,” vol. 97, pp. 182–191, 1997.
[50]N.Crn, “Nanoindentation stress–strain curves as a method for thin-film complete mechanical characterization : application to nanometric CrN / Cr multilayer coatings,” vol. 6, 2003, doi: 10.1007/s00339-002-1669-0.
[51]J.Romero, A.Lousa, andJ.Esteve, “Wear behavior of nanometric CrN y Cr multilayers,” vol. 164, pp. 571–577, 2003.
[52]A.Matthews, R.Jones, and, S.Dowey, “Modelling the deformation behaviour of multilayer coatings,” Tribol. Lett., vol. 11, no. 2, pp. 103–106, 2001, doi: 10.1023/A:1016667932251.
[53]M.Kang, J.Park, S. S.Sohn, H. S.Kim, N. J.Kim, andS.Lee, “Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets,” Mater. Sci. Eng. A, vol. 693, no. February, pp. 170–177, 2017, doi: 10.1016/j.msea.2017.03.076.
[54]M. G.Jo et al., “Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi,” Met. Mater. Int., vol. 24, no. 1, pp. 73–83, 2018, doi: 10.1007/s12540-017-7248-x.
[55]D.Li, Q.Liu, W.Wang, L.Jin, andH.Xiao, “Corrosion behavior of aisi 316l stainless steel used as the inner lining of bimetallic pipe in a seawater environment,” Materials (Basel)., vol. 14, no. 6, pp. 1–10, 2021, doi: 10.3390/ma14061539.
[56]C. Zhang, M.Zhu, Y. Yuan, S.Guo, and J.Wang, “Study on the microstructure and corrosion behavior of CoCrNi MEA annealed at different temperatures in Na2CO3/NaHCO3 solution,” Mater. Corros., vol. 73, no. 9, pp. 1405–1419, 2022, doi: 10.1002/maco.202213108.
[57]Z.Zhang andM. G.Lagally, “Atomistic processes in the early stages of thin-film growth,” Science (80-. )., vol. 276, no. 5311, pp. 377–383, 1997, doi: 10.1126/science.276.5311.377.
[58]Y. X.Xu, H.Riedl, D.Holec, L.Chen, Y.Du, andP. H. Mayrhofer, “Thermal stability and oxidation resistance of sputtered Ti[sbnd]Al[sbnd]Cr[sbnd]N hard coatings,” Surf. Coatings Technol., vol. 324, pp. 48–56, 2017, doi: 10.1016/j.surfcoat.2017.05.053.
[59]S. G.Wang, E. K. Tian, and, C. W. Long, “Surface energy of arbitrary crystal plane of bcc and fcc metals,” J. Phys. Chem. Solids, vol. 61, no. 8, pp. 1295–1300, 2000, doi: 10.1016/S0022-3697(99)00415-1.
[60]L. Z. Zevin and, S.Lungo, “117 reactive-sputter-deposited substrates,” vol. 197, pp. 117–128, 1991.
[61]K.Aouadi, B.Tlili, C.Nouveau, A.Besnard, M.Chafra, andR.Souli, “Influence of Substrate Bias Voltage on Corrosion and Wear Behavior of Physical Vapor Deposition CrN Coatings,” J. Mater. Eng. Perform., vol. 28, no. 5, pp. 2881–2891, 2019, doi: 10.1007/s11665-019-04033-y.
[62]X.Zhang et al., “Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates,” Surf. Coatings Technol., vol. 364, no. July 2018, pp. 135–143, 2019, doi: 10.1016/j.surfcoat.2019.01.059.
[63]M.Herrmann, K.Sempf, M.Schneider, U.Sydow, K.Kremmer, andA.Michaelis, “Electrochemical corrosion of silicon carbide ceramics in H2SO4,” J. Eur. Ceram. Soc., vol. 34, no. 2, pp. 229–235, Feb.2014, doi: 10.1016/j.jeurceramsoc.2013.08.024.
[64]R. Kobayashi et al., “Evaluation of Grain-Boundary Conduction of Dense AlN-SiC Solid Solution by Scanning Nonlinear Dielectric Microscopy,” J. Am. Ceram. Soc., vol. 93, no. 12, pp. 4026–4029, Dec.2010, doi: 10.1111/j.1551-2916.2010.04230.x.
[65]M.Panjan, “Influence of Growth Defects on the Corrosion Resistance of Sputter-Deposited TiAlN Hard Coatings,” pp. 1–16, 2019.
[66]B. Biswas, “Growth Defects in CrN / NbN Coatings Deposited by HIPIMS / UBM technique,” no. November 2017, 2017.
[67]D. B.Lewis, S. J.Creasey, C.Wüstefeld, A. P.Ehiasarian, andP. E. Hovsepian, “The role of the growth defects on the corrosion resistance of CrN/NbN superlattice coatings deposited at low temperatures,” Thin Solid Films, vol. 503, no. 1–2, pp. 143–148, 2006, doi: 10.1016/j.tsf.2005.08.375.
[68]R.Akhter, Z.Zhou, Z.Xie, and P.Munroe, “Harmonizing mechanical responses of nanostructured CrN coatings via Ni additions,” Appl. Surf. Sci., vol. 538, p. 147987, Feb.2021, doi: 10.1016/j.apsusc.2020.147987.
[69]J.-W.Lee, S.-K.Tien, and Y.-C.Kuo, “The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering,” Thin Solid Films, vol. 494, no. 1–2, pp. 161–167, Jan.2006, doi: 10.1016/j.tsf.2005.07.190.
[70]A.Persson, J.Bergstrom, C.Burman, andS.Hogmark, “Influence of deposition temperature and time during PVD coating of CrN on corrosive wear in liquid aluminum,” 2001.
[71]B.Gao, X.Du, Y.Li, S.Wei, X.Zhu, andZ.Song, “Effect of deposition temperature on hydrophobic CrN/AlTiN nanolaminate composites deposited by Multi-Arc-Ion Plating,” J. Alloys Compd., vol. 797, pp. 1–9, 2019, doi: 10.1016/j.jallcom.2019.05.069.
[72]S. J.Bull, A. M.Jones, andA. R. McCabe, “Residual stress in ion-assisted coatings,” Surf. Coatings Technol., vol. 54–55, pp. 173–179, 1992, doi: 10.1016/S0257-8972(09)90046-9.
[73]V.Teixeira, “Mechanical integrity in PVD coatings due to the presence of residual stresses,” Thin Solid Films, vol. 392, no. 2, pp. 276–281, 2001, doi: 10.1016/S0040-6090(01)01043-4.
[74]Y.Chen et al., “Friction and Wear Behavior of CrN Coating on 316L Stainless Steel in Liquid Sodium at Elevated Temperature,” Tribol. Int., vol. 143, p. 106079, Mar.2020, doi: 10.1016/j.triboint.2019.106079.
[75]S. H.Lee, N.Kakati, J.Maiti, S. H.Jee, D. J.Kalita, andY. S.Yoon, “Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells,” Thin Solid Films, vol. 529, pp. 374–379, 2013, doi: 10.1016/j.tsf.2012.09.027.
[76]P. E. Hovsepian, D. B. Lewis, andW.-D.Münz, “Recent progress in large scale manufacturing of multilayer/superlattice hard coatings,” Surf. Coatings Technol., vol. 133–134, pp. 166–175, Nov.2000, doi: 10.1016/S0257-8972(00)00959-2.
[77]Y.Wang, Y.Yang, H.Yang, M.Zhang, andJ.Qiao, “Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy,” J. Alloys Compd., vol. 725, pp. 365–372, Nov.2017, doi: 10.1016/j.jallcom.2017.07.132.
[78]Q.Wang, F. Zhou, Z. Zhou, L. K. Y. Li, and J.Yan, “An investigation on the crack resistance of CrN, CrBN and CrTiBN coatings via nanoindentation,” Vacuum, vol. 145, pp. 186–193, 2017, doi: 10.1016/j.vacuum.2017.08.041.
[79]Q.Wang, F. Zhou, and J. Yan, “Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN, and CrTiAlN coatings by nanoindentation and scratch tests,” Surf. Coatings Technol., vol. 285, pp. 203–213, 2016, doi: 10.1016/j.surfcoat.2015.11.040.
[80]X.Cai, Y.Gao, F.Cai, L.Zhang, and S.Zhang, “Effects of multi-layer structure on microstructure, wear and erosion performance of the Cr/CrN films on Ti alloy substrate,” Appl. Surf. Sci., vol. 483, no. December 2018, pp. 661–669, 2019, doi: 10.1016/j.apsusc.2019.04.008.
[81]D. F.Arias, A.Gómez, J. M.Vélez, R. M.Souza, andJ. J.Olaya, “A mechanical and tribological study of Cr/CrN multilayer coatings,” Mater. Chem. Phys., vol. 160, pp. 131–140, 2015, doi: 10.1016/j.matchemphys.2015.04.015.
[82]D.Yonekura, J.Fujita, andK.Miki, “Surface & Coatings Technology Fatigue and wear properties of Ti – 6Al – 4V alloy with Cr / CrN multilayer coating,” Surf. Coat. Technol., vol. 275, pp. 232–238, 2015, doi: 10.1016/j.surfcoat.2015.05.014.
[83]F.Jasempoor, H.Elmkhah, O.Imantalab, andA.Fattah-Hosseini, “Improving the mechanical, tribological, and electrochemical behavior of AISI 304 stainless steel by applying CrN single layer and Cr / CrN multilayer coatings,” Wear, vol. 504–505, no. June, p. 204425, 2022, doi: 10.1016/j.wear.2022.204425.
[84]L.Wang, M.Wang, andH.Chen, “Corrosion mechanism investigation of TiAlN/CrN superlattice coating by multi-arc ion plating in 3.5 wt% NaCl solution,” Surf. Coatings Technol., vol. 391, no. March, p. 125660, 2020, doi: 10.1016/j.surfcoat.2020.125660.
[85]H.Olia, R.Ebrahimi-Kahrizsangi, F.Ashrafizadeh, andI.Ebrahimzadeh, “Corrosion study of TiN, TiAlN and CrN multilayer coatings deposit on martensitic stainless steel by arc cathodic physical vapor deposition,” Mater. Res. Express, vol. 6, no. 4, 2019, doi: 10.1088/2053-1591/aaff11.
[86]V. K. William Grips, H. C.Barshilia, V. E. Selvi, Kalavati, and K. S.Rajam, “Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering,” Thin Solid Films, vol. 514, no. 1–2, pp. 204–211, 2006, doi: 10.1016/j.tsf.2006.03.008.
[87]D.Blanco, J. L.Viesca, M. T.Mallada, B.Ramajo, R.González, andA. H.Battez, “Surface & Coatings Technology Wettability and corrosion of [ NTf 2 ] anion-based ionic liquids on steel and PVD ( TiN, CrN, ZrN ) coatings,” Surf. Coat. Technol., vol. 302, pp. 13–21, 2016, doi: 10.1016/j.surfcoat.2016.05.051.
[88]J.Smolik, H.Garbacz, K. J.Kurzyd, andP.Wieci, “Erosion resistance of the nanostructured Cr / CrN multilayer coatings on Ti6Al4V alloy,” vol. 107, pp. 277–283, 2014, doi: 10.1016/j.vacuum.2014.02.024.
[89]T.Polcar, R.Martinez, T.Vítů, L.Kopecký, R.Rodriguez, andA.Cavaleiro, “High-temperature tribology of CrN and multilayered Cr/CrN coatings,” Surf. Coatings Technol., vol. 203, no. 20–21, pp. 3254–3259, 2009, doi: 10.1016/j.surfcoat.2009.04.005.
[90]M.Naveed, A.Obrosov, andS.Weiß, “Investigation of the Wear Resistance Properties of Cr/CrN Multilayer Coatings against Sand Erosion,” Conf. Pap. Sci., vol. 2015, pp. 1–9, 2015, doi: 10.1155/2015/873543.
電子全文 電子全文(網際網路公開日期:20250723)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊