|
[1]J. H.Kim, K. R.Lim, J. W.Won, Y. S.Na, andH.-S.Kim, “Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures,” Mater. Sci. Eng. A, vol. 712, pp. 108–113, Jan.2018, doi: 10.1016/J.MSEA.2017.11.081. [2]S. J.Sun et al., “Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement,” Mater. Sci. Eng. A, vol. 712, pp. 603–607, Jan.2018, doi: 10.1016/j.msea.2017.12.022. [3]S.Bajpai, B. E.MacDonald, T. J.Rupert, H.Hahn, E. J.Lavernia, and, D.Apelian, “Recent progress in the CoCrNi alloy system,” Materialia, vol. 24, p. 101476, Aug.2022, doi: 10.1016/j.mtla.2022.101476. [4]J.Wang et al., “Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions,” Corros. Sci., vol. 177, p. 108973, Dec.2020, doi: 10.1016/j.corsci.2020.108973. [5]K. P.Yu, S. H.Feng, C.Ding, P.Yu, andM. X.Huang, “Improving anti-corrosion properties of CoCrFeMnNi high entropy alloy by introducing Si into nonmetallic inclusions,” Corros. Sci., vol. 208, p. 110616, Nov.2022, doi: 10.1016/j.corsci.2022.110616. [6]H.Chang et al., “Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off,” Mater. Des., vol. 197, p. 109202, Jan.2021, doi: 10.1016/j.matdes.2020.109202. [7]J.Hou, M.Zhang, H.Yang, J.Qiao, and Y.Wu, “Surface strengthening in Al0.25CoCrFeNi high-entropy alloy by boronizing,” Mater. Lett., vol. 238, pp. 258–260, Mar.2019, doi: 10.1016/j.matlet.2018.12.029. [8]B.Abdallah, M.Kakhia, W.Alssadat, andW.Zetoun, “Study of Power Effect on Structural, Mechanical Properties and Corrosion Behavior of CrN thin Films Deposited by Magnetron Sputtering,” Prot. Met. Phys. Chem. Surfaces, vol. 57, no. 1, pp. 80–87, Jan.2021, doi: 10.1134/S2070205120060027. [9]Y. L.Chipatecua, J. J.Olaya, andD. F.Arias, “Corrosion behavior of CrN/Cr multilayers on stainless steel deposited by unbalanced magnetron sputtering,” Vacuum, vol. 86, no. 9, pp. 1393–1401, 2012, doi: 10.1016/j.vacuum.2012.01.016. [10]P.Wieci, J.Smolik, H.Garbacz, andK. J.Kurzyd, “Surface & Coatings Technology Failure and deformation mechanisms during indentation in nanostructured Cr / CrN multilayer coatings,” vol. 240, pp. 23–31, 2014, doi: 10.1016/j.surfcoat.2013.12.006. [11]J. W. Yeh, “Recent progress in high-entropy alloys,” Ann. Chim. Sci. des Mater., vol. 31, no. 6, pp. 633–648, 2006, doi: 10.3166/acsm.31.633-648. [12]J. W.Yeh, Y. L. Chen, S. J. Lin, and S. K.Chen, “High-Entropy Alloys – A New Era of Exploitation,” Mater. Sci. Forum, vol. 560, pp. 1–9, Nov.2007, doi: 10.4028/www.scientific.net/MSF.560.1. [13]M. Chuang, M. Tsai, W.Wang, S. Lin, and J.Yeh, “Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys,” Acta Mater., vol. 59, no. 16, pp. 6308–6317, 2011, doi: 10.1016/j.actamat.2011.06.041. [14]W.Li, D.Xie, D.Li, Y.Zhang, Y.Gao, and P. K.Liaw, “Mechanical behavior of high-entropy alloys,” Prog. Mater. Sci., vol. 118, no. July 2020, p. 100777, 2021, doi: 10.1016/j.pmatsci.2021.100777. [15]E. P.George, D.Raabe, andR. O. Ritchie, “High-entropy alloys,” Nat. Rev. Mater., vol. 4, no. 8, pp. 515–534, Jun.2019, doi: 10.1038/s41578-019-0121-4. [16]S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails,” Curr. Sci., vol. 85, no. 10, pp. 1404–1406, 2003. [17]Z.Zeng et al., “Mechanical properties of Cantor alloys driven by additional elements: a review,” J. Mater. Res. Technol., vol. 15, pp. 1920–1934, 2021, doi: 10.1016/j.jmrt.2021.09.019. [18]K.Ming, X.Bi, and J.Wang, “Materials Characterization Microstructures and deformation mechanisms of Cr 26 Mn 20 Fe 20 Co 20 Ni 14 alloys,” Mater. Charact., vol. 134, no. October, pp. 194–201, 2017, doi: 10.1016/j.matchar.2017.10.022. [19]I. Z. A.Iqra Zubair Awan, “Recovery, Recrystallization, and Grain-Growth,” J. Chem. Soc. Pakistan, vol. 41, no. 1, pp. 1–1, 2019, doi: 10.52568/000707/JCSP/41.01.2019. [20]X. Y.Gu, Y. N.Dong, Y. X.Zhuang, and J.Wang, “Microstructure and Mechanical Properties of CoCrFeMnNiSn x High ‑ Entropy Alloys,” pp. 292–301, 2020, doi: 10.1007/s12540-019-00328-w. [21]Z. G.Zhu, K. H.Ma, X.Yang, andC. H.Shek, “Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100−)Co high entropy alloys,” J. Alloys Compd., vol. 695, pp. 2945–2950, Feb.2017, doi: 10.1016/j.jallcom.2016.11.376. [22]M.Zhang, L.Zhang, J.Fan, P.Yu, and G.Li, “Materials Science & Engineering A Anomalous microstructure and excellent mechanical behaviors of ( CoCrFeNi ) 6-x-y Cr x Al y high-entropy alloy induced by Cr and Al addition,” Mater. Sci. Eng. A, vol. 752, no. February, pp. 63–74, 2019, doi: 10.1016/j.msea.2019.02.071. [23]J.Hou, M.Zhang, S.Ma, P. K.Liaw, Y.Zhang, and J.Qiao, “Materials Science & Engineering A Strengthening in Al 0 . 25 CoCrFeNi high-entropy alloys by cold rolling,” Mater. Sci. Eng. A, vol. 707, no. July, pp. 593–601, 2017, doi: 10.1016/j.msea.2017.09.089. [24]W. Wu, L.Guo, B.Guo, Y.Liu, and M.Song, “Materials Science & Engineering A Altered microstructural evolution and mechanical properties of CoCrFeNiMo 0 . 15 high-entropy alloy by cryogenic rolling,” Mater. Sci. Eng. A, vol. 759, no. February, pp. 574–582, 2019, doi: 10.1016/j.msea.2019.05.078. [25]X. H. Du et al., “Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy,” Nat. Commun., vol. 11, no. 1, pp. 1–7, 2020, doi: 10.1038/s41467-020-16085-z. [26]Z.Wu, H.Bei, G. M.Pharr, andE. P.George, “ScienceDirect Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures,” vol. 81, pp. 428–441, 2014, doi: 10.1016/j.actamat.2014.08.026. [27]G.Laplanche, A.Kostka, C.Reinhart, J.Hunfeld, G.Eggeler, andE. P.George, “Acta Materialia Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi,” Acta Mater., vol. 128, pp. 292–303, 2017, doi: 10.1016/j.actamat.2017.02.036. [28]W.Lu, X.Luo, Y.Yang, J.Zhang, and B.Huang, “Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy,” Mater. Chem. Phys., vol. 238, no. April, p. 121841, 2019, doi: 10.1016/j.matchemphys.2019.121841. [29]Y. L.Zhao et al., “Acta Materialia Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy,” vol. 138, pp. 72–82, 2017, doi: 10.1016/j.actamat.2017.07.029. [30]X. D.Xu et al., “Acta Materialia Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al 0 . 1 CoCrFeNi,” vol. 144, pp. 107–115, 2018, doi: 10.1016/j.actamat.2017.10.050. [31]A. K.Bhargava and, M. K. Banerjee, “2.14 Heat-Treating Copper and Nickel Alloys,” in Comprehensive Materials Finishing, vol. 2–3, no. December 2016, Elsevier, 2017, pp. 398–420. doi: 10.1016/B978-0-12-803581-8.09196-7. [32]P.Kusakin, A.Belyakov, R.Kaibyshev, andD.Molodov, “Effect of cold rolling on microstructure and mechanical properties of a Fe-23Mn-0.3C-1.5Al TWIP steel,” Adv. Mater. Res., vol. 922, no. March 2016, pp. 394–399, 2014, doi: 10.4028/www.scientific.net/AMR.922.394. [33]W.Bergmann, “Recrystallisation and related annealing phenomena. Von F. J. Humphreys and M. Hatherly, 520 Seiten, Pergamon, Elsevier Science Ltd., Oxford 1995, Hardbound: US $ 130.00. ISBN 0-08-041884-8, Paperback: US $ 48.00, ISBN 0-08-042685-9,” Mater. Corros. und Korrosion, vol. 48, no. 9, pp. 648–649, Sep.1997, doi: 10.1002/maco.19970480915. [34]J. Zhang, Y.Yi, S. Huang, X.Mao, and H.He, “Materials Science & Engineering A Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high-temperature compression deformation,” Mater. Sci. Eng. A, vol. 804, no. August 2020, p. 140650, 2021, doi: 10.1016/j.msea.2020.140650. [35]J. C. M. Li, “Possibility of Subgrain Rotation during Recrystallization,” J. Appl. Phys., vol. 33, no. 10, pp. 2958–2965, Oct.1962, doi: 10.1063/1.1728543. [36]F. J.Humphreys, “A new analysis of recovery, recrystallization, and grain growth,” Mater. Sci. Technol., vol. 15, no. 1, pp. 37–44, 1999, doi: 10.1179/026708399773002791. [37]S. M. Rossnagel, “Thin film deposition with physical vapor deposition and related technologies,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 21, no. 5, pp. S74–S87, Sep.2003, doi: 10.1116/1.1600450. [38]J. K.Hirvonen, “Ion beam assisted thin film deposition,” Mater. Sci. Reports, vol. 6, no. 6, pp. 215–274, Jul.1991, doi: 10.1016/0920-2307(91)90008-B. [39]S.Naka andH.Okada, “Transparent Organic Light-Emitting Diodes with Top Electrode Using IonPlating Method NOVEMBER 2015 The usage of this PDF file must comply with the IEICE Provisions on Copyright .,” no. November 2015, doi: 10.1587/transaxle.E98.C.1035. [40]J. R.Arthur, “Molecular beam epitaxy,” vol. 500, pp. 189–217, 2002. [41]R. D. Arnell and, P. J. Kelly, “Recent advances in magnetron sputtering,” vol. 112, pp. 170–176, 1999. [42]P. J. Kelly and, R. D. Arnell, “Magnetron sputtering : a review of recent developments and applications,” vol. 56, pp. 159–172, 2000. [43]G.Bräuer, B.Szyszka, M.Vergöhl, andR.Bandorf, “Magnetron sputtering - Milestones of 30 years,” Vacuum, vol. 84, no. 12, pp. 1354–1359, 2010, doi: 10.1016/j.vacuum.2009.12.014. [44]D. K.Maurya, A.Sardarinejad, andK.Alameh, “Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview,” pp. 756–771, 2014, doi: 10.3390/coatings4040756. [45]S.Tan, X.Zhang, X.Wu, F.Fang, andJ.Jiang, “Comparison of chromium nitride coatings deposited by DC and RF magnetron sputtering,” Thin Solid Films, vol. 519, no. 7, pp. 2116–2120, 2011, doi: 10.1016/j.tsf.2010.10.067. [46]A. Majeed, J.He, L.Jiao, X.Zhong, and, Z.Sheng, “Surface properties and biocompatibility of nanostructured TiO 2 film deposited by RF magnetron sputtering,” no. November 2015, doi: 10.1186/s11671-015-0732-7. [47]A.Kondo, T.Oogami, K.Sato, andY.Tanaka, “Structure and properties of cathodic arc ion plated CrN coatings for copper machining cutting tools,” vol. 178, pp. 238–244, 2004, doi: 10.1016/j.surfcoat.2003.09.039. [48]Y.Chen et al., “Friction and Wear Behavior of CrN Coating on 316L Stainless Steel in Liquid Sodium at Elevated Temperature,” Tribol. Int., vol. 143, Mar.2020, doi: 10.1016/j.triboint.2019.106079. [49]P.Panjan, “Industrial applications of CrN ( PVD ) coatings, deposited at high and low temperatures,” vol. 97, pp. 182–191, 1997. [50]N.Crn, “Nanoindentation stress–strain curves as a method for thin-film complete mechanical characterization : application to nanometric CrN / Cr multilayer coatings,” vol. 6, 2003, doi: 10.1007/s00339-002-1669-0. [51]J.Romero, A.Lousa, andJ.Esteve, “Wear behavior of nanometric CrN y Cr multilayers,” vol. 164, pp. 571–577, 2003. [52]A.Matthews, R.Jones, and, S.Dowey, “Modelling the deformation behaviour of multilayer coatings,” Tribol. Lett., vol. 11, no. 2, pp. 103–106, 2001, doi: 10.1023/A:1016667932251. [53]M.Kang, J.Park, S. S.Sohn, H. S.Kim, N. J.Kim, andS.Lee, “Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets,” Mater. Sci. Eng. A, vol. 693, no. February, pp. 170–177, 2017, doi: 10.1016/j.msea.2017.03.076. [54]M. G.Jo et al., “Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi,” Met. Mater. Int., vol. 24, no. 1, pp. 73–83, 2018, doi: 10.1007/s12540-017-7248-x. [55]D.Li, Q.Liu, W.Wang, L.Jin, andH.Xiao, “Corrosion behavior of aisi 316l stainless steel used as the inner lining of bimetallic pipe in a seawater environment,” Materials (Basel)., vol. 14, no. 6, pp. 1–10, 2021, doi: 10.3390/ma14061539. [56]C. Zhang, M.Zhu, Y. Yuan, S.Guo, and J.Wang, “Study on the microstructure and corrosion behavior of CoCrNi MEA annealed at different temperatures in Na2CO3/NaHCO3 solution,” Mater. Corros., vol. 73, no. 9, pp. 1405–1419, 2022, doi: 10.1002/maco.202213108. [57]Z.Zhang andM. G.Lagally, “Atomistic processes in the early stages of thin-film growth,” Science (80-. )., vol. 276, no. 5311, pp. 377–383, 1997, doi: 10.1126/science.276.5311.377. [58]Y. X.Xu, H.Riedl, D.Holec, L.Chen, Y.Du, andP. H. Mayrhofer, “Thermal stability and oxidation resistance of sputtered Ti[sbnd]Al[sbnd]Cr[sbnd]N hard coatings,” Surf. Coatings Technol., vol. 324, pp. 48–56, 2017, doi: 10.1016/j.surfcoat.2017.05.053. [59]S. G.Wang, E. K. Tian, and, C. W. Long, “Surface energy of arbitrary crystal plane of bcc and fcc metals,” J. Phys. Chem. Solids, vol. 61, no. 8, pp. 1295–1300, 2000, doi: 10.1016/S0022-3697(99)00415-1. [60]L. Z. Zevin and, S.Lungo, “117 reactive-sputter-deposited substrates,” vol. 197, pp. 117–128, 1991. [61]K.Aouadi, B.Tlili, C.Nouveau, A.Besnard, M.Chafra, andR.Souli, “Influence of Substrate Bias Voltage on Corrosion and Wear Behavior of Physical Vapor Deposition CrN Coatings,” J. Mater. Eng. Perform., vol. 28, no. 5, pp. 2881–2891, 2019, doi: 10.1007/s11665-019-04033-y. [62]X.Zhang et al., “Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates,” Surf. Coatings Technol., vol. 364, no. July 2018, pp. 135–143, 2019, doi: 10.1016/j.surfcoat.2019.01.059. [63]M.Herrmann, K.Sempf, M.Schneider, U.Sydow, K.Kremmer, andA.Michaelis, “Electrochemical corrosion of silicon carbide ceramics in H2SO4,” J. Eur. Ceram. Soc., vol. 34, no. 2, pp. 229–235, Feb.2014, doi: 10.1016/j.jeurceramsoc.2013.08.024. [64]R. Kobayashi et al., “Evaluation of Grain-Boundary Conduction of Dense AlN-SiC Solid Solution by Scanning Nonlinear Dielectric Microscopy,” J. Am. Ceram. Soc., vol. 93, no. 12, pp. 4026–4029, Dec.2010, doi: 10.1111/j.1551-2916.2010.04230.x. [65]M.Panjan, “Influence of Growth Defects on the Corrosion Resistance of Sputter-Deposited TiAlN Hard Coatings,” pp. 1–16, 2019. [66]B. Biswas, “Growth Defects in CrN / NbN Coatings Deposited by HIPIMS / UBM technique,” no. November 2017, 2017. [67]D. B.Lewis, S. J.Creasey, C.Wüstefeld, A. P.Ehiasarian, andP. E. Hovsepian, “The role of the growth defects on the corrosion resistance of CrN/NbN superlattice coatings deposited at low temperatures,” Thin Solid Films, vol. 503, no. 1–2, pp. 143–148, 2006, doi: 10.1016/j.tsf.2005.08.375. [68]R.Akhter, Z.Zhou, Z.Xie, and P.Munroe, “Harmonizing mechanical responses of nanostructured CrN coatings via Ni additions,” Appl. Surf. Sci., vol. 538, p. 147987, Feb.2021, doi: 10.1016/j.apsusc.2020.147987. [69]J.-W.Lee, S.-K.Tien, and Y.-C.Kuo, “The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering,” Thin Solid Films, vol. 494, no. 1–2, pp. 161–167, Jan.2006, doi: 10.1016/j.tsf.2005.07.190. [70]A.Persson, J.Bergstrom, C.Burman, andS.Hogmark, “Influence of deposition temperature and time during PVD coating of CrN on corrosive wear in liquid aluminum,” 2001. [71]B.Gao, X.Du, Y.Li, S.Wei, X.Zhu, andZ.Song, “Effect of deposition temperature on hydrophobic CrN/AlTiN nanolaminate composites deposited by Multi-Arc-Ion Plating,” J. Alloys Compd., vol. 797, pp. 1–9, 2019, doi: 10.1016/j.jallcom.2019.05.069. [72]S. J.Bull, A. M.Jones, andA. R. McCabe, “Residual stress in ion-assisted coatings,” Surf. Coatings Technol., vol. 54–55, pp. 173–179, 1992, doi: 10.1016/S0257-8972(09)90046-9. [73]V.Teixeira, “Mechanical integrity in PVD coatings due to the presence of residual stresses,” Thin Solid Films, vol. 392, no. 2, pp. 276–281, 2001, doi: 10.1016/S0040-6090(01)01043-4. [74]Y.Chen et al., “Friction and Wear Behavior of CrN Coating on 316L Stainless Steel in Liquid Sodium at Elevated Temperature,” Tribol. Int., vol. 143, p. 106079, Mar.2020, doi: 10.1016/j.triboint.2019.106079. [75]S. H.Lee, N.Kakati, J.Maiti, S. H.Jee, D. J.Kalita, andY. S.Yoon, “Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells,” Thin Solid Films, vol. 529, pp. 374–379, 2013, doi: 10.1016/j.tsf.2012.09.027. [76]P. E. Hovsepian, D. B. Lewis, andW.-D.Münz, “Recent progress in large scale manufacturing of multilayer/superlattice hard coatings,” Surf. Coatings Technol., vol. 133–134, pp. 166–175, Nov.2000, doi: 10.1016/S0257-8972(00)00959-2. [77]Y.Wang, Y.Yang, H.Yang, M.Zhang, andJ.Qiao, “Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy,” J. Alloys Compd., vol. 725, pp. 365–372, Nov.2017, doi: 10.1016/j.jallcom.2017.07.132. [78]Q.Wang, F. Zhou, Z. Zhou, L. K. Y. Li, and J.Yan, “An investigation on the crack resistance of CrN, CrBN and CrTiBN coatings via nanoindentation,” Vacuum, vol. 145, pp. 186–193, 2017, doi: 10.1016/j.vacuum.2017.08.041. [79]Q.Wang, F. Zhou, and J. Yan, “Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN, and CrTiAlN coatings by nanoindentation and scratch tests,” Surf. Coatings Technol., vol. 285, pp. 203–213, 2016, doi: 10.1016/j.surfcoat.2015.11.040. [80]X.Cai, Y.Gao, F.Cai, L.Zhang, and S.Zhang, “Effects of multi-layer structure on microstructure, wear and erosion performance of the Cr/CrN films on Ti alloy substrate,” Appl. Surf. Sci., vol. 483, no. December 2018, pp. 661–669, 2019, doi: 10.1016/j.apsusc.2019.04.008. [81]D. F.Arias, A.Gómez, J. M.Vélez, R. M.Souza, andJ. J.Olaya, “A mechanical and tribological study of Cr/CrN multilayer coatings,” Mater. Chem. Phys., vol. 160, pp. 131–140, 2015, doi: 10.1016/j.matchemphys.2015.04.015. [82]D.Yonekura, J.Fujita, andK.Miki, “Surface & Coatings Technology Fatigue and wear properties of Ti – 6Al – 4V alloy with Cr / CrN multilayer coating,” Surf. Coat. Technol., vol. 275, pp. 232–238, 2015, doi: 10.1016/j.surfcoat.2015.05.014. [83]F.Jasempoor, H.Elmkhah, O.Imantalab, andA.Fattah-Hosseini, “Improving the mechanical, tribological, and electrochemical behavior of AISI 304 stainless steel by applying CrN single layer and Cr / CrN multilayer coatings,” Wear, vol. 504–505, no. June, p. 204425, 2022, doi: 10.1016/j.wear.2022.204425. [84]L.Wang, M.Wang, andH.Chen, “Corrosion mechanism investigation of TiAlN/CrN superlattice coating by multi-arc ion plating in 3.5 wt% NaCl solution,” Surf. Coatings Technol., vol. 391, no. March, p. 125660, 2020, doi: 10.1016/j.surfcoat.2020.125660. [85]H.Olia, R.Ebrahimi-Kahrizsangi, F.Ashrafizadeh, andI.Ebrahimzadeh, “Corrosion study of TiN, TiAlN and CrN multilayer coatings deposit on martensitic stainless steel by arc cathodic physical vapor deposition,” Mater. Res. Express, vol. 6, no. 4, 2019, doi: 10.1088/2053-1591/aaff11. [86]V. K. William Grips, H. C.Barshilia, V. E. Selvi, Kalavati, and K. S.Rajam, “Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering,” Thin Solid Films, vol. 514, no. 1–2, pp. 204–211, 2006, doi: 10.1016/j.tsf.2006.03.008. [87]D.Blanco, J. L.Viesca, M. T.Mallada, B.Ramajo, R.González, andA. H.Battez, “Surface & Coatings Technology Wettability and corrosion of [ NTf 2 ] anion-based ionic liquids on steel and PVD ( TiN, CrN, ZrN ) coatings,” Surf. Coat. Technol., vol. 302, pp. 13–21, 2016, doi: 10.1016/j.surfcoat.2016.05.051. [88]J.Smolik, H.Garbacz, K. J.Kurzyd, andP.Wieci, “Erosion resistance of the nanostructured Cr / CrN multilayer coatings on Ti6Al4V alloy,” vol. 107, pp. 277–283, 2014, doi: 10.1016/j.vacuum.2014.02.024. [89]T.Polcar, R.Martinez, T.Vítů, L.Kopecký, R.Rodriguez, andA.Cavaleiro, “High-temperature tribology of CrN and multilayered Cr/CrN coatings,” Surf. Coatings Technol., vol. 203, no. 20–21, pp. 3254–3259, 2009, doi: 10.1016/j.surfcoat.2009.04.005. [90]M.Naveed, A.Obrosov, andS.Weiß, “Investigation of the Wear Resistance Properties of Cr/CrN Multilayer Coatings against Sand Erosion,” Conf. Pap. Sci., vol. 2015, pp. 1–9, 2015, doi: 10.1155/2015/873543.
|