跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭慧文
研究生(外文):Hui-Wen Peng
論文名稱:添加 Si 及 Nd 元素對於 CoCrNi 中熵合金薄膜 顯微結構與機械性質之影響
論文名稱(外文):Effects of Silicon and Neodymium Additions on Microstructures and Mechanical Properties of CoCrNi Medium Entropy Alloy Films
指導教授:薛承輝
指導教授(外文):Chun-Hway Hsueh
口試委員:李志偉姚栢文蔡劭璞
口試委員(外文):Jyh-Wei LeePakman YiuShao-Pu Tsai
口試日期:2023-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:101
中文關鍵詞:中熵合金薄膜微結構機械性質析出間隙固溶
外文關鍵詞:medium entropy alloy filmmicrostructuremechanical propertiesprecipitationinterstitial solid solution
DOI:10.6342/NTU202303463
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用三個靶材共鍍的磁控濺鍍系統,藉由改變類金屬元素矽及稀土元素釹的成分比例,成功製備一系列的(CoCrNi)100–x–ySixNdy 中熵合金薄膜。第一部分是固定矽元素的含量在大約 0.7 at.%,改變釹元素的含量。隨著釹元素的添加量增加,可以在 X 光繞射儀及穿透式電子顯微鏡選區繞射的圖譜中觀察到材料的結構從單一的 FCC 相逐漸轉變為 FCC CoCrNi 相、HCP CoCrNi 相及 HCP NdNi5 相共同存在,且可以在掃描式電子顯微鏡及穿透式電子顯微鏡的圖片中觀察到細化的柱狀晶結構。在 Si0.58Nd5.14 的薄膜中,因為固溶強化、晶粒細化以及析出強化的效果,材料的硬度及壓縮降伏強度會分別到達 10.29 及 4.27 GPa 的最大值。第二部分是固定釹元素的含量在大約 2.6 at.%,改變矽元素的含量。隨著矽元素的添加量增加,可以在 X 光繞射儀及穿透式電子顯微鏡選區繞射的圖譜中觀察到材料的結構從完全的結晶相逐漸轉變為結晶相被包圍在非晶相中,且可以在掃描式電子顯微鏡及穿透式電子顯微鏡的圖片中觀察到柱狀晶結構消失。在Si0.76Nd2.91 的薄膜中,因為間隙型固溶強化的效果,材料的硬度及壓縮降伏強度會分別些微提升至9.75 及 4.10 GPa 的最大值。將兩部分的(CoCrNi)100–x–ySixNdy 中熵合金薄膜進行綜合討論,發現在Si0.58Nd5.14 的薄膜中具有最佳化的機械性質,表示析出強化及晶粒細化可以成為(CoCrNi)100–x–ySixNdy 中熵合金薄膜中主要的強化機制。
A series of (CoCrNi)100–x–ySixNdy medium entropy alloy films (MEAFs) with manipulated metalloid element, Si, and rare earth element, Nd, was synthesized using magnetron three-target co-sputtering. A transformation from single FCC CoCrNi phase to the coexistence of FCC CoCrNi, HCP CoCrNi and HCP NdNi5 phases was observed in X-ray diffraction (XRD) and transmission electron microscopy (TEM) diffraction patterns with the increasing Nd content for Si content of ~0.7 at.%, and the scanning electron microscope (SEM) and TEM images presented the refined columnar grains. The hardness and compressive yield strength reached the maxima of 10.29 and 4.27 GPa, respectively, in Si0.58Nd5.14 film owing to the solid solution strengthening, grain refinement and precipitation strengthening. The films exhibited a transition from fully crystalline to crystalline within the amorphous matrix in XRD and TEM results with the increasing Si content for Nd content of ~2.6 at.%, and the columnar structure disappeared in the SEM and TEM images. The hardness and yield strength increased slightly to the maxima of 9.75 and 4.10 GPa, respectively, in Si0.76Nd2.91 film attributed mainly to the interstitial solid solution strengthening. Comprehensive discussion of (CoCrNi)100–x–ySixNdy MEAFs showed the optimized mechanical properties in Si0.58Nd5.14 film, indicating the precipitation strengthening and grain refinement strengthening would be the major strengthening mechanisms in this system.
口試委員審定書 #
誌謝 i
中文摘要 iii
Abstract iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xv
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 High Entropy Alloys (HEAs) 4
2.1.1 Definition 5
2.1.2 Four Core Effects 6
2.1.3 CoCrFeMnNi HEAs 11
2.2 CoCrNi MEAs and CoCrNi MEAFs 15
2.2.1 CoCrNi MEAs 15
2.2.2 Magnetron Sputtering Deposition 19
2.2.3 CoCrNi MEAFs 21
2.3 Effect of Rare Earth Element Addition 23
2.3.1 Gd Addition in HEAs 24
2.3.2 Nd Addition in HEAs 26
2.3.3 Y Addition in HEAFs 28
2.3.4 Ce Addition in MEAFs 30
2.4 Effect of Non-metallic Element and Metalloid Element Addition 31
2.4.1 Si Addition in MEAs 32
2.4.2 B Addition in HEAs 33
2.4.3 C Addition in HEAs 35
Chapter 3 Experimental Procedures 37
3.1 Experimental Flow 37
3.2 Sample Preparations and Deposition Process 37
3.2.1 (CoCrNi)100–a–ySiaNdy MEAFs 37
3.2.2 (CoCrNi)100–x–bSixNdb MEAFs 38
3.3 Analytical Techniques 39
3.3.1 Electron Probe X-ray Microanalyzer (EPMA) 39
3.3.2 X-ray Diffraction (XRD) 40
3.3.3 Scanning Electron Microscope (SEM) 40
3.3.4 Transmission Electron Microscope (TEM) 40
3.3.5 Nanoindentation 41
3.3.6 Micropillar Compression Test 41
Chapter 4 Results and Discussion 42
4.1 (CoCrNi)100–a–ySiaNdy MEAFs 42
4.1.1 Chemical Composition 42
4.1.2 XRD Results 43
4.1.3 SEM Observation 47
4.1.4 TEM Observation 49
4.1.5 Nanoindentation 57
4.1.6 Micropillar Compression test 60
4.2 (CoCrNi)100–x–bSixNdb MEAFs 63
4.2.1 Chemical Composition 63
4.2.2 XRD Results 64
4.2.3 SEM Observation 66
4.2.4 TEM Observation 67
4.2.5 Nanoindentation 77
4.2.6 Micropillar Compression test 79
4.3 Comparison between (CoCrNi)100–a–ySiaNdy and (CoCrNi)100–x–bSixNdb MEAFs 82
Chapter 5 Conclusions 85
References 87
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 6 (2004) 299–303.
[2] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear Resistance and High-Temperature Compression Strength of FCC CuConNiCrAl0.5Fe Alloy with Boron Addition, Metall. Mater. Trans. A, 35 (2004) 1465–1469.
[3] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating, Adv. Eng. Mater., 6 (2004) 74–78.
[4] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 375–377 (2004) 213–218.
[5] J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 65 (2013) 1759–1771.
[6] L. Qiao, Y. Liu, J. Zhu, A Focused Review on Machine Learning Aided High-Throughput Methods in High Entropy Alloy, J. Alloys Compd., 877 (2021) 160295.
[7] J.W. Yeh, Recent Progress in High-Entropy Alloys, Ann. Chim. Sci. Mat., 31 (2006) 633–648.
[8] D.B. Miracle, O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 122 (2017) 448–511.
[9] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy CrCoNi Compared to High-Entropy CrMnFeCoNi, Acta Mater., 128 (2017) 292–303.
[10] C. Dong, X. Gu, W. Sun, K. Wang, M. Liu, J. Wang, M. Wen, K. Zhang, Inhibiting Low-Dimensional Defects of Titanium Diboride Coatings by Si Incorporation: Toward Enhanced Corrosion Resistance and Mechanical Properties, Appl. Surf. Sci., 594 (2022) 153504.
[11] J. Wu, X. Liu, H. Zhu, Achieving Strength-Ductility Balance in a Casting Non-Equiatomic Feconi Based Medium-Entropy Alloy via Al and Ti Combination Addition, J. Mater. Res. Technol., 23 (2023) 627–636.
[12] L.C. Chang, Y.C. Lu, C.H. Hsueh, Effects of Aluminum Addition on Microstructures and Mechanical Properties of NbTiVZr High-Entropy Alloy Nitride Films, Intermetallics, 156 (2023) 107868.
[13] L.J. Zhang, M.D. Zhang, Z. Zhou, J.T. Fan, P. Cui, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Effects of Rare-Earth Element, Y, Additions on the Microstructure and Mechanical Properties of CoCrFeNi High Entropy Alloy, Mater. Sci. Eng. A, 725 (2018) 437–446.
[14] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, T.X. Bai, K. Wang, Z.Q. Li, Z.H. Wang, Strengthening and Strain Hardening Mechanisms in Precipitation-Hardened CrCoNi Medium Entropy Alloys, J. Alloys Compd., 896 (2022) 162962.
[15] C. Sha, Z. Zhou, Z. Xie, P. Munroe, Enhancing the Hardness and Damage-Tolerance of CoCrNiAlTi Coatings through Dual-Phase and Nanotwinned Structures, Surf. Coat. Technol., 440 (2022) 128479.
[16] X. Gu, Y. Zhuang, D. Huang, Corrosion Behaviors Related to the Microstructural Evolutions of as-Cast Al0.3CoCrFeNi High Entropy Alloy with Addition of Si and Ti Elements, Intermetallics, 147 (2022) 107600.
[17] Y. Zhao, X. Zhang, H. Quan, Y. Chen, S. Wang, S. Zhang, Effect of Mo Addition on Structures and Properties of FeCoNiCrMn High Entropy Alloy Film by Direct Current Magnetron Sputtering, J. Alloys Compd., 895 (2022) 162709.
[18] D.C. Tsai, Z.C. Chang, P.S. Kuo, E.C. Chen, Y.L. Huang, F.S. Shieu, Si-Target Power Dependence on the Microstructure, Mechanical Behavior, and ElectroOptical Characteristics of Magnetron Sputtered SiX(TiZrHf)1–XN Coatings, J. Mater. Res. Technol., 22 (2023) 35–53.
[19] W. Qu, C. Ji, L. Min, Y. Liu, W. Li, L. Xing, H. Ren, Super Capacity of Boron on the Grain Refinement of FeCoCrNiMn High Entropy Alloy, J. Alloys Compd., 945 (2023) 169320.
[20] L.J. Zhang, P.F. Yu, M.D. Zhang, D.J. Liu, Z. Zhou, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Microstructure and Mechanical Behaviors of GdxCoCrCuFeNi High-Entropy Alloys, Mater. Sci. Eng. A, 707 (2017) 708–716.
[21] C. Wang, T.H. Li, Y.C. Liao, C.L. Li, J.S.C. Jang, C.H. Hsueh, Hardness and Strength Enhancements of CoCrFeMnNi High-Entropy Alloy with Nd Doping, Mater. Sci. Eng. A, 764 (2019) 138192.
[22] Z. Gu, P. Mao, Y. Gou, Y. Chao, S. Xi, Microstructure and Properties of MgMoNbFeTi2YX High Entropy Alloy Coatings by Laser Cladding, Surf. Coat. Technol., 402 (2020) 126303.
[23] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Novel Si-Added Crconi Medium Entropy Alloys Achieving the Breakthrough of Strength-Ductility Trade-Off, Mater. Des., 197 (2021) 109202.
[24] J.B. Seol, J.W. Bae, Z. Li, J. Chan Han, J.G. Kim, D. Raabe, H.S. Kim, Boron Doped Ultrastrong and Ductile High-Entropy Alloys, Acta Mater., 151 (2018) 366–376.
[25] L. Chen, Z. Li, P. Dai, P. Fu, J. Chen, Q. Tang, Effects of Carbon Addition on Microstructure and Mechanical Properties of Fe50Mn30Co10Cr10 High-Entropy Alloy Prepared by Powder Metallurgy, J. Mater. Res. Technol., 20 (2022) 73–87.
[26] F. Cao, P. Munroe, Z. Zhou, Z. Xie, Medium Entropy Alloy CoCrNi Coatings: Enhancing Hardness and Damage-Tolerance through a Nanotwinned Structuring, Surf. Coat. Technol., 335 (2018) 257–264.
[27] B. Cantor, Multicomponent High-Entropy Cantor Alloys, Prog. Mater. Sci., 120 (2021) 100754.
[28] S. Lv, Y. Zu, G. Chen, B. Zhao, X. Fu, W. Zhou, A Multiple Nonmetallic Atoms Co-Doped CrMoNbWTi Refractory High-Entropy Alloy with Ultra-High Strength and Hardness, Mater. Sci. Eng. A, 795 (2020) 140035.
[29] F. Duan, Y. Lin, J. Pan, L. Zhao, Q. Guo, D. Zhang, Y. Li, Ultrastrong Nanotwinned Pure Nickel with Extremely Fine Twin Thickness, Sci. Adv., 7 (2021) eabg5113.
[30] B. Chen, X. Li, Y. Niu, R. Yang, W. Chen, B. Yusupu, L. Jia, A Dual-Phase CrFeNbTiMo Refractory High Entropy Alloy with Excellent Hardness and Strength, Mater. Lett., 337 (2023) 133958.
[31] X. Yan, H. Guo, W. Yang, S. Pang, Q. Wang, Y. Liu, P.K. Liaw, T. Zhang, Al0.3CrXFeCoNi High-Entropy Alloys with High Corrosion Resistance and Good Mechanical Properties, J. Alloys Compd., 860 (2021) 158436.
[32] Y. Ren, H. Wu, B. Liu, Q. Shan, S. Guo, Z. Jiao, I. Baker, A Novel L12-Strengthened AlCoCuFeNi High-Entropy Alloy with Both High Hardness and Good Corrosion Resistance, Mater. Lett., 331 (2023) 133339.
[33] K. Lu, J. Li, Y. Wang, X. Ma, Excellent Strength-Ductility Synergy and Corrosion Resistance in a Metastable High Entropy Alloy Via Heterogeneous Structure Design, J. Alloys Compd., 941 (2023) 168979.
[34] N.N. Liang, R.R. Xu, G.Z. Wu, X.Z. Gao, Y.H. Zhao, High Thermal Stability of Nanocrystalline FeNi2CoMo0.2V0.5 High-Entropy Alloy by Twin Boundary and Sluggish Diffusion, Mater. Sci. Eng. A, 848 (2022) 143399.
[35] W. Gao, Y. Dong, X. Jia, L. Yang, X. Li, S. Wu, R. Zhao, H. Wu, Q. Li, A. He, J. Li, Novel CoFeAlMn High-Entropy Alloys with Excellent soft Magnetic Properties and High Thermal Stability, J. Mater. Sci. Technol., 153 (2023) 22–31.
[36] Y. Zhang, M. Liu, J. Sun, G. Li, R. Zheng, W. Xiao, C. Ma, Excellent Thermal Stability and Mechanical Properties of Bulk Nanostructured FeCoNiCu High Entropy Alloy, Mater. Sci. Eng. A, 835 (2022) 142670.
[37] C.C. Zhao, A. Inoue, F.L. Kong, J.Y. Zhang, C.J. Chen, B.L. Shen, F. Al-Marzouki, A.L. Greer, Novel Phase Decomposition, Good Soft-Magnetic and Mechanical Properties for High-Entropy (Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100–xBx (x = 9–13) Amorphous Alloys, J. Alloys Compd., 843 (2020) 155917.
[38] C. Chen, H. Zhang, Y. Fan, W. Zhang, R. Wei, T. Wang, T. Zhang, F. Li, A Novel Ultrafine-Grained High Entropy Alloy with Excellent Combination of Mechanical and Soft Magnetic Properties, J. Magn. Magn. Mater., 502 (2020) 166513.
[39] T. Zuo, M. Zhang, P.K. Liaw, Y. Zhang, Novel High Entropy Alloys of FeXCo1–XNiMnGa with Excellent Soft Magnetic Properties, Intermetallics, 100 (2018) 1–8.
[40] C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, J.W. Yeh, Physical Metallurgy of Concentrated Solid Solutions from Low-Entropy to High-Entropy Alloys, Curr. Opin. Solid State Mater. Sci., 21 (2017) 299-311.
[41] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, JOM, 67 (2015) 2254–2261.
[42] L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Deviation from High-Entropy Configurations in the Atomic Distributions of a Multi-Principal-Element Alloy, Nat. Commun., 6 (2015) 5964.
[43] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A Review on Fundamental of High Entropy Alloys with Promising High–Temperature Properties, J. Alloys Compd., 760 (2018) 15–30.
[44] J. Liu, X. Wang, A.P. Singh, H. Xu, F. Kong, F. Yang, The Evolution of Intermetallic Compounds in High-Entropy Alloys: From the Secondary Phase to the Main Phase, Metals, 11 (2021) 2054.
[45] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish Diffusion in Co–Cr–Fe–Mn–Ni High-Entropy Alloys, Acta Mater., 61 (2013) 4887–4897.
[46] N. Singh, Y. Shadangi, V. Shivam, N.K. Mukhopadhyay, MgAlSiCrFeNi Low-Density High Entropy Alloy Processed by Mechanical Alloying and Spark Plasma Sintering: Effect on Phase Evolution and Thermal Stability, J. Alloys Compd., 875 (2021) 159923.
[47] U. Bhandari, C. Zhang, S. Yang, Mechanical and Thermal Properties of LowDensity Al20+xCr20-xMo20-yTi20V20+y Alloys, Crystals, 10 (2020) 278.
[48] O. Maulik, D. Kumar, S. Kumar, S.K. Dewangan, V. Kumar, Structure and Properties of Lightweight High Entropy Alloys: A Brief Review, Materials Research Express, 5 (2018) 052001.
[49] W.J. Shen, M.H. Tsai, K.Y. Tsai, C.C. Juan, C.W. Tsai, J.W. Yeh, Y.S. Chang, Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride, J. Electrochem. Soc., 160 (2013) C531.
[50] Z. Li, L. Wang, B. Wang, Z. Li, Z. Li, Y. Zhang, L. Luo, R. Chen, Y. Su, J. Guo, Oxidation Behavior of Ti-Nb-Mo-Al-Six Refractory High Entropy Alloy at 1000℃, Corros. Sci., 206 (2022) 110504.
[51] B.R. Anne, S. Shaik, M. Tanaka, A. Basu, A Crucial Review on Recent Updates of Oxidation Behavior in High Entropy Alloys, SN Appl. Sci., 3 (2021) 366.
[52] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory HighEntropy Alloys, Intermetallics, 18 (2010) 1758–1765.
[53] W. Xiong, A.X.Y. Guo, S. Zhan, C.T. Liu, S.C. Cao, Refractory High-Entropy Alloys: A Focused Review of Preparation Methods and Properties, J. Mater. Sci. Technol., 142 (2023) 196–215.
[54] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 345 (2014) 1153–1158.
[55] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi HighEntropy Alloy, Acta Mater., 61 (2013) 5743–5755.
[56] Z. Zeng, M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang, W. Tang, Y. Wang, X. Ma, Z. Chen, W. Ma, K. Morita, Mechanical Properties of Cantor Alloys Driven by Additional Elements: A Review, J. Mater. Res. Technol., 15 (2021) 1920–1934.
[57] Z.G. Zhu, K.H. Ma, Q. Wang, C.H. Shek, Compositional Dependence of Phase Formation and Mechanical Properties in Three CoCrFeNi-(Mn/Al/Cu) High Entropy Alloys, Intermetallics, 79 (2016) 1–11.
[58] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn HighEntropy Alloy System, Acta Mater., 62 (2014) 105–113.
[59] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, Recrystallization, Grain Growth and Phase Stability of a Family of FCC-Structured Multi-Component Equiatomic Solid Solution Alloys, Intermetallics, 46 (2014) 131–140.
[60] X. Dingfeng, W. Mingliang, L. Tianxin, W. Xiangsai, L. Yiping, A Critical Review of the Mechanical Properties of CoCrNi-Based Medium-Entropy Alloys, Microstructures, 2 (2022) 2022001.
[61] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of Tungsten Additions on the Microstructure and Mechanical Properties of CoCrNi Medium Entropy Alloys, J. Alloys Compd., 790 (2019) 732–743.
[62] N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Size Effect, Critical Resolved Shear Stress, Stacking Fault Energy, and Solid Solution Strengthening in the CrMnFeCoNi High-Entropy Alloy, Sci. Rep., 6 (2016) 35863.
[63] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure Evolution and Critical Stress for Twinning in the CrMnFeCoNi High-Entropy Alloy, Acta Mater., 118 (2016) 152–163.
[64] P.J. Kelly, R.D. Arnell, Magnetron Sputtering: A Review of Recent Developments and Applications, Vacuum, 56 (2000) 159–172.
[65] S.K. Padamata, A. Yasinskiy, V. Yanov, G. Saevarsdottir, Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review, Metals, 12 (2022) 319.
[66] X.H. Yan, J.S. Li, W.R. Zhang, Y. Zhang, A Brief Review of High-Entropy Films, Mater. Chem. Phys., 210 (2018) 12–19.
[67] E. Klaus, Magnetron Sputtering of Transparent Conductive Zinc Oxide: Relation between the Sputtering Parameters and the Electronic Properties, J. Phys. D: Appl. Phys., 33 (2000) R17.
[68] S. Swann, Magnetron Sputtering, Phys. Technol., 19 (1988) 67.
[69] D.T. Read, Y.W. Cheng, R.R. Keller, J.D. McColskey, Tensile Properties of FreeStanding Aluminum Thin Films, Scr. Mater., 45 (2001) 583–589.
[70] V. Balaram, Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact, Geosci. Front., 10 (2019) 1285–1303.
[71] L.N. Ross, Causal Explanation and the Periodic Table, Synthese, 198 (2021) 79–103.
[72] A. Takeuchi, A.S. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 46 (2005) 2817–2829.
[73] X. Yang, Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in MultiComponent Alloys, Mater. Chem. Phys., 132 (2012) 233–238.
[74] X. Fu, J. Jiang, X. Jiang, Research Progress in Interfacial Characteristics and Strengthening Mechanisms of Rare Earth Metal Oxide-Reinforced Copper Matrix Composites, Materials, 15 (2022) 5350.
[75] Y. Lin, C.L. Li, C.H. Hsueh, Effects of Cerium Addition on Microstructures and Mechanical Properties of CoCrNi Medium Entropy Alloy Films, Surf. Coat. Technol., 424 (2021) 127645.
[76] S. Wang, T. Zhang, S. Du, Q. Wang, R. Xiong, Z. Jiao, S. Ma, Z. Wang, Tuning the Microstructure and Strengthening Mechanism of the CoCrFeNi High-Entropy Alloy Via Doping Metalloid and Interstitial Elements, J. Alloys Compd., 960 (2023) 170622.
[77] Z. Wang, H. Wu, Y. Wu, H. Huang, X. Zhu, Y. Zhang, H. Zhu, X. Yuan, Q. Chen, S. Wang, X. Liu, H. Wang, S. Jiang, M.J. Kim, Z. Lu, Solving Oxygen Embrittlement of Refractory High-Entropy Alloy Via Grain Boundary Engineering, Mater. Today, 54 (2022) 83–89.
[78] J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, X. Fan, Effect of C Content on Microstructure and Tensile Properties of as-Cast CoCrFeMnNi High Entropy Alloy, Mater. Chem. Phys., 210 (2018) 136–145.
[79] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.-G. Nieh, Z. Lu, Enhanced Strength and Ductility in a High-Entropy Alloy Via Ordered Oxygen Complexes, Nature, 563 (2018) 546–550.
[80] L.K. Iroc, O.U. Tukac, B.B. Tanrisevdi, O. El-Atwani, M.A. Tunes, Y.E. Kalay, E. Aydogan, Design of Oxygen-Doped TiZrHfNbTa Refractory High Entropy Alloys with Enhanced Strength and Ductility, Mater. Des., 223 (2022) 111239.
[81] M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Nitrogen Induced Heterogeneous Structures Overcome Strength-Ductility Trade-Off in an Additively Manufactured High-Entropy Alloy, Appl. Mater. Today, 18 (2020) 100498.
[82] S. Guo, C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci.: Mater. Int., 21 (2011) 433–446.
[83] L. Zhou, H. Fang, X. Yang, R. Chen, Y. Yan, Y. Zhang, Y. Su, J. Guo, Adjusting the γ/α2 and Ti2AlC Phase on Microstructure Evolution and Improving Mechanical Properties at Room and Elevated Temperatures with the Addition of Ta, Intermetallics, 146 (2022) 107579.
[84] C. Sha, Z. Zhou, Z. Xie, P. Munroe, FeMnNiCoCr-Based High Entropy Alloy Coatings: Effect of Nitrogen Additions on Microstructural Development, Mechanical Properties and Tribological Performance, Appl. Surf. Sci., 507 (2019) 145101.
[85] Y. Zhang, Z. Zhang, X. Wang, W. Yao, X. Liang, Structure and Properties of High-Entropy Amorphous Thin Films: A Review, JOM, 74 (2022) 794–807.
[86] F.T.L. Muniz, M.A.R. Miranda, C. Morilla Dos Santos, J.M. Sasaki, The Scherrer Equation and the Dynamical Theory of X-Ray Diffraction, Acta Crystallogr., Sect. A: Found. Adv., 72 Pt 3 (2016) 385–390.
[87] D. Lee, M.P. Agustianingrum, N. Park, N. Tsuji, Synergistic Effect by Al Addition in Improving Mechanical Performance of CoCrNi Medium-Entropy Alloy, J. Alloys Compd., 800 (2019) 372–378.
[88] X. Hong, C.H. Hsueh, Effects of Yttrium Addition on Microstructures and Mechanical Properties of CoCrNi Medium Entropy Alloy, Intermetallics, 140 (2022) 107405.
[89] D. Broek, The Role of Inclusions in Ductile Fracture and Fracture Toughness, Eng. Fract. Mech., 5 (1973) 55–66.
[90] Y.C. Kuo, C.J. Wang, J.W. Lee, The Microstructure and Mechanical Properties Evaluation of CrTiAlSiN Coatings: Effects of Silicon Content, Thin Solid Films, 638 (2017) 220–229.
[91] N. Saowadee, K. Agersted, J.R. Bowen, Lattice Constant Measurement from Electron Backscatter Diffraction Patterns, J. Microsc., 266 (2017) 200–210.
[92] R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, K. Kunishige, Tensile Properties and Twinning Behavior of High Manganese Austenitic Steel with Fine-Grained Structure, Scr. Mater., 59 (2008) 963–966.
[93] R. Mohammadzadeh, M. Mohammadzadeh, Inverse Grain Size Effect on Twinning in Nanocrystalline Twip Steel, Mater. Sci. Eng. A, 747 (2019) 265–275.
[94] S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Transition of Twinning Behavior in CoCrFeMnNi High Entropy Alloy with Grain Refinement, Mater. Sci. Eng. A, 712 (2018) 603–607.
[95] H. Zhang, F. Liu, G. Ungar, Z. Zheng, Q. Sun, Y. Han, A Regime Beyond the Hall–Petch and Inverse-Hall–Petch Regimes in Ultrafine-Grained Solids, Commun. Phys., 5 (2022) 329.
[96] C.E. Carlton, P.J. Ferreira, What Is Behind the Inverse Hall–Petch Effect in Nanocrystalline Materials?, Acta Mater., 55 (2007) 3749–3756.
[97] S.N. Naik, S.M. Walley, The Hall–Petch and Inverse Hall–Petch Relations and the Hardness of Nanocrystalline Metals, J. Mater. Sci., 55 (2020) 2661–2681.
[98] Y.S. Lin, Y.C. Lu, C.H. Hsueh, Strengthening of CoCrNi Medium Entropy Alloy with Gadolinium Additions, Vacuum, 211 (2023) 111969.
[99] S.N. Chan, C.H. Hsueh, Effects of La Addition on the Microstructure and Mechanical Properties of CoCrNi Medium Entropy Alloy, J. Alloys Compd., 894 (2022) 162401.
[100] W.C. Oliver, G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 7 (1992) 1564–1583.
[101] G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, E.P. George, Elastic Moduli and Thermal Expansion Coefficients of Medium-Entropy Subsystems of the CrMnFeCoNi High-Entropy Alloy, J. Alloys Compd., 746 (2018) 244–255.
[102] A. Leyland, A. Matthews, On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour, Wear, 246 (2000) 1–11.
[103] A. Matthews, S. Franklin, K. Holmberg, Tribological Coatings: Contact Mechanisms and Selection, J. Phys. D: Appl. Phys., 40 (2007) 5463.
[104] W. Zhai, L. Bai, R. Zhou, X. Fan, G. Kang, Y. Liu, K. Zhou, Recent Progress on Wear-Resistant Materials: Designs, Properties, and Applications, Adv. Sci., 8 (2021) 2003739.
[105] B.D. Beake, The Influence of the H/E Ratio on Wear Resistance of Coating Systems – Insights from Small-Scale Testing, Surf. Coat. Technol., 442 (2022) 128272.
[106] H. Watanabe, Effect of Second-Phase Precipitates on Local Elongation in Extruded Magnesium Alloys, J. Mater. Eng. Perform., 22 (2013) 3450–3454.
[107] L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, X.C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 528 (2015) 539–543.
[108] Y. Jia, C. Ren, S. Wu, Y. Mu, L. Xu, Y. Jia, W. Yan, J. Yi, G. Wang, Multistage Strain-Hardening Behavior of Ultrastrong and Ductile Lightweight Refractory Complex-Concentrated Alloys, J. Mater. Sci. Technol., 149 (2023) 73–87.
[109] W.B. Liao, H. Zhang, Z.Y. Liu, P.F. Li, J.J. Huang, C.Y. Yu, Y. Lu, High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering, Entropy, 21 (2019) 146.
[110] Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, Y.L. Wang, Serration and Noise Behaviors in Materials, Prog. Mater. Sci., 90 (2017) 358–460.
[111] M.M. Lacerda, Y.H. Chen, B. Zhou, M.U. Guruz, Y.W. Chung, Synthesis of Hard Tin Coatings with Suppressed Columnar Growth and Reduced Stress, J. Vac. Sci. Technol. A, 17 (1999) 2915–2919.
[112] P. Zhang, J.Y. Zhang, J. Li, G. Liu, K. Wu, Y.Q. Wang, J. Sun, Microstructural Evolution, Mechanical Properties and Deformation Mechanisms of Nanocrystalline Cu Thin Films Alloyed with Zr, Acta Mater., 76 (2014) 221–237.
[113] A. Obeydavi, A. Shafyei, A. Rezaeian, P. Kameli, J.W. Lee, Fabrication and Properties Evaluation of Novel Fe46-XCr23Mo14Co7PXB5Si5 (X=0, 6) M Metallic Glasses Deposited by Dc Magnetron Sputtering, Intermetallics, 131 (2021) 107120.
[114] A. Caron, R. Wunderlich, D.V. Louzguine-Luzgin, G. Xie, A. Inoue, H.J. Fecht, Influence of Minor Aluminum Concentration Changes in Zirconium-Based Bulk Metallic Glasses on the Elastic, Anelastic, and Plastic Properties, Acta Mater., 58 (2010) 2004–2013.
[115] D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, A.Y. Churyumov, Mechanical Properties and Deformation Behavior of Bulk Metallic Glasses, Metals, 3 (2013) 1–22.
[116] S.X. Song, H. Bei, J. Wadsworth, T.G. Nieh, Flow Serration in a Zr-Based Bulk Metallic Glass in Compression at Low Strain Rates, Intermetallics, 16 (2008) 813–818.
[117] N. Wang, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang, Tuning Microstructure and Enhancing Mechanical Properties of Co-Ni-V-Al Medium Entropy Alloy Thin Films Via Deposition Power, J. Alloys Compd., 875 (2021) 160003.
[118] Y.H. Liang, C.L. Li, C.H. Hsueh, Effects of Nb Addition on Microstructures and Mechanical Properties of Nbx-CoCrFeMnNi High Entropy Alloy Films, Coatings, 11 (2021) 1539.
[119] Y.C. Hsu, C.L. Li, C.H. Hsueh, Effects of Al Addition on Microstructures and Mechanical Properties of CoCrFeMnNiAlx High Entropy Alloy Films, Entropy, 22 (2020) 2.
[120] Y.C. Hsu, C.L. Li, C.H. Hsueh, Modifications of Microstructures and Mechanical Properties of CoCrFeMnNi High Entropy Alloy Films by Adding Ti Element, Surf. Coat. Technol., 399 (2020) 126149.
[121] T.H. Huang, C.H. Hsueh, Microstructures and Mechanical Properties of (CoCrFeMnNi)100–xMox High Entropy Alloy Films, Intermetallics, 135 (2021) 107236.
[122] S. Fang, C. Wang, C.L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh, Microstructures and Mechanical Properties of CoCrFeMnNiVx High Entropy Alloy Films, J. Alloys Compd., 820 (2020) 153388.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊