跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 07:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林彥廷
研究生(外文):Yen-Ting Lin
論文名稱:有機熱電元件:材料合成、分析、穿戴式元件應用
論文名稱(外文):Organic Thermoelectric Devices: Materials Synthesis, Characterization, Wearable Devices Application
指導教授:劉振良
指導教授(外文):Cheng-Liang Liu
口試委員:鄭有舜胡啟章童世煌
口試委員(外文):U-Ser JengChi-Chang HuShih-Huang Tung
口試日期:2023-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:126
中文關鍵詞:有機熱電熱電化學電池熱電發電機導電高分子水凝膠穿戴式裝置
外文關鍵詞:organic thermoelectricthermoelectrochemical cellsthermoelectric generatorconducting polymerhydrogelwearable device
DOI:10.6342/NTU202302098
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著環保意識抬頭,綠色能源已然成為不可或缺的能源供應來源,本研究包含薄膜高分子熱電以及膠態熱電化學電池都著重在有機熱電系統的效能提升,來實現更有效的熱到電能源轉換。首先,於第一篇研究,成功以噴塗法製備PEDOT:PSS熱電薄膜,並佐以EG跟MAI的兩步法後處理。EG後處理有效提高薄膜的電子導電度至1752.1 S cm–1,但保持著幾乎不變的Seebeck係數(15-17 μV K–1)。再第二步後處理,最佳化的0.05 M MAI溶於DMSO/DI water溶液處理可以達到功率因子(122.3 μW m–1 K–2),同時在此後處理步驟同時提升電子導電度至2226.8 S cm–1以及Seebeck係數22.8 μV K–1。值得關注的是,在所有噴塗製備的高分子熱電材料中此功率因子是目前最高的熱電效能表現。如此高效的熱電表現可以歸功於多樣的因素,其中包含後處理所造成的PEDOT與不導電PSS相分離、更容易共振的主鏈結構、較有排列性的PEDOT結晶以及較適化的能階偏移。同時將PEDOT:PSS噴塗在可饒曲的塑膠基板也保持極高的熱電表現,此概念驗證的穿戴式熱電發電機於溫差19.5 K時可產生12.1 nW cm–2的功率輸出密度。
第二篇研究則著重在熱電化學電池的開發,膠態熱電化學電池因為其可持續轉換低能廢熱並持續發電的特點,於穿戴式裝置的研究領域中凸顯。但過往的熱電化學電池研究都受困於其離子導電度的不足。因此本研究利用冷凍回放法製備三層網絡水凝膠(PAAM/PVA/CNF)作為膠態電化學電池的基材,並將此水凝膠浸入Fe(CN)63–/4–氧化還原對溶液中形成膠態電化學電池。根據最佳化的基材高分子比例調控以及氧化還原對溶液的浸泡時間,我們獲得極高的離子導電度555 mS cm–1,以及氧化還原對本質的熱功率(或稱Seebeck係數) 1.69 mV K–1。本研究進一步使用小角度X光散射發現水膠基材中高分子密集與鬆散的結構上相分離有利於離子傳遞,因此提高極高的離子導電度。最後將膠態電化學電池製備成熱電發電機矩陣,並且在溫差11.9 K時可提供28.7 μW的功率輸出。
綜合上述,兩篇研究皆在可饒曲熱電發電機以及穿戴式能源供應元件有十分出色的表現。這些研究對穿戴式熱電裝置的元件製備方法、材料分析以及效能提升方法都有清晰的發現與探討,對未來此領域的研究開創一條康莊大道。
Both research studies center around enhancing the performance of flexible thermoelectric devices specifically tailored for wearable applications. Firstly, polymer-based thermoelectric films comprising poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are successfully prepared through a spray coating technique, followed by a sequential, two-step post-treatment process involving ethylene glycol (EG) and a methylammonium iodide (MAI) solution. The ethylene glycol treatment significantly enhances the electrical conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film, resulting in a remarkable electrical conductivity (σ) of 1752.1 S cm–1, while the Seebeck coefficient (S) remains unchanged within the range of 15–17 μV K–1. In the second step, optimal utilization of a 0.05 M methylammonium iodide solution in dimethyl sofoxide / deionized water leads to a notable increase in the power factor (PF), reaching 122.3 μW m–1 K–2. Furthermore, this step contributes to a further enhancement in electrical conductivity (2226.8 S cm–1) and Seebeck coefficient (22.8 μV K–1). It is noteworthy that the achieved power factor is among the highest reported for spray-coated thermoelectric devices based on polymers. The observed performance improvement can be attributed to various factors, including the phase separation of non-conductive PSS from PEDOT, alterations in chain conformation, the preferential orientation of PEDOT crystallites, and manipulation of energy levels. The excellent thermoelectric performance of the prepared poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films on a plastic substrate is verified through the implementation of a proof-of-concept thermoelectric generator (TEG), demonstrating a maximum power density of 12.1 nW cm–2 under the temperature difference of 19.5 K.
Secondly, quasi-solid thermoelectrochemical cells (TECs) have emerged as a promising solution for wearable energy harvesting devices due to their ability to continuously convert low-grade heat into electricity. However, a significant challenge in achieving satisfactory TEC performance arises from the insufficient ion conductivity within the system. To address this issue, the present study proposes the utilization of a triple-network hydrogel consisting of polyacrylamide/poly(vinyl alcohol)/cellulose nanofiber (PAAM/PVA/CNF), synthesized using the freeze-thaw method. The thermogalvanic redox couple Fe(CN)63–/4– is employed as the electrolyte, combined with hydrogel soaking. Through optimization of the polymer composition and appropriate soaking time, a remarkable record-high ionic conductivity (σi) of 555 mS cm–1 is achieved, while the thermopower (α, or Seebeck coefficient) remains consistent at approximately 1.69 mV K–1, governed by the underlying redox reaction. Further insights into the system are obtained through small-angle x-ray scattering (SAXS) analysis, which reveals the presence of phase separation between polymer-rich and polymer-poor domains, contributing to the observed high ionic conductivity in the TECs. Additionally, the exceptional performance of the TEG array is demonstrated, showcasing a power output of 28.7 μW under a temperature difference of 11.9 K.
Overall, both investigations emphasize the progress made in flexible thermoelectric technology and its diverse range of potential applications, including flexible thermoelectric generators and wearable power supply systems. These research endeavors offer valuable insights into the fabrication methodologies, material characteristics, and performance enhancements achieved in flexible thermoelectric devices, thereby paving the way for future advancements in this field.
致謝 i
ABSTRACT iii
中文摘要 vi
Figure Captions xiii
Table Captions xx
Chapter 1. Introduction 1
1.1 Background 1
1.2 Introduction of Organic Thermoelectric Materials 3
1.2.1 Concepts of Organic Thermoelectric 4
1.2.1.1 Seebeck Effect 4
1.2.1.2 Peltier Effect 6
1.2.1.3 Thomson Effect 7
1.2.1.4 Conductive Mechanism 7
1.2.2 Promising Conducting Polymer Thermoelectric Materials 9
1.2.2.1 Polyacetylene (PAc) 9
1.2.2.2 Polyaniline (PANI) 10
1.2.2.3 Polypyrrole (PPy) 11
1.2.2.4 Polythiophene (PT) and Derivatives 12
1.3 Introduction of Thermoelectrochemical Cells (TECs) 14
1.3.1 Thermogalvanic Cells (TGCs) 15
1.3.2 Thermally Chargeable Capacitors (TCCs) 16
1.3.3 Promising TGCs system 17
Chapter 2. Experimental Section 19
2.1 Section 1: High Thermoelectric Performance of Sprayed Coated Poly(3,4-ethelenedioxylthiophene):poly(styrenesulfonate) Film Enable By Two-Step Post-Treatment Process 19
2.1.1 Materials 19
2.1.2 Thermoelectric Film Preparation 19
2.1.3 Preparation of Flexible Thermoelectric Generator (TEG) 21
2.1.4 Characterization 21
2.1.4.1 X-ray Photoelectron Spectra (XPS) 21
2.1.4.2 Ultraviolet Photoelectron Spectroscopy (UPS) 22
2.1.4.3 Ultraviolet-Visible-Near Infrared Spectra (UV-vis-NIR Spectra) 22
2.1.4.4 Raman Spectra 23
2.1.4.5 Atomic Force Microscope (AFM) 23
2.1.4.6 Field-Emission Scanning Electron Microscope (FESEM) 23
2.1.4.7 Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) 24
2.1.5 Thermoelectric Measurements 24
2.1.5.1 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) Thermoelectric Thin Film Measurement 24
2.1.5.2 Flexible TEG Measurement 25
2.2 Section 2: Triple Network Hydrogel Thermo-electrochemical Cells with Continuously Low-Grade Heat Harvesting 26
2.2.1 Materials 26
2.2.2 Preparation of Double-Network (DN) or Triple-Network (TN) TECs 26
2.2.3 Preparation of TEG Array 29
2.2.4 Characterization 29
2.2.4.1 Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) 29
2.2.4.2 Field-Emission Scanning Electron Microscope (FESEM) 29
2.2.4.3 Dynamic Rheological Test 30
2.2.4.4 Tensile Test 30
2.2.4.5 Small Angle X-ray Scattering (SAXS) 30
2.2.4.6 SAXS Model Fitting 31
2.2.4.7 Electrochemical Analysis 31
2.2.5 Thermoelectrochemical Measurements 32
Chapter 3. High Thermoelectric Performance of Sprayed Coated Poly(3,4-ethelenedioxylthiophene):poly(styrenesulfonate) Film Enable By Two-Step Post-Treatment Process 33
3.1 Research Background 33
3.2 Results and Discussion 36
3.2.1 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) Thermoelectric Film Preparation 36
3.2.2 Characterization of PSS Removement 40
3.2.3 Morphology Analysis 42
3.2.4 X-ray Scattering 44
3.2.5 Spectroscopic Properties 45
3.2.6 Thermoelectric Performance 50
3.2.7 Flexible Thermoelectric Generators 56
3.3 Summary 59
Chapter 4. Triple Network Hydrogel Thermo-electrochemical Cells with Continuously Low-Grade Heat Harvesting 61
4.1 Research Background 61
4.2 Results and Discussion 63
4.2.1 Preparation of Double-network (DN) and Triple-network (TN) Hydrogel Samples 63
4.2.2 Molecular interactions, Morphologies, and Mechanical Properties 67
4.2.3 Electrochemical and Thermo-electrochemical Properties 73
4.2.4 Soaking time dependent electrochemical properties and mechanical properties in TN-V2C1 TECs 77
4.2.5 Small-angle X-ray scattering (SAXS) for nanostructure analysis 81
4.2.6 Perspective on enhanced ionic conductivity and performance comparison of TECs 92
4.2.7 Thermoelectric generator (TEG) array and wearable devices applications 98
4.3 Summary 101
Conclusion 103
References 105
[1]J. Liu, R. Li, B. Yang.
[2]Y. Guan, J. Yan, Y. Shan, Y. Zhou, Y. Hang, R. Li, Y. Liu, B. Liu, Q. Nie, B. Bruckner, K. Feng, K. Hubacek, Nature Energy 2023, 8, 304-316.
[3]J. Xu, M. Akhtar, M. Haris, S. Muhammad, O. J. Abban, F. Taghizadeh-Hesary, Energy Strategy Reviews 2022, 41, 100849.
[4]M. Farghali, A. I. Osman, I. M. A. Mohamed, Z. Chen, L. Chen, I. Ihara, P.-S. Yap, D. W. Rooney, Environmental Chemistry Letters 2023, 21, 2003-2039.
[5]S. Sun, M. Li, X. L. Shi, Z. G. Chen, Advanced Energy Materials 2023, 13.
[6]D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini, Energy Strategy Reviews 2019, 24, 38-50.
[7]P. A. Owusu, S. Asumadu-Sarkodie, Cogent Engineering 2016, 3, 1167990.
[8]Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad, Y. Cui, Sustainable Energy Technologies and Assessments 2020, 37, 100604.
[9]X.-L. Shi, J. Zou, Z.-G. Chen, Chemical Reviews 2020, 120, 7399-7515.
[10]J. J. Gutiérrez Moreno, J. Cao, M. Fronzi, M. H. N. Assadi, Materials for Renewable and Sustainable Energy 2020, 9, 16.
[11]Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li, C. Xiao, Y. Pei, Nature Communications 2022, 13, 237.
[12]K. Julaihie, R. Abu Bakar, B. Bhathal Singh, M. Remeli, A. Oberoi, IOP Conference Series: Earth and Environmental Science 2019, 268, 012134.
[13]X. He, H. Sun, Z. Li, X. Chen, Z. Wang, Y. Niu, J. Jiang, C. Wang, Journal of Materials Chemistry A 2022, 10, 20730-20755.
[14]K. Ono, R. O. Suzuki, JOM 1998, 50, 49-51.
[15]T. Sharmin, N. R. Khan, M. S. Akram, M. M. Ehsan, International Journal of Thermofluids 2023, 18, 100323.
[16]N. DeLovato, K. Sundarnath, L. Cvijovic, K. Kota, S. Kuravi, Renewable and Sustainable Energy Reviews 2019, 114, 109329.
[17]I. T. Witting, T. C. Chasapis, F. Ricci, M. Peters, N. A. Heinz, G. Hautier, G. J. Snyder, Advanced Electronic Materials 2019, 5, 1800904.
[18]T. Parashchuk, R. Knura, O. Cherniushok, K. T. Wojciechowski, ACS Applied Materials & Interfaces 2022, 14, 33567-33579.
[19]Z.-H. Zheng, X.-L. Shi, D.-W. Ao, W.-D. Liu, M. Li, L.-Z. Kou, Y.-X. Chen, F. Li, M. Wei, G.-X. Liang, P. Fan, G. Q. Lu, Z.-G. Chen, Nature Sustainability 2023, 6, 180-191.
[20]D. Park, S. Park, K. Jeong, H.-S. Jeong, J. Y. Song, M. H. Cho, Scientific Reports 2016, 6, 19132.
[21]M. Muñoz Rojo, B. Abad, C. V. Manzano, P. Torres, X. Cartoixà, F. X. Alvarez, M. Martín Gonzalez, Nanoscale 2017, 9, 6741-6747.
[22]I. Malik, T. Srivastava, K. K. Surthi, C. Gayner, K. K. Kar, Materials Chemistry and Physics 2020, 255, 123598.
[23]L.-Y. Lou, J. Yang, Y.-K. Zhu, H. Liang, Y.-X. Zhang, J. Feng, J. He, Z.-H. Ge, L.-D. Zhao, Advanced Science 2022, 9, 2203250.
[24]S. Grasso, N. Tsujii, Q. Jiang, J. Khaliq, S. Maruyama, M. Miranda, K. Simpson, T. Mori, M. J. Reece, Journal of Materials Chemistry C 2013, 1, 2362-2367.
[25]I. T. Witting, F. Ricci, T. C. Chasapis, G. Hautier, G. J. Snyder, Research 2020.
[26]C. Lamuta, D. Campi, A. Cupolillo, Z. S. Aliev, M. B. Babanly, E. V. Chulkov, A. Politano, L. Pagnotta, Scripta Materialia 2016, 121, 50-55.
[27]M. G. Gilad, G. Yaniv, in Bringing thermoelectricity into reality (Ed: A. Patricia), IntechOpen, Rijeka 2018, p. Ch. 4.
[28]J. Liu, B. van der Zee, R. Alessandri, S. Sami, J. Dong, M. I. Nugraha, A. J. Barker, S. Rousseva, L. Qiu, X. Qiu, N. Klasen, R. C. Chiechi, D. Baran, M. Caironi, T. D. Anthopoulos, G. Portale, R. W. A. Havenith, S. J. Marrink, J. C. Hummelen, L. J. A. Koster, Nature Communications 2020, 11, 5694.
[29]B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, R. A. Segalman, Nature Reviews Materials 2016, 1, 16050.
[30]H. Wang, C. Yu, in Thermoelectric energy conversion (Ed: R. Funahashi), Woodhead Publishing 2021, p. 347-365.
[31]H. Wang, C. Yu, Joule 2019, 3, 53-80.
[32]F. Zhang, C.-a. Di, Chemistry of Materials 2020, 32, 2688-2702.
[33]M. Lindorf, K. A. Mazzio, J. Pflaum, K. Nielsch, W. Brütting, M. Albrecht, Journal of Materials Chemistry A 2020, 8, 7495-7507.
[34]Z. Liao, X. Zhou, G. Wei, S. Wang, C. Gao, L. Wang, ACS Applied Materials & Interfaces 2022, 14, 43421-43430.
[35]Y.-H. Pai, J. Tang, Y. Zhao, Z. Liang, Advanced Energy Materials 2023, 13, 2202507.
[36]X. Zhao, Z. Chen, H. Zhuo, Y. Hu, G. Shi, B. Wang, H. Lai, S. Araby, W. Han, X. Peng, L. Zhong, Journal of Materials Science & Technology 2022, 120, 150-158.
[37]Y. Zhao, L. Liu, F. Zhang, C.-a. Di, D. Zhu, SmartMat 2021, 2, 426-445.
[38]Y. Wang, Z. Zhou, J. Zhou, L. Shao, Y. Wang, Y. Deng, Advanced Energy Materials 2022, 12, 2102835.
[39]Y. Zhang, S.-J. Park, in Polymers, Vol. 11, 2019.
[40]Y. J. Kim, S. E. Park, B. J. Cho, Nano Energy 2022, 93, 106775.
[41]D. Beretta, A. Perego, G. Lanzani, M. Caironi, Sustainable Energy & Fuels 2017, 1, 174-190.
[42]D.-L. Wen, H.-T. Deng, X. Liu, G.-K. Li, X.-R. Zhang, X.-S. Zhang, Microsystems & Nanoengineering 2020, 6, 68.
[43]K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Nature 2008, 455, 778-781.
[44]N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, Energy Reports 2020, 6, 264-287.
[45]T. Hendricks, T. Caillat, T. Mori, in Energies, Vol. 15, 2022.
[46]J.-M. Kim, S.-J. Kim, M.-G. Kang, J.-G. Choi, S. Lee, J. Park, C. Van Phuoc, K.-W. Kim, K.-J. Kim, J.-R. Jeong, K.-J. Lee, B.-G. Park, Nature Communications 2023, 14, 3365.
[47]X. Li, J. Wang, Z. Huang, D. Yu, A. Rezaniakolaei, Energy Technology 2023, n/a, 2300136.
[48]S. Baru, S. Bhatia, IOP Conference Series: Materials Science and Engineering 2020, 912, 042004.
[49]M. Zhang, Y. Tian, H. Xie, Z. Wu, Y. Wang, International Journal of Heat and Mass Transfer 2019, 137, 1183-1190.
[50]A. Kinage, S. Sahoo, S. Chaudhuri, Thermal Science and Engineering Progress 2021, 25, 101035.
[51]D. Beretta, N. Neophytou, J. M. Hodges, M. G. Kanatzidis, D. Narducci, M. Martin- Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink, A. I. Hofmann, C. Müller, B. Dörling, M. Campoy-Quiles, M. Caironi, Materials Science and Engineering: R: Reports 2019, 138, 100501.
[52]A. Polozine, S. Sirotinskaya, L. Schaeffer, Materials Research 2014, 17.
[53]R. Hyde, Graduate School Theses and Dissertations, University of South Florida 2011.
[54]W. Zhao, J. Ding, Y. Zou, C.-a. Di, D. Zhu, Chemical Society Reviews 2020, 49, 7210-7228.
[55]G. H. Kim, L. Shao, K. Zhang, K. P. Pipe, Nature Materials 2013, 12, 719-723.
[56]M. Koopmans, M. A. T. Leiviskä, J. Liu, J. Dong, L. Qiu, J. C. Hummelen, G. Portale, M. C. Heiber, L. J. A. Koster, ACS Applied Materials & Interfaces 2020, 12, 56222-56230.
[57]K. A. Peterson, A. Patterson, A. Vega-Flick, B. Liao, M. L. Chabinyc, Materials Chemistry Frontiers 2020, 4, 3632-3639.
[58]D. L. Stevens, G. A. Gamage, Z. Ren, J. C. Grunlan, RSC Advances 2020, 10, 11800-11807.
[59]J. Liu, L. Qiu, G. Portale, M. Koopmans, G. ten Brink, J. C. Hummelen, L. J. A. Koster, Advanced Materials 2017, 29, 1701641.
[60]I. H. Jung, C. T. Hong, U.-H. Lee, Y. H. Kang, K.-S. Jang, S. Y. Cho, Scientific Reports 2017, 7, 44704.
[61]W. Jin, L. Liu, T. Yang, H. Shen, J. Zhu, W. Xu, S. Li, Q. Li, L. Chi, C.-a. Di, D. Zhu, Nature Communications 2018, 9, 3586.
[62]E. J. Sandoz-Rosado, S. J. Weinstein, R. J. Stevens, International Journal of Thermal Sciences 2013, 66, 1-7.
[63]A. Ugur, F. Katmis, M. Li, L. Wu, Y. Zhu, K. K. Varanasi, K. K. Gleason, Advanced Materials 2015, 27, 4604-4610.
[64]H.-J. Yen, C. Shan, L. Wang, P. Xu, M. Zhou, H.-L. Wang, in Polymers, Vol. 9, 2017.
[65]J. Plocharski, Materials Science Forum 1989, 42, 17-28.
[66]B.-G. Kim, X. Ma, C. Chen, Y. Ie, E. W. Coir, H. Hashemi, Y. Aso, P. F. Green, J. Kieffer, J. Kim, Advanced Functional Materials 2013, 23, 439-445.
[67]L. Hu, Z. Li, Y. Zhou, F. Zhang, in Flexible thermoelectric polymers and systems 2022, p. 41-79.
[68]W. J. Feast, J. N. Winter, Journal of the Chemical Society, Chemical Communications 1985, 202-203.
[69]N. Basescu, Z. X. Liu, D. Moses, A. J. Heeger, H. Naarmann, N. Theophilou, Nature 1987, 327, 403-405.
[70]W. Liu, J. Kumar, S. Tripathy, K. J. Senecal, L. Samuelson, Journal of the American Chemical Society 1999, 121, 71-78.
[71]S. Goswami, S. Nandy, E. Fortunato, R. Martins, Journal of Solid State Chemistry 2023, 317, 123679.
[72]J. John, P. Saheeda, K. Sabeera, S. Jayalekshmi, Materials Today: Proceedings 2018, 5, 21140-21146.
[73]W. Li, M. J. Lefferts, B. I. Armitage, K. Murugappan, M. R. Castell, ACS Applied Polymer Materials 2022, 4, 2536-2543.
[74]E. Chalmers, H. Lee, C. Zhu, X. Liu, Chemistry of Materials 2020, 32, 234-244.
[75]L. Liang, G. Chen, C.-Y. Guo, Materials Chemistry Frontiers 2017, 1, 380-386.
[76]K. Tsuchiya, K. Ogino, Polymer Journal 2013, 45, 281-286.
[77]E. L. Ratcliff, J. L. Jenkins, K. Nebesny, N. R. Armstrong, Chemistry of Materials 2008, 20, 5796-5806.
[78]E. Gutiérrez-Fernández, T. A. Ezquerra, E. Rebollar, J. Cui, S. Marina, J. Martín, A. Nogales, Polymer 2021, 218, 123515.
[79]C. Uludağ, E. Alveroglu, K. Koç, Y. Karabul, M. Kılıç, Z. G. Özdemir, Physica B: Condensed Matter 2022, 626, 413508.
[80]S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielsen, C.-H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant, I. McCulloch, Nature Communications 2016, 7, 11585.
[81]Z. Liang, X. Cheng, Y. Jiang, J. Yu, X. Xu, Z. Peng, L. Bu, Y. Zhang, Z. Tang, M. Li, L. Ye, Y. Geng, ACS Applied Materials & Interfaces 2021, 13, 61487-61495.
[82]J. H. Lee, Y. R. Jeong, G. Lee, S. W. Jin, Y. H. Lee, S. Y. Hong, H. Park, J. W. Kim, S.-S. Lee, J. S. Ha, ACS Applied Materials & Interfaces 2018, 10, 28027-28035.
[83]T. Stöcker, A. Köhler, R. Moos, Journal of Polymer Science Part B: Polymer Physics 2012, 50, 976-983.
[84]W. Jeong, G. Gwon, J.-H. Ha, D. Kim, K.-J. Eom, J. H. Park, S. J. Kang, B. Kwak, J.-I. Hong, S. Lee, D. C. Hyun, S. Lee, Biosensors and Bioelectronics 2021, 171, 112717.
[85]J. Song, G. Ma, F. Qin, L. Hu, B. Luo, T. Liu, X. Yin, Z. Su, Z. Zeng, Y. Jiang, G. Wang, Z. Li, in Polymers, Vol. 12, 2020.
[86]I. Petsagkourakis, N. Kim, K. Tybrandt, I. Zozoulenko, X. Crispin, Adv. Electron. Mater. 2019, 5, 1800918.
[87]S. Xu, M. Hong, X. Shi, M. Li, Q. Sun, Q. Chen, M. Dargusch, J. Zou, Z.-G. Chen, Energy Environ. Sci. 2020, 13, 3480-3488.
[88]Y. Yang, H. Deng, Q. Fu, Mater. Chem. Front. 2020, 4, 3130-3152.
[89]J. S. Yun, S. Choi, S. H. Im, Carbon Energy 2021, 3, 667-708.
[90]Y. Zheng, H. Zeng, Q. Zhu, J. Xu, J. Mater. Chem. C 2018, 6, 8858-8873.
[91]M. F. Dupont, D. R. MacFarlane, J. M. Pringle, Chemical Communications 2017, 53, 6288-6302.
[92]L. Jiang, K. Kirihara, V. Nandal, K. Seki, M. Mukaida, S. Horike, Q. Wei, ACS Applied Materials & Interfaces 2022, 14, 22921-22928.
[93]K. Kim, J. Kang, H. Lee, Chemical Engineering Journal 2021, 426, 131797.
[94]J. Duan, G. Feng, B. Yu, J. Li, M. Chen, P. Yang, J. Feng, K. Liu, J. Zhou, Nature Communications 2018, 9, 5146.
[95]I. Burmistrov, N. Gorshkov, N. Kovyneva, E. Kolesnikov, B. Khaidarov, G. Karunakaran, E.-B. Cho, N. Kiselev, D. Artyukhov, D. Kuznetsov, A. Gorokhovsky, Renewable Energy 2020, 157, 1-8.
[96]Y. Liu, H. Wang, P. C. Sherrell, L. Liu, Y. Wang, J. Chen, Advanced Science 2021, 8, 2100669.
[97]S.-M. Jung, J. Kwon, J. Lee, I. K. Han, K.-S. Kim, Y. S. Kim, Y.-T. Kim, Journal of Power Sources 2021, 494, 229705.
[98]S. Zhang, Y. Zhou, Y. Liu, G. G. Wallace, S. Beirne, J. Chen, iScience 2021, 24, 103466.
[99]Y. Liu, M. Cui, W. Ling, L. Cheng, H. Lei, W. Li, Y. Huang, Energy & Environmental Science 2022, 15, 3670-3687.
[100]H. Ma, X. Wang, Y. Peng, H. Peng, M. Hu, L. Xiao, G. Wang, J. Lu, L. Zhuang, ACS Energy Letters 2019, 4, 1810-1815.
[101]S. W. Lee, Y. Yang, H.-W. Lee, H. Ghasemi, D. Kraemer, G. Chen, Y. Cui, Nature Communications 2014, 5, 3942.
[102]M. A. Buckingham, K. Laws, H. Li, Y. Kuang, L. Aldous, Cell Reports Physical Science 2021, 2, 100510.
[103]B. Yu, J. Duan, J. Li, W. Xie, H. Jin, R. Liu, H. Wang, L. Huang, B. Hu, J. Zhou, Research 2019.
[104]A. Al-zubaidi, X. Ji, J. Yu, Sustainable Energy & Fuels 2017, 1, 1457-1474.
[105]J. Wang, S.-P. Feng, Y. Yang, N. Y. Hau, M. Munro, E. Ferreira-Yang, G. Chen, Nano Letters 2015, 15, 5784-5790.
[106]A. M. Abdul Mageeth, S. Park, M. Jeong, W. Kim, C. Yu, Applied Energy 2020, 268, 114975.
[107]D. Zhao, H. Wang, Z. U. Khan, J. C. Chen, R. Gabrielsson, M. P. Jonsson, M. Berggren, X. Crispin, Energy & Environmental Science 2016, 9, 1450-1457.
[108]T. Xu, W. Li, Z. Ma, Y. Qian, Q. Jiang, Y. Luo, J. Yang, Nano Energy 2022, 103, 107826.
[109]M. A. Buckingham, K. Laws, E. Cross, A. J. Surman, L. Aldous, Green Chemistry 2021, 23, 8901-8915.
[110]H. Wang, X. Zhuang, W. Xie, H. Jin, R. Liu, B. Yu, J. Duan, L. Huang, J. Zhou, Cell Reports Physical Science 2022, 3, 100737.
[111]Y. Liu, Q. Zhang, G. O. Odunmbaku, Y. He, Y. Zheng, S. Chen, Y. Zhou, J. Li, M. Li, K. Sun, Journal of Materials Chemistry A 2022, 10, 19690-19698.
[112]K. Laws, M. A. Buckingham, M. Farleigh, M. Ma, L. Aldous, Chemical Communications 2023, 59, 2323-2326.
[113]X. Li, J. Li, J. Yun, A. Wu, C. Gao, S. W. Lee, Nano Energy 2022, 101, 107547.
[114]I. Burmistrov, N. Kovyneva, N. Gorshkov, A. Gorokhovsky, A. Durakov, D. Artyukhov, N. Kiselev, Renewable Energy Focus 2019, 29, 42-48.
[115]J. Zhao, X. Wu, H. Yu, Y. Wang, P. Wu, X. Yang, D. Chu, G. Owens, H. Xu, EcoMat 2023, 5, e12302.
[116]Y. Ikeda, Y. Cho, Y. Murakami, Sustainable Energy & Fuels 2021, 5, 5967-5974.
[117]Y. Xiang, X. Guo, H. Zhu, Q. Zhang, S. Zhu, Chemical Engineering Journal 2023, 461, 142018.
[118]C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu, Z. Han, W. Zhang, W. Wang, S.-P. Feng, G. Chen, W. Liu, Science 2020, 368, 1091-1098.
[119]M. Li, M. Hong, M. Dargusch, J. Zou, Z.-G. Chen, Trends in Chemistry 2021, 3, 561-574.
[120]E. H. B. Anari, M. Romano, W. X. Teh, J. J. Black, E. Jiang, J. Chen, T. Q. To, J. Panchompoo, L. Aldous, Chemical Communications 2016, 52, 745-748.
[121]W. Cho, D. Song, Y.-G. Lee, H. Chae, Y. R. Kim, Y. B. Pyun, S. Nagarajan, P. Sudhagar, Y. S. Kang, Journal of Materials Chemistry A 2013, 1, 233-236.
[122]Z. Fan, J. Ouyang, Adv. Electron. Mater. 2019, 5, 1800769.
[123]D. Ju, D. Kim, H. Yook, J. W. Han, K. Cho, Adv. Funct. Mater. 2019, 29, 1905590.
[124]Q. Li, M. Deng, S. Zhang, D. Zhao, Q. Jiang, C. Guo, Q. Zhou, W. Liu, J. Mater. Chem. C 2019, 7, 4374-4381.
[125]Q. Li, Q. Zhou, W. Xu, L. Wen, J. Li, B. Deng, J. Zhang, H. Xu, W. Liu, ACS Appl. Mater. Interfaces 2022, 14, 27911-27921.
[126]Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu, Y. Pei, W. Liu, X. Crispin, S. Fabiano, Y. Ma, Y. Cao, Adv. Mater. 2021, 33, 2102990.
[127]S. Wang, G. Zuo, J. Kim, H. Sirringhaus, Progress in Polymer Science 2022, 129, 101548.
[128]H. Yao, Z. Fan, P. Li, B. Li, X. Guan, D. Du, J. Ouyang, J. Mater. Chem. A 2018, 6, 24496-24502.
[129]W. Zhao, J. Ding, Y. Zou, C. A. Di, D. Zhu, Chem. Soc. Rev. 2020, 49, 7210-7228.
[130]L. Deng, G. Chen, Nano Energy. 2021, 80, 105448.
[131]Y. Lu, J. Y. Wang, J. Pei, Acc. Chem. Res. 2021, 54, 2871-2883.
[132]S. Masoumi, S. O'Shaughnessy, A. Pakdel, Nano Energy. 2022, 92, 106774.
[133]G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A. J. Robinson, G. Hadziioannou, A. Pakdel, Mater. Today Phys. 2021, 18, 100402.
[134]J. Liu, Y. Jia, Q. Jiang, F. Jiang, C. Li, X. Wang, P. Liu, P. Liu, F. Hu, Y. Du, J. Xu, ACS Appl. Mater. Interfaces 2018, 10, 44033-44040.
[135]W. Lee, Y. H. Kang, J. Y. Lee, K.-S. Jang, S. Y. Cho, RSC Adv. 2016, 6, 53339-53344.
[136]X. Huang, L. Deng, F. Liu, Z. Liu, G. Chen, J. Chem. Eng. 2021, 417, 129230.
[137]J. Luo, D. Billep, T. Blaudeck, E. Sheremet, R. D. Rodriguez, D. R. T. Zahn, M. Toader, M. Hietschold, T. Otto, T. Gessner, J. Appl. Phys. 2014, 115, 054908.
[138]A. C. Hinckley, S. C. Andrews, M. T. Dunham, A. Sood, M. T. Barako, S. Schneider, M. F. Toney, K. E. Goodson, Z. Bao, Adv. Electron. Mater. 2021, 7, 2001190.
[139]S. Zhang, Z. Fan, X. Wang, Z. Zhang, J. Ouyang, J. Mater. Chem. A 2018, 6, 7080-7087.
[140]A. K. K. Kyaw, T. A. Yemata, X. Wang, S. L. Lim, W. S. Chin, K. Hippalgaonkar, J. Xu, Macromol. Mater. Eng. 2018, 303, 1700429.
[141]X. Li, C. Liu, W. Zhou, X. Duan, Y. Du, J. Xu, C. Li, J. Liu, Y. Jia, P. Liu, Q. Jiang, C. Luo, C. Liu, F. Jiang, ACS Appl. Mater. Interfaces 2019, 11, 8138-8147.
[142]S. Tu, T. Tian, A. Lena Oechsle, S. Yin, X. Jiang, W. Cao, N. Li, M. A. Scheel, L. K. Reb, S. Hou, A. S. Bandarenka, M. Schwartzkopf, S. V. Roth, P. Müller-Buschbaum, J. Chem. Eng. 2022, 429, 132295.
[143]C. Wang, K. Sun, J. Fu, R. Chen, M. Li, Z. Zang, X. Liu, B. Li, H. Gong, J. Ouyang, Adv. Sustain. Syst. 2018, 2, 1800085.
[144]S. Xu, M. Hong, X.-L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou, Z.-G. Chen, Chem. Mater. 2019, 31, 5238-5244.
[145]Y.-T. Lin, C.-Y. Lee, C.-Y. Wu, J.-M. Lin, T.-C. Lee, S.-H. Tung, C.-L. Liu, Journal of Power Sources 2023, 556.
[146]E. J. Bae, Y. H. Kang, C. Lee, S. Y. Cho, J. Mater. Chem. A 2017, 5, 17867-17873.
[147]S. Hwang, I. Jeong, J. Park, J. K. Kim, H. Kim, T. Lee, J. Kwak, S. Chung, ACS Appl. Mater. Interfaces 2020, 12, 26250-26257.
[148]E. Yvenou, M. Sandroni, A. Carella, M. N. Gueye, J. Faure-Vincent, S. Pouget, R. Demadrille, J.-P. Simonato, Mater. Chem. Front. 2020, 4, 2054-2063.
[149]D. Alemu, H.-Y. Wei, K.-C. Ho, C.-W. Chu, Energy Environ. Sci. 2012, 5, 9662-9671.
[150]J. Dong, G. Portale, Adv. Mater. Interfaces 2020, 7, 2000641.
[151]H. Lee, E. Puodziukynaite, Y. Zhang, J. C. Stephenson, L. J. Richter, D. A. Fischer, D. M. DeLongchamp, T. Emrick, A. L. Briseno, J. Am. Chem. Soc. 2015, 137, 540-549.
[152]M. R. Lenze, N. M. Kronenberg, F. Würthner, K. Meerholz, Org. Electron. 2015, 21, 171-176.
[153]D. J. Yun, J. Jung, Y. M. Sung, H. Ra, J. M. Kim, J. Chung, S. Y. Kim, Y. S. Kim, S. Heo, K. H. Kim, Y. J. Jeong, J. Jang, Adv. Electron. Mater. 2020, 6, 2000620.
[154]O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J. B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, X. Crispin, Nat. Mater. 2014, 13, 190-194.
[155]K. Jiang, S.-H. Hong, S.-H. Tung, C.-L. Liu, J. Mater. Chem. A 2022, 10, 18792-18802.
[156]S. S. Kalagi, P. S. Patil, Synth. Met. 2016, 220, 661-666.
[157]J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D. R. T. Zahn, T. Gessner, J. Mater. Chem. A 2013, 1, 7576-7583.
[158]J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, Polymer 2004, 45, 8443-8450.
[159]H. Fritzsche, Solid State Commun. 1971, 9, 1813-1815.
[160]J. M. Buhmann, M. Sigrist, Phys. Rev. B. 2013, 88, 115128.
[161]E. J. Bae, Y. H. Kang, K. S. Jang, C. Lee, S. Y. Cho, Nanoscale 2016, 8, 10885-10890.
[162]N. Massonnet, A. Carella, A. de Geyer, J. Faure-Vincent, J. P. Simonato, Chem. Sci. 2015, 6, 412-417.
[163]P. Stadler, D. Farka, H. Coskun, E. D. Głowacki, C. Yumusak, L. M. Uiberlacker, S. Hild, L. N. Leonat, M. C. Scharber, P. Klapetek, R. Menon, N. S. Sariciftci, J. Mater. Chem. C 2016, 4, 6982-6987.
[164]Z. Yu, Y. Xia, D. Du, J. Ouyang, ACS Appl. Mater. Interfaces 2016, 8, 11629-11638.
[165]R. Sarabia-Riquelme, G. Ramos-Fernández, I. Martin-Gullon, M. C. Weisenberger, Synth. Met. 2016, 222, 330-337.
[166]J. F. Ponder, A. K. Menon, R. R. Dasari, S. L. Pittelli, K. J. Thorley, S. K. Yee, S. R. Marder, J. R. Reynolds, Adv. Energy Mater. 2019, 9, 1900395.
[167]L. Shen, P. Liu, C. Liu, Q. Jiang, J. Xu, X. Duan, Y. Du, F. Jiang, ACS Appl. Polym. Mater. 2019, 2, 376-384.
[168]S. Mardi, P. Cataldi, A. Athanassiou, A. Reale, Appl. Phys. Lett. 2022, 120, 033102.
[169]L. K. Allison, T. L. Andrew, Adv. Mater. Technol. 2019, 4, 1800615.
[170]H. M. Elmoughni, A. K. Menon, R. M. W. Wolfe, S. K. Yee, Adv. Mater. Technol. 2019, 4, 1800708.
[171]Y. Jia, L. Shen, J. Liu, W. Zhou, Y. Du, J. Xu, C. Liu, G. Zhang, Z. Zhang, F. Jiang, J. Mater. Chem. C 2019, 7, 3496-3502.
[172]S. Jin, T. Sun, Y. Fan, L. Wang, M. Zhu, J. Yang, W. Jiang, Polymer 2019, 167, 102-108.
[173]D. Liu, Z. Yan, Y. Zhao, Z. Zhang, Y. Zhen, B. Zhang, P. Shi, C. Xue, J. Mater. Res. Technol. 2021, 15, 4452-4460.
[174]I. Paulraj, T. F. Liang, T. S. Yang, C. H. Wang, J. L. Chen, Y. W. Wang, C. J. Liu, ACS Appl. Mater. Interfaces 2021, 13, 42977-42990.
[175]Q. Jiang, J. Yang, P. Hing, H. Ye, Materials Advances 2020, 1, 1038-1054.
[176]Y. Zhang, W. Wang, F. Zhang, K. Dai, C. Li, Y. Fan, G. Chen, Q. Zheng, Small 2022, 18, 2104922.
[177]M. Goel, M. Thelakkat, Macromolecules 2020, 53, 3632-3642.
[178]K. Yusupov, A. Vomiero, Advanced Functional Materials 2020, 30, 2002015.
[179]Y. Liu, H. Wang, P. C. Sherrell, L. Liu, Y. Wang, J. Chen, Advanced Science 2021, 8.
[180]Y. Liu, S. Zhang, Y. Zhou, M. A. Buckingham, L. Aldous, P. C. Sherrell, G. G. Wallace, G. Ryder, S. Faisal, D. L. Officer, S. Beirne, J. Chen, Advanced Energy Materials 2020, 10.
[181]W. Gao, Z. Lei, C. Zhang, X. Liu, Y. Chen, Advanced Functional Materials 2021, 31.
[182]P. Peng, J. Zhou, L. Liang, X. Huang, H. Lv, Z. Liu, G. Chen, Nanomicro Lett 2022, 14, 81.
[183]J. Duan, B. Yu, K. Liu, J. Li, P. Yang, W. Xie, G. Xue, R. Liu, H. Wang, J. Zhou, Nano Energy 2019, 57, 473-479.
[184]G. Wu, Y. Xue, L. Wang, X. Wang, G. Chen, Journal of Materials Chemistry A 2018, 6, 3376-3380.
[185]P. Yin, Y. Geng, L. Zhao, Q. Meng, Z. Xin, L. Luo, B. Wang, Z. Mao, X. Sui, W. Wu, X. Feng, Chemical Engineering Journal 2023, 457.
[186]Y. Zhou, S. Zhang, M. A. Buckingham, L. Aldous, S. Beirne, C. Wu, Y. Liu, G. Wallace, J. Chen, Chemical Engineering Journal 2022, 449.
[187]L. Liang, H. Lv, X. L. Shi, Z. Liu, G. Chen, Z. G. Chen, G. Sun, Mater Horiz 2021, 8, 2750-2760.
[188]W. Gao, Z. Lei, W. Chen, Y. Chen, ACS Nano 2022, 16, 8347-8357.
[189]P. Peng, Z. Li, D. Xie, K. Zhu, C. Du, L. Liang, Z. Liu, G. Chen, Journal of Materials Chemistry A 2023, 11, 6986-6996.
[190]A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo, J. M. Pringle, ChemSusChem 2018, 11, 2788-2796.
[191]Y. Li, Q. Li, X. Zhang, B. Deng, C. Han, W. Liu, Advanced Energy Materials 2022, 12.
[192]Y. Zong, H. Li, X. Li, J. Lou, Q. Ding, Z. Liu, Y. Jiang, W. Han, Chemical Engineering Journal 2022, 433.
[193]J. H. Kim, Y. Han, G. Shin, J. G. Jeon, H. J. Kim, B. J. So, S. Yun, T. J. Kang, ACS Applied Energy Materials 2022, 5, 13053-13061.
[194]J. H. Lee, G. Shin, J. Y. Baek, T. J. Kang, ACS Appl Mater Interfaces 2021, 13, 21157-21165.
[195]Z. Lei, W. Gao, P. Wu, Joule 2021, 5, 2211-2222.
[196]Z. Lei, W. Gao, W. Zhu, P. Wu, Advanced Functional Materials 2022, 32.
[197]C. Tian, C. Bai, T. Wang, Z. Yan, Z. Zhang, K. Zhuo, H. Zhang, Nano Energy 2023, 106.
[198]X. Li, J. Li, T. Wang, S. A. Khan, Z. Yuan, Y. Yin, H. Zhang, ACS Appl Mater Interfaces 2022, 14, 48743-48751.
[199]H. S. Mansur, C. M. Sadahira, A. N. Souza, A. A. P. Mansur, Materials Science and Engineering: C 2008, 28, 539-548.
[200]M. Ahmadyari-Sharamin, S. A. Hassanzadeh-Tabrizi, Journal of Sol-Gel Science and Technology 2021, 99, 534-545.
[201]E. Al-Emam, H. Soenen, J. Caen, K. Janssens, Heritage Science 2020, 8, 106.
[202]M. Shin, S.-H. Shin, M. Lee, H. J. Kim, J. H. Jeong, Y. H. Choi, D. X. Oh, J. Park, H. Jeon, Y. Eom, Polymer 2021, 229, 123969.
[203]A. Forgacs, V. Papp, G. Paul, L. Marchese, A. Len, Z. Dudas, I. Fabian, P. Gurikov, J. Kalmar, ACS Appl Mater Interfaces 2021, 13, 2997-3010.
[204]Е. А. Lysenkov, V. V. Klepko, I. P. Lysenkova, Journal of Nano- and Electronic Physics 2020, 12, 04006-04001-04006-04006.
[205]B. Wu, M. Siglreitmeier, C. Debus, D. Schwahn, H. Colfen, V. Pipich, Macromol Biosci 2018, 18, e1800018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top