跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 05:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張承宗
研究生(外文):Cheng-Tsung Chang
論文名稱:烷基單胺和雙胺鈍化層對鈣鈦礦太陽能電池元件特性的影響
論文名稱(外文):Effects of alkyl monoamine and diamine passivation layers on the characteristics of perovskite solar cell devices
指導教授:蔡豐羽
指導教授(外文):Feng-Yu Tsai
口試委員:闕居振黃裕清
口試委員(外文):Chu-Chen ChuehYu-Ching Huang
口試日期:2023-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:64
中文關鍵詞:鈣鈦礦太陽能電池介面鈍化鈍化層烷基單胺烷基雙胺
外文關鍵詞:perovskite solar cellsinterface passivationpassivation layeralkyl monoaminealkyl diamine
DOI:10.6342/NTU202303905
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈣鈦礦太陽能電池因高轉換效率和製造友善性而被視為有前景的光伏元件材料,但由於鈣鈦礦材料製造過程容易形成缺陷,使得其發展仍受到阻礙。使用胺基化合物進行界面鈍化修飾已被證明減少鈣鈦礦材料缺陷形成的有效方法。本研究針對單胺類的己基溴化銨(C6Br)和雙胺類的己烷-1,6-二胺鹵化銨(HDABr),這兩種己基銨鹵化物進行測試,將其作為修飾倒置式鈣鈦礦太陽能電池元件的界面材料。將這兩種材料進行三種界面修飾,分別是在載子傳輸層(HTL)與鈣鈦礦吸光層(PVSK)界面、PVSK與電子傳輸層(ETL)界面、同時在這兩個界面上進行修飾。在修飾材料的性質上,己基銨鹵化物因為具有較大的烷基官能基,能夠增加PVSK層的親水性,同時胺基與鈣鈦礦相互作用下,抑制了缺陷的形成。因此,無論是C6Br還是HDABr,作為HTL/PVSK或PVSK/ETL界面修飾層,都能明顯提高鈣鈦礦太陽能電池元件性能,其中又因為HDABr擁有雙胺,在界面上提供了更多缺陷修飾的機會,進而能展現出較佳的效果。值得一提的是,同時在HTL/PVSK和PVSK/ETL界面上應用C6Br或HDABr鈍化修飾並未呈現附加效應。在雙界面鈍化下,C6Br會導致元件效率下降,而HDABr鈍化後的元件效率提升則比單一界面鈍化修飾後要小。這種結果可以被歸因於己基銨鹵化物的電絕緣性質,當同時應用於HTL/PVSK和PVSK/ETL界面時,會導致載子傳輸過多的障礙。最後,我們的研究為鈣鈦礦太陽能電池元件使用胺基化合物鈍化修飾材料在選擇和設計上提供了有用的見解。
Perovskite solar cells (PSCs) are a promising type of photovoltaic devices thanks to their high-power conversion efficiency (PCE) and manufacturing-friendliness, but their development is still hindered by the strong defect-forming tendency of the perovskite (PVSK) light-absorbing materials. Interfacial passivation using amine-based compounds has been demonstrated to be an effective method for suppressing defect formation in PSCs. This study examined two types of hexylammonium halides—n-hexylammonium bromide (C6Br), which is monofunctional, and hexane-1,6-diammonium bromide (HDABr), which is bifunctional—as passivation materials for various interfaces of an inverted PSC device, including at either one of the hole-transporting layer (HTL)/PVSK and the PVSK/electron-transporting layer (ETL) interfaces, and simultaneously at both of those interfaces. The selected hexylammonium halides increased the PVSK layer’s hydrophobicity upon their application as passivation layers thanks to their large alkyl moiety, while their ammonium functional groups interacted with PVSK to suppress defect formation. As a result, both C6Br and HDABr yielded distinct enhancements in PSC device performance as either an HTL/PVSK or a PVSK/ETL interface-passivation layer, with HDABr showing superior effects owing to its bifunctionality providing more passivating opportunities for defects at the interface. Applying C6Br or HDABr at both of the HTL/PVSK and PVSK/ETL interfaces intriguingly did not exhibit additive effects, with C6Br causing slight degradation of device PCE while HDABr producing smaller PCE improvements than in the cases of single-interface passivation. This lack of additive benefits was attributed to the electrically insulating nature of the hexylammonium halides, which when applied at both of the HTL/PVSK and PVSK/ETL interfaces caused excessive barriers to carrier transport. Our work provided useful insights for the selection and design of amine-based passivating materials for PSCs.
論文口試委員審定書 i
Abstract ii
摘要 iv
Acknowledgments v
Contents vi
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Brief Introduction of Perovskite 1
1.2 Passivation Techniques for Perovskite Solar Cells 3
1.2.1 Scope of Passivation in PSCs 3
1.2.2 Defects in Perovskite Solar Cells 5
1.2.3 Passivation of Bulk Defects 7
1.2.4 Passivation of Surface and Grain Boundary Defects 9
1.3 Passivation Using Amines for Perovskite Solar Cells 13
1.3.1 Introduction of the Effects of Amines on Perovskite 13
1.3.2 Alkyl amines molecules as layer passivation on perovskite 15
1.4 Passivation Materials and Research Approach 18
1.4.1 Selection of passivation materials 18
1.4.2 Research Approach 19
1.5 Motivation and Objectives 21
Chapter 2 Experimental Section 23
2.1 Materials 23
2.2 Instruments 24
2.3. Materials preparation and device fabrication 25
2.3.1 Substrates Cleaning 25
2.3.2 Solution preparation for perovskite solar cell devices 25
2.3.3 Solution preparation for passivation layers 26
2.3.4 Substrates fabrication 27
2.3 Current-voltage measurement of PSCs 28
Chapter 3 Results and Discussion 29
3.1 Identification of an Appropriate Solvent for Passivation of PSC Devices. 29
3.2 Performance of PSCs Devices 31
3.2.1 HTL/PVSK Interface Passivation 32
3.2.2 PVSK/ETL Interface Passivation 34
3.2.3 Passivation on Both HTL/PVSK and PVSK/ETL Interfaces 35
3.3 Characteristics of Passivated Perovskite 37
3.3.1 UV-Vis 37
3.3.2 Contact angles 38
3.3.3 AFM 40
3.3.4 SEM 41
3.3.5 XRD 43
3.3.6 PL and TRPL 43
3.3.7 SCLC 46
3.3.8 EIS 49
Chapter 4 Conclusion 51
Chapter 5 Recommendation 52
References 53
(1)Gorjian, S.; Bousi, E.; Özdemir, Ö. E.; Trommsdorff, M.; Kumar, N. M.; Anand, A.; Kant, K.; Chopra, S. S. Progress and Challenges of Crop Production and Electricity Generation in Agrivoltaic Systems Using Semi-Transparent Photovoltaic Technology. Renewable and Sustainable Energy Reviews 2022, 158, 112126. https://doi.org/10.1016/J.RSER.2022.112126.
-2IEA (2020), Renewables 2020, IEA, Paris https://www.iea.org/reports/renewables-2020, License: CC BY 4.0.
-3Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett 2014, 14 (5), 2584–2590. https://doi.org/10.1021/NL500390F/SUPPL_FILE/NL500390F_SI_001.PDF.
-4Assadi, M. K.; Bakhoda, S.; Saidur, R.; Hanaei, H. Recent Progress in Perovskite Solar Cells. Renewable and Sustainable Energy Reviews 2018, 81, 2812–2822. https://doi.org/10.1016/J.RSER.2017.06.088.
-5Giorgi, G.; Fujisawa, J. I.; Segawa, H.; Yamashita, K. Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. Journal of Physical Chemistry Letters 2013, 4 (24), 4213–4216. https://doi.org/10.1021/JZ4023865/SUPPL_FILE/JZ4023865-LIVESLIDES.HTM.
-6Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J Am Chem Soc 2009, 131 (17), 6050–6051. https://doi.org/10.1021/JA809598R/SUPPL_FILE/JA809598R_SI_001.PDF.
-7Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html (accessed 2023-06-13).
-8Mohd Yusoff, A. R. Bin; Vasilopoulou, M.; Georgiadou, D. G.; Palilis, L. C.; Abate, A.; Nazeeruddin, M. K. Passivation and Process Engineering Approaches of Halide Perovskite Films for High Efficiency and Stability Perovskite Solar Cells. Energy Environ Sci 2021, 14 (5), 2906–2953. https://doi.org/10.1039/D1EE00062D.
-9Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface Passivation of Perovskite Film for Efficient Solar Cells. Nature Photonics 2019 13:7 2019, 13 (7), 460–466. https://doi.org/10.1038/s41566-019-0398-2.
-10Suo, J.; Yang, B.; Hagfeldt, A. Passivation Strategies through Surface Reconstruction toward Highly Efficient and Stable Perovskite Solar Cells on N-i-p Architecture. Energies 2021, Vol. 14, Page 4836 2021, 14 (16), 4836. https://doi.org/10.3390/EN14164836.
-11Gao, F.; Zhao, Y.; Zhang, X.; You, J. Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Adv Energy Mater 2020, 10 (13), 1902650. https://doi.org/10.1002/AENM.201902650.
-12Zhao, P.; Kim, B. J.; Jung, H. S. Passivation in Perovskite Solar Cells: A Review. Mater Today Energy 2018, 7, 267–286. https://doi.org/10.1016/J.MTENER.2018.01.004.
-13Cho, A. N.; Park, N. G. Impact of Interfacial Layers in Perovskite Solar Cells. ChemSusChem 2017, 10 (19), 3687–3704. https://doi.org/10.1002/CSSC.201701095.
-14Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, X. C.; Huang, J. Defect Passivation in Hybrid Perovskite Solar Cells Using Quaternary Ammonium Halide Anions and Cations. Nature Energy 2017 2:7 2017, 2 (7), 1–9. https://doi.org/10.1038/nenergy.2017.102.
-15Wetzelaer, G.-J. A. H.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Ávila, J.; Bolink, H. J.; Wetzelaer, G.-J. A. H.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Ávila, J.; Bolink, H. J. Trap-Assisted Non-Radiative Recombination in Organic–Inorganic Perovskite Solar Cells. Advanced Materials 2015, 27 (11), 1837–1841. https://doi.org/10.1002/ADMA.201405372.
-16Westbrook, R. J. E.; Macdonald, T. J.; Xu, W.; Lanzetta, L.; Marin-Beloqui, J. M.; Clarke, T. M.; Haque, S. A. Lewis Base Passivation Mediates Charge Transfer at Perovskite Heterojunctions. J Am Chem Soc 2021, 143 (31), 12230–12243. https://doi.org/10.1021/JACS.1C05122/ASSET/IMAGES/MEDIUM/JA1C05122_M005.GIF.
-17Zhu, X.; Du, M.; Feng, J.; Wang, H.; Xu, Z.; Wang, L.; Zuo, S.; Wang, C.; Wang, Z.; Zhang, C.; Ren, X.; Priya, S.; Yang, D.; Liu, S. High-Efficiency Perovskite Solar Cells with Imidazolium-Based Ionic Liquid for Surface Passivation and Charge Transport. Angewandte Chemie International Edition 2021, 60 (8), 4238–4244. https://doi.org/10.1002/ANIE.202010987.
-18Wang, J.; Jin, G.; Zhen, Q.; He, C.; Duan, Y. Bulk Passivation and Interfacial Passivation for Perovskite Solar Cells: Which One Is More Effective? Adv Mater Interfaces 2021, 8 (9). https://doi.org/10.1002/ADMI.202002078.
-19Han, S.; Zhang, H.; Wang, R.; He, Q. Research Progress of Absorber Film of Inorganic Perovskite Solar Cells: Fabrication Techniques and Additive Engineering in Defect Passivation. Mater Sci Semicond Process 2021, 127, 105666. https://doi.org/10.1016/J.MSSP.2021.105666.
-20Fowler, W. B. Point Defects. Reference Module in Materials Science and Materials Engineering 2022. https://doi.org/10.1016/B978-0-323-90800-9.00085-8.
-21Robinson, S.; Balaji, V. R. Photonic Crystal-Based Optical Devices for Photonic Intergraded Circuits. Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems 2021, 217–258. https://doi.org/10.1016/B978-0-12-823727-4.00012-2.
-22Aydin, E.; De Bastiani, M.; De Wolf, S. Defect and Contact Passivation for Perovskite Solar Cells. Advanced Materials 2019, 31 (25), 1900428. https://doi.org/10.1002/ADMA.201900428.
-23Ran, C.; Xu, J.; Gao, W.; Huang, C.; Dou, S. Defects in Metal Triiodide Perovskite Materials towards High-Performance Solar Cells: Origin, Impact, Characterization, and Engineering. Chem Soc Rev 2018, 47 (12), 4581–4610. https://doi.org/10.1039/C7CS00868F.
-24Li, W.; Liu, J.; Bai, F. Q.; Zhang, H. X.; Prezhdo, O. V. Hole Trapping by Iodine Interstitial Defects Decreases Free Carrier Losses in Perovskite Solar Cells: A Time-Domain Ab Initio Study. ACS Energy Lett 2017, 2 (6), 1270–1278. https://doi.org/10.1021/ACSENERGYLETT.7B00183/ASSET/IMAGES/LARGE/NZ-2017-001838_0006.JPEG.
-25Mandal, S.; Mukherjee, S.; De, C. K.; Roy, D.; Ghosh, S.; Mandal, P. K. Extent of Shallow/Deep Trap States beyond the Conduction Band Minimum in Defect-Tolerant CsPbBr3 Perovskite Quantum Dot: Control over the Degree of Charge Carrier Recombination. Journal of Physical Chemistry Letters 2020, 11 (5), 1702–1707. https://doi.org/10.1021/ACS.JPCLETT.0C00385/SUPPL_FILE/JZ0C00385_SI_002.MP4.
-26Li, Y.; Wu, H.; Qi, W.; Zhou, X.; Li, J.; Cheng, J.; Zhao, Y.; Li, Y.; Zhang, X. Passivation of Defects in Perovskite Solar Cell: From a Chemistry Point of View. Nano Energy 2020, 77, 105237. https://doi.org/10.1016/J.NANOEN.2020.105237.
-27Bonilla, R. S.; Hoex, B.; Hamer, P.; Wilshaw, P. R. Dielectric Surface Passivation for Silicon Solar Cells: A Review. physica status solidi (a) 2017, 214 (7), 1700293. https://doi.org/10.1002/PSSA.201700293.
-28Lin, C.-H.; Hu, L.; Guan, X.; Kim, J.; Huang, C.-Y.; Huang, J.-K.; Singh, S.; Wu, T.; Lin, C.-H.; Hu, L.; Guan, X.; Kim, J.; Huang, C.-Y.; Huang, J.-K.; Singh, S.; Wu, T. Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces. Advanced Materials 2022, 34 (18), 2108616. https://doi.org/10.1002/ADMA.202108616.
-29Ono, L. K.; Liu, S.; Qi, Y. Reducing Detrimental Defects for High-Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie International Edition 2020, 59 (17), 6676–6698. https://doi.org/10.1002/ANIE.201905521.
-30Eames, C.; Frost, J. M.; Barnes, P. R. F.; O’Regan, B. C.; Walsh, A.; Islam, M. S. Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells. Nature Communications 2015 6:1 2015, 6 (1), 1–8. https://doi.org/10.1038/ncomms8497.
-31Yin, W. J.; Shi, T.; Yan, Y. Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber. Appl Phys Lett 2014, 104 (6), 63903. https://doi.org/10.1063/1.4864778/237158.
-32Zhang, F.; Zhu, K. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv Energy Mater 2020, 10 (13), 1902579. https://doi.org/10.1002/AENM.201902579.
-33Li, C.; Wang, A.; Xie, L.; Deng, X.; Liao, K.; Yang, J. A.; Li, T.; Hao, F. Emerging Alkali Metal Ion (Li + , Na + , K + and Rb + ) Doped Perovskite Films for Efficient Solar Cells: Recent Advances and Prospects. J Mater Chem A Mater 2019, 7 (42), 24150–24163. https://doi.org/10.1039/C9TA08130E.
-34Bu, T.; Liu, X.; Zhou, Y.; Yi, J.; Huang, X.; Luo, L.; Xiao, J.; Ku, Z.; Peng, Y.; Huang, F.; Cheng, Y. B.; Zhong, J. A Novel Quadruple-Cation Absorber for Universal Hysteresis Elimination for High Efficiency and Stable Perovskite Solar Cells. Energy Environ Sci 2017, 10 (12), 2509–2515. https://doi.org/10.1039/C7EE02634J.
-35Li, N.; Tao, S.; Chen, Y.; Niu, X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z.; Xu, Z.; Zheng, G.; Wang, L.; Zhang, Y.; Li, L.; Liu, H.; Lun, Y.; Hong, J.; Wang, X.; Liu, Y.; Xie, H.; Gao, Y.; Bai, Y.; Yang, S.; Brocks, G.; Chen, Q.; Zhou, H. Cation and Anion Immobilization through Chemical Bonding Enhancement with Fluorides for Stable Halide Perovskite Solar Cells. Nat Energy 2019, 4 (5), 408–415. https://doi.org/10.1038/S41560-019-0382-6.
-36Chang, B.; Li, B.; Wang, Z.; Li, H.; Wang, L.; Pan, L.; Li, Z.; Yin, L.; Chang, B.; Li, B.; Wang, Z.; Li, H.; Wang, L.; Pan, L.; Li, Z.; Yin, L. Efficient Bulk Defect Suppression Strategy in FASnI3 Perovskite for Photovoltaic Performance Enhancement. Adv Funct Mater 2022, 32 (12), 2107710. https://doi.org/10.1002/ADFM.202107710.
-37Castro-Méndez, A. F.; Hidalgo, J.; Correa-Baena, J. P. The Role of Grain Boundaries in Perovskite Solar Cells. Adv Energy Mater 2019, 9 (38), 1901489. https://doi.org/10.1002/AENM.201901489.
-38Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J. Imperfections and Their Passivation in Halide Perovskite Solar Cells. Chem Soc Rev 2019, 48 (14), 3842–3867. https://doi.org/10.1039/C8CS00853A.
-39Fu, C.; Gu, Z.; Tang, Y.; Xiao, Q.; Zhang, S.; Zhang, Y.; Song, Y. From Structural Design to Functional Construction: Amine Molecules in High-Performance Formamidinium-Based Perovskite Solar Cells. Angewandte Chemie 2022, 134 (19), e202117067. https://doi.org/10.1002/ANGE.202117067.
-40Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J.; Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials 2017, 29 (46), 1703852. https://doi.org/10.1002/ADMA.201703852.
-41Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; Kanjanaboos, P.; Sun, J. P.; Lan, X.; Quan, L. N.; Kim, D. H.; Hill, I. G.; Maksymovych, P.; Sargent, E. H. Perovskite–Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes. Nature Communications 2015 6:1 2015, 6 (1), 1–8. https://doi.org/10.1038/ncomms8081.
-42Wang, R.; Xue, J.; Meng, L.; Lee, J. W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z. K.; Duan, Y.; Yang, J. L.; Tan, S.; Yuan, Y.; Huang, Y.; Yang, Y. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule 2019, 3 (6), 1464–1477. https://doi.org/10.1016/J.JOULE.2019.04.005.
-43Jiang, M.; Yuan, J.; Cao, G.; Tian, J. In-Situ Fabrication of P3HT Passivating Layer with Hole Extraction Ability for Enhanced Performance of Perovskite Solar Cell. Chemical Engineering Journal 2020, 402, 126152. https://doi.org/10.1016/J.CEJ.2020.126152.
-44Cho, Y.; Soufiani, A. M.; Yun, J. S.; Kim, J.; Lee, D. S.; Seidel, J.; Deng, X.; Green, M. A.; Huang, S.; Ho-Baillie, A. W. Y. Mixed 3D–2D Passivation Treatment for Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells for Higher Efficiency and Better Stability. Adv Energy Mater 2018, 8 (20), 1703392. https://doi.org/10.1002/AENM.201703392.
-45Feng, W.; Zhang, C.; Zhong, J. X.; Ding, L.; Wu, W. Q. Correlating Alkyl Chain Length with Defect Passivation Efficacy in Perovskite Solar Cells. Chemical Communications 2020, 56 (37), 5006–5009. https://doi.org/10.1039/D0CC01197E.
-46Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N.; Zhou, C.; Lin, Y.; Xue, D. J.; Chen, B.; Johnston, A. K.; Wei, N.; Hedhili, M. N.; Wei, M.; Alsalloum, A. Y.; Maity, P.; Turedi, B.; Yang, C.; Baran, D.; Anthopoulos, T. D.; Han, Y.; Lu, Z. H.; Mohammed, O. F.; Gao, F.; Sargent, E. H.; Bakr, O. M. Managing Grains and Interfaces via Ligand Anchoring Enables 22.3%-Efficiency Inverted Perovskite Solar Cells. Nature Energy 2020 5:2 2020, 5 (2), 131–140. https://doi.org/10.1038/s41560-019-0538-4.
-47Arafat Mahmud, M.; Duong, T.; Peng, J.; Wu, Y.; Shen, H.; Walter, D.; Nguyen, H. T.; Mozaffari, N.; Dansoa Tabi, G.; Catchpole, K. R.; Weber, K. J.; White, T. P.; Mahmud, M. A.; Duong, T.; Peng, J.; Wu, Y.; Shen, H.; Walter, D.; Nguyen, H. T.; Mozaffari, N.; Tabi, G. D.; Catchpole, K. R.; Weber, K. J.; White, T. P. Origin of Efficiency and Stability Enhancement in High-Performing Mixed Dimensional 2D-3D Perovskite Solar Cells: A Review. Adv Funct Mater 2022, 32 (3), 2009164. https://doi.org/10.1002/ADFM.202009164.
-48Ball, J. M.; Petrozza, A. Defects in Perovskite-Halides and Their Effects in Solar Cells. Nature Energy 2016 1:11 2016, 1 (11), 1–13. https://doi.org/10.1038/nenergy.2016.149.
-49Yuan, Y.; Huang, J. Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. Acc Chem Res 2016, 49 (2), 286–293. https://doi.org/10.1021/ACS.ACCOUNTS.5B00420/ASSET/IMAGES/LARGE/AR-2015-00420D_0002.JPEG.
-50Krishna, A.; Gottis, S.; Nazeeruddin, M. K.; Sauvage, F. Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells? Adv Funct Mater 2019, 29 (8), 1806482. https://doi.org/10.1002/ADFM.201806482.
-51Kim, E. B.; Akhtar, M. S.; Shin, H. S.; Ameen, S.; Nazeeruddin, M. K. A Review on Two-Dimensional (2D) and 2D-3D Multidimensional Perovskite Solar Cells: Perovskites Structures, Stability, and Photovoltaic Performances. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2021, 48, 100405. https://doi.org/10.1016/J.JPHOTOCHEMREV.2021.100405.
-52La-Placa, M. G.; Gil-Escrig, L.; Guo, D.; Palazon, F.; Savenije, T. J.; Sessolo, M.; Bolink, H. J. Vacuum-Deposited 2D/3D Perovskite Heterojunctions. ACS Energy Lett 2019, 4 (12), 2893–2901. https://doi.org/10.1021/ACSENERGYLETT.9B02224/ASSET/IMAGES/MEDIUM/NZ9B02224_M001.GIF.
-53Safdari, M.; Svensson, P. H.; Hoang, M. T.; Oh, I.; Kloo, L.; Gardner, J. M. Layered 2D Alkyldiammonium Lead Iodide Perovskites: Synthesis, Characterization, and Use in Solar Cells. J Mater Chem A Mater 2016, 4 (40), 15638–15646. https://doi.org/10.1039/C6TA05055G.
-54Wu, W. Q.; Yang, Z.; Rudd, P. N.; Shao, Y.; Dai, X.; Wei, H.; Zhao, J.; Fang, Y.; Wang, Q.; Liu, Y.; Deng, Y.; Xiao, X.; Feng, Y.; Huang, J. Bilateral Alkylamine for Suppressing Charge Recombination and Improving Stability in Blade-Coated Perovskite Solar Cells. Sci Adv 2019, 5 (3). https://doi.org/10.1126/SCIADV.AAV8925/SUPPL_FILE/AAV8925_SM.PDF.
-55Yoo, J. J.; Wieghold, S.; Sponseller, M. C.; Chua, M. R.; Bertram, S. N.; Hartono, N. T. P.; Tresback, J. S.; Hansen, E. C.; Correa-Baena, J. P.; Bulović, V.; Buonassisi, T.; Shin, S. S.; Bawendi, M. G. An Interface Stabilized Perovskite Solar Cell with High Stabilized Efficiency and Low Voltage Loss. Energy Environ Sci 2019, 12 (7), 2192–2199. https://doi.org/10.1039/C9EE00751B.
-56Mahmud, M. A.; Duong, T.; Yin, Y.; Pham, H. T.; Walter, D.; Peng, J.; Wu, Y.; Li, L.; Shen, H.; Wu, N.; Mozaffari, N.; Andersson, G.; Catchpole, K. R.; Weber, K. J.; White, T. P. Double-Sided Surface Passivation of 3D Perovskite Film for High-Efficiency Mixed-Dimensional Perovskite Solar Cells. Adv Funct Mater 2020, 30 (7), 1907962. https://doi.org/10.1002/ADFM.201907962.
-57Wu, S.; Zhang, J.; Li, Z.; Kong So, S.; Zhu, Z.; Jen, A.-Y.; Liu, D.; Qin, M.; Hang Cheung, S.; Lu, X.; Lei, D. Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells. 2020. https://doi.org/10.1016/j.joule.2020.04.001.
-58Duong, T.; Pham, H.; Yin, Y.; Peng, J.; Mahmud, M. A.; Wu, Y. L.; Shen, H.; Zheng, J.; Tran-Phu, T.; Lu, T.; Li, L.; Kumar, A.; Andersson, G. G.; Ho-Baillie, A.; Liu, Y.; White, T.; Weber, K.; Catchpole, K. Efficient and Stable Wide Bandgap Perovskite Solar Cells through Surface Passivation with Long Alkyl Chain Organic Cations. J Mater Chem A Mater 2021, 9 (34), 18454–18465. https://doi.org/10.1039/D1TA05699A.
-59n-Hexylammonium bromide 7334-95-4. https://www.sigmaaldrich.com/TW/en/product/aldrich/912611 (accessed 2023-07-08).
-60Hexane-1,6-diammonium bromide 24731-81-5. https://www.sigmaaldrich.com/TW/en/product/aldrich/913111 (accessed 2023-07-08).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊