跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李文淵
研究生(外文):Wen-Yuan Li
論文名稱:銅鎳合金的熱、自旋、與電荷轉換研究
論文名稱(外文):Study of Heat, Spin, and Charge Conversion in Ni80Cu20 Alloy
指導教授:黃斯衍曲丹茹
指導教授(外文):Ssu-Yen HuangDanru Qu
口試委員:林昭吟
口試委員(外文):Jauyn Grace Lin
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:85
中文關鍵詞:自旋流自旋賽貝克效應自旋霍爾磁電阻自旋能斯特效應
外文關鍵詞:spin currentspin Seebeck effectspin Hall magnetoresistancespin Nernst effect
DOI:10.6342/NTU202302600
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在凝聚態物質研究領域中,通過自旋-軌道耦合(spin-orbit coupling)引起熱量、自旋和電荷明顯的相互轉換的材料引起了相當大的關注。特別感興趣的是為自旋電子學應用生成、檢測和操作自旋極化(spin polarized current)或純自旋電流(pure spin current)現象。通過操縱電子的自旋自由度,可以設計具有增強功能的自旋電子學器件。
已經研究了許多材料用於產生自旋電流,例如半導體、過渡金屬、拓撲半金屬等。對於過渡金屬而言,自旋霍爾角度(θ_SH, spin Hall angle)的數值由能帶結構決定,並且是特定金屬固有的。通常,過渡重金屬如鎢(W)和鉑(Pt)由於強自旋-軌道耦合而具有較大的電荷到自旋轉換。
在先前的研究中,探索了鎳銅(NiCu)合金與釔鐵石榴石(Y3Fe5O12,YIG)雙層結構中的自旋賽貝克效應(spin Seebeck effect),發現在NixCu1-x合金中存在顯著自旋電荷轉換的增強現象,其歸因於自旋漲落(spin fluctuation)。值得注意的是,Ni80Cu20合金在順磁(paramagnetic)態下表現出極大的自旋霍爾角度,約為θ_SH=46%,比鉑高出4.5倍,且其居裡溫度(Curie temperature)約為300 K。通過減小薄膜厚度,由於有限尺寸效應(finite size effect),Ni80Cu20薄膜從鐵磁(ferromagnetic)態過渡到順磁態。
在先前研究的基礎上,我們進一步研究了Ni80Cu20合金在鐵磁態內熱、自旋和電荷的相互轉換。本研究特別探索了自旋霍爾磁阻(spin Hall magnetoresistance)和自旋能斯特熱電(spin Nernst induced thermal power)現象。此外,還對在YIG基板上得到Pt與Ni80Cu20合金的結果進行了比較分析,以探討不同材料的熱自旋轉換效率與影響。
Materials that exhibit a pronounced inter-conversion of heat, spin, and charge through spin-orbit coupling have garnered considerable attention in the field of condensed matter research. Of particular interest is the generation, detection, and manipulation of spin polarized or pure spin current phenomenon for spintronics applications. By manipulating the spin degree of freedom of electrons, spintronic devices can be designed with enhanced functionality.
Many materials have been explored to generate spin current, such as semiconductors, transition metals, topological semimetals, and more. For the transition metals, the values of spin Hall angles (θ_SH ) are dictated by the band structures and inherent to the specific metals. Usually, transition heavy metal such as W and Pt is known to have large charge to spin conversion due to strong spin-orbit coupling (SOC).
In previous study, the spin Seebeck effect in a NixCu1-x/YIG structure is explored, leading to the discovery of a significant enhancement in spin-to-charge conversion within the NixCu1-x alloy, attributed to spin fluctuations. Notably, the Ni80Cu20 alloy, characterized by a Curie temperature of approximately 300 K, exhibits an extraordinary large spin Hall angle of around θ_SH=46% in the paramagnetic state, surpassing Pt by 4.5 times. Through the reduction of film thickness, the Ni80Cu20 film undergoes a transition from the ferromagnetic (FM) state to the paramagnetic (PM) state due to the finite size effect.
Building upon the previous findings, we study further the inter-conversion of heat, spin, and charge within the Ni80Cu20 alloy in the FM state. This investigation specifically explores the spin Hall magnetoresistance (SMR) and spin Nernst induced thermal power (SNITP). Moreover, a comparative analysis is conducted between the results obtained from Pt and Ni80Cu20 alloys on YIG substrates to explore the thermal spin conversion efficiency and influence on different materials.
Abstract iii
1 Introduction 1
2 Background 9
2.1 Basic Concepts 9
2.1.1 Spin Current Generation 9
2.1.2 Spin Current Detection 13
2.2 The Ni80Cu20 alloy 16
2.3 Spin Transport Theory Driven by JC and T 18
2.3.1 Theory of Spin Hall Magnetoresistance 18
2.3.2 Theory of Spin Nernst Induced Thermal Power (SNITP) 23
2.4 Phenomena in Magnetic Material 26
2.4.1 Magnetism 27
2.4.2 Anisotropic Magnetoresistance (AMR) 36
2.4.3 Anomalous Hall Effect (AHE) 37
2.4.4 Magnetization-Dependent Thermal Voltage 40
2.4.5 Anomalous Nernst Effect (ANE) 41
3 Method 43
3.1 Sample Preparation 44
3.1.1 Substrate Cleaning 44
3.1.2 Photo-lithography 45
3.1.3 Magnetron Sputtering Deposition 48
3.1.4 X-ray Reflection (XRR) 50
3.2 Physical Properties Measurement 51
3.2.1 X-ray Diffraction (XRD) 51
3.2.2 Vibrating Sample Magnetmeter (VSM) 52
3.2.3 Electrical Four-point Probe Measurement 54
3.2.4 Thermoelectric Measurement 56
4 Result and Discussion 59
4.1 Introduction 59
4.2 Spin Hall Magnetoresistance 60
4.2.1 Ni/Si 61
4.2.2 Pt/YIG 63
4.2.3 NiCu/YIG 65
4.3 Spin Seebeck Effect Measurement 67
4.3.1 NiCu/YIG 68
4.4 Spin Nernst Effect Measurement 70
4.4.1 Experiment Setup 70
4.4.2 Pt/YIG 72
4.4.3 NiCu/YIG 76
5 Summary 79
References 81
D.D. Tang and C.F. Pai. Magnetic Memory Technology: Spin-transfer Torque MRAM and Beyond. Wiley, 2021.
Sabpreet Bhatti, Rachid Sbiaa, Atsufumi Hirohata, Hideo Ohno, Shunsuke Fukami, and S.N. Piramanayagam. Spintronics based random access memory: a review. Materials Today, 20(9):530–548, November 2017.
M.I. Dyakonov and V.I. Perel. Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35(6):459–460, July 1971.
T. Jungwirth, Qian Niu, and A. H. MacDonald. Anomalous hall effect in ferromagnetic semiconductors. Phys. Rev. Lett., 88:207208, May 2002.
Yan Sun, Yang Zhang, Claudia Felser, and Binghai Yan. Strong intrinsic spin hall effect in the taas family of weyl semimetals. Phys. Rev. Lett., 117:146403, Sep 2016.
Ke Tang, Yong-Chang Lau, Kenji Nawa, Zhenchao Wen, Qingyi Xiang, Hiroaki Sukegawa, Takeshi Seki, Yoshio Miura, Koki Takanashi, and Seiji Mitani. Spin hall effect in a spin-1 chiral semimetal. Phys. Rev. Res., 3:033101, Jul 2021.
Ken ichi Uchida, Hiroto Adachi, Takeru Ota, Hiroyasu Nakayama, Sadamichi Maekawa, and Eiji Saitoh. Observation of longitudinal spin-seebeck effect in magnetic insulators. Applied Physics Letters, 97(17):172505, October 2010.
K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh. Spin seebeck insulator. Nature Materials, 9(11):894–897, September 2010.
Víctor H. Ortiz, Michael J. Gomez, Yawen Liu, Mohammed Aldosary, Jing Shi, and Richard B. Wilson. Ultrafast measurements of the interfacial spin seebeck effect in au and rare-earth iron-garnet bilayers. Phys. Rev. Mater., 5:074401, Jul 2021.
Peng Sheng, Yuya Sakuraba, Yong-Chang Lau, Saburo Takahashi, Seiji Mitani, and Masamitsu Hayashi. The spin nernst effect in tungsten. Science Advances, 3(11):e1701503, 2017.
S. Meyer, Y.-T. Chen, S. Wimmer, M. Althammer, T. Wimmer, R. Schlitz, S. Geprägs, H. Huebl, D. Ködderitzsch, H. Ebert, G. E. W. Bauer, R. Gross, and S. T. B. Goennenwein. Observation of the spin nernst effect. Nature Materials, 16(10):977–981, Oct 2017.
Po-Hsun Wu, Danru Qu, Yen-Chang Tu, Yin-Ze Lin, C. L. Chien, and Ssu-Yen Huang. Exploiting spin fluctuations for enhanced pure spin current. Phys. Rev. Lett., 128:227203, Jun 2022.
S. M. Rezende, R. L. Rodríguez-Suárez, R. O. Cunha, A. R. Rodrigues, F. L. A. Machado, G. A. Fonseca Guerra, J. C. Lopez Ortiz, and A. Azevedo. Magnon spin-current theory for the longitudinal spin-seebeck effect. Phys. Rev. B, 89:014416, Jan 2014.
Yaroslav Tserkovnyak, Arne Brataas, and Gerrit E. W. Bauer. Enhanced gilbert damping in thin ferromagnetic films. Phys. Rev. Lett., 88:117601, Feb 2002.
J. E. Hirsch. Spin hall effect. Phys. Rev. Lett., 83:1834–1837, Aug 1999.
Jairo Sinova, Sergio O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth. Spin hall effects. Rev. Mod. Phys., 87:1213–1260, Oct 2015.
Dong-Jun Kim, Chul-Yeon Jeon, Jong-Guk Choi, Jae Wook Lee, Srivathsava Surabhi, Jong-Ryul Jeong, Kyung-Jin Lee, and Byong-Guk Park. Observation of transverse spin nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers. Nature Communications, 8(1), November 2017.
T. Wimmer, J. Gückelhorn, S. Wimmer, S. Mankovsky, H. Ebert, M. Opel, S. Geprägs, R. Gross, H. Huebl, and M. Althammer. Low-temperature suppression of the spin nernst angle in pt. Phys. Rev. B, 104:L140404, Oct 2021.
E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara. Conversion of spin current into charge current at room temperature: Inverse spin-hall effect. Applied Physics Letters, 88(18):182509, May 2006.
T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa. Roomtemperature reversible spin hall effect. Phys. Rev. Lett., 98:156601, Apr 2007.
D. Qu, S. Y. Huang, B. F. Miao, S. X. Huang, and C. L. Chien. Selfconsistent determination of spin hall angles in selected 5d metals by thermal spin injection. Phys. Rev. B, 89:140407, Apr 2014.
Yan-Ting Chen, Saburo Takahashi, Hiroyasu Nakayama, Matthias Althammer, Sebastian T. B. Goennenwein, Eiji Saitoh, and Gerrit E. W. Bauer. Theory of spin hall magnetoresistance. Phys. Rev. B, 87:144411, Apr 2013.
H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Goennenwein, and E. Saitoh. Spin hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett., 110:206601, May 2013.
Tomohiro Taniguchi. Phenomenological spin transport theory driven by anomalous nernst effect. Journal of the Physical Society of Japan, 85(7):074705, July 2016.
Chi Sun, S M Rafi-Ul-Islam, Hyunsoo Yang, and Mansoor B. A. Jalil. Spin nernst and anomalous nernst effects and their signature outputs in ferromagnet/ nonmagnet heterostructures. Phys. Rev. B, 102:214419, Dec 2020.
Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong. Anomalous hall effect. Rev. Mod. Phys., 82:1539–1592, May 2010.
Po-Hsun Wu, Ying-Ting Chan, Tzu-Chao Hung, Yi-Hui Zhang, Danru Qu, Tien-Ming Chuang, C. L. Chien, and Ssu-Yen Huang. Effect of demagnetization factors on spin current transport. Phys. Rev. B, 102:174426, Nov 2020.
Sibylle Meyer, Matthias Althammer, Stephan Geprägs, Matthias Opel, Rudolf Gross, and Sebastian T. B. Goennenwein. Temperature dependent spin transport properties of platinum inferred from spin hall magnetoresistance measurements. Applied Physics Letters, 104(24):242411, 2014.
Amelia Carolina Sparavigna. Thermal Conductivity of the Crystalline Silicon. Philica, page 1143, 2017.
D. R. Ratkovski, L. Balicas, A. Bangura, F. L. A. Machado, and S. M. Rezende. Thermal transport in yttrium iron garnet at very high magnetic fields. Phys. Rev. B, 101:174442, May 2020.
William M. Haynes, editor. CRC Handbook of Chemistry and Physics. CRC Press, June 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top