|
[1] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava (2010). Superconductivity in CuxBi2Se3 and its Implications for Pairing in the Undoped Topological Insulator. Phys. Rev. Lett. 104, 057001. [2] M. Kriener, Kouji Segawa, Zhi Ren, Satoshi Sasaki, and Yoichi Ando (2011). Bulk Superconducting Phase with a Full Energy Gap in the Doped Topological Insulator CuxBi2Se3. Phys. Rev. Lett. 106, 127004. [3] Satoshi Sasaki, M. Kriener, Kouji Segawa, Keiji Yada, Yukio Tanaka, Masatoshi Sato, and Yoichi Ando (2011). Topological Superconductivity in CuxBi2Se3. Phys. Rev. Lett. 107, 217001. [4] Niv Levy, Tong Zhang, Jeonghoon Ha, Fred Sharifi, A. Alec Talin, Young Kuk, and Joseph A. Stroscio (2013). Experimental Evidence for s-Wave Pairing Symmetry in Superconducting CuxBi2Se3 Single Crystals Using a Scanning Tunneling Microscope. Phys. Rev. Lett. 110, 117001. [5]Zhongheng Liu, Xiong Yao, Jifeng Shao, Ming Zuo, Li Pi, Shun Tan, Changjin Zhang and Yuheng Zhang (2015). Superconductivity with Topological Surface State in SrxBi2Se3. J. Am. Chem. Soc. 2015, 137, 33, 10512–10515. [6] Shruti, V. K. Maurya, P. Neha, P. Srivastava, and S. Patnaik (2015). Superconductivity by Sr intercalation in the layered topological insulator Bi2Se3. Phys. Rev. B 92, 020506(R). [7]B. J. Lawson, Paul Corbae, Gang Li, Fan Yu, Tomoya Asaba, Colin Tinsman, Y. Qiu, J. E. Medvedeva, Y. S. Hor, and Lu Li (2016). Multiple Fermi surfaces in superconducting Nb-doped Bi2Se3. Phys. Rev. B 94, 041114(R). [8] M. P. Smylie, H. Claus, U. Welp, W.-K. Kwok, Y. Qiu, Y. S. Hor, and A. Snezhko (2016). Evidence of nodes in the order parameter of the superconducting doped topological insulator NbxBi2Se3 via penetration depth measurements. Phys. Rev. B 94, 180510(R). [9] Mei-Xiao Wang,Canhua Liu,Jin-Peng Xu,Fang Yang,Lin Miao,Meng-Yu Yao,C. L. Gao,Chenyi Shen,Xucun Ma,X. Chen,Zhu-An Xu,Ying Liu,Shou-Cheng Zhang,Dong Qian,Jin-Feng Jia,Qi-Kun Xu (2012). The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films. Science 336 52. [10] Jin-Peng Xu, Canhua Liu, Mei-Xiao Wang, Jianfeng Ge, Zhi-Long Liu, Xiaojun Yang, Yan Chen, Ying Liu, Zhu-An Xu, Chun-Lei Gao, Dong Qian, Fu-Chun Zhang, and Jin-Feng Jia (2014). Artificial Topological Superconductor by the Proximity Effect. Phys. Rev. Lett. 112, 217001. [11] Jin-Peng Xu, Mei-Xiao Wang, Zhi Long Liu, Jian-Feng Ge, Xiaojun Yang, Canhua Liu, Zhu An Xu, Dandan Guan, Chun Lei Gao, Dong Qian, Ying Liu, Qiang-Hua Wang, Fu-Chun Zhang, Qi-Kun Xue, and Jin-Feng Jia (2015). Experimental Detection of a Majorana Mode in the core of a Magnetic Vortex inside a Topological Insulator-Superconductor Bi2Te3/NbSe2 Heterostructure. Phys. Rev. Lett. 114, 017001. [12] Hao-Hua Sun, Kai-Wen Zhang, Lun-Hui Hu, Chuang Li, Guan-Yong Wang, Hai-Yang Ma, Zhu-An Xu, Chun-Lei Gao, Dan-Dan Guan, Yao-Yi Li, Canhua Liu, Dong Qian, Yi Zhou, Liang Fu, Shao-Chun Li, Fu-Chun Zhang, and Jin-Feng Jia (2016). Majorana Zero Mode Detected with Spin Selective Andreev Reflection in the Vortex of a Topological Superconductor. Phys. Rev. Lett. 116, 257003. [13]Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q (2010). Pressure-induced superconductivity in topological parent compound Bi2Te3. Proc. Natl. Acad. Sci. U.S.A. 108 24. [14] Chao Zhang, Liling Sun, Zhaoyu Chen, Xingjiang Zhou, Qi Wu, Wei Yi, Jing Guo, Xiaoli Dong, and Zhongxian Zhao (2011). Phase diagram of a pressure-induced superconducting state and its relation to the Hall coefficient of Bi2Te3 single crystals. Phys. Rev. B 83, 140504(R). [15] Kevin Kirshenbaum, P. S. Syers, A. P. Hope, N. P. Butch, J. R. Jeffries, S. T. Weir, J. J. Hamlin, M. B. Maple, Y. K. Vohra, and J. Paglione (2013). Pressure-Induced Unconventional Superconducting Phase in the Topological Insulator Bi2Se3. Phys. Rev. Lett. 111, 087001. [16] J. Zhu, J. L. Zhang, P. P. Kong, S. J. Zhang, X. H. Yu, J. L. Zhu, Q. Q. Liu, X. Li, R. C. Yu, R. Ahuja, W. G. Yang, G. Y. Shen, H. K. Mao, H. M. Weng, X. Dai, Z. Fang, Y. S. Zhao and C. Q. Jin (2013). Superconductivity in Topological Insulator Sb2Te3 Induced by Pressure. 2013 Sci. Rep. 3 2016. [17]Ettore Majorana (1937). Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento 14 171. [18]Gregory Moore and Nicholas Read (1991). Nonabelions in the fractional quantum hall effect. Nuclear Physics B360 (1991) 362-396. [19] A.Yu.Kitaev (2003). Fault-tolerant quantum computation by anyons. Annals of Physics 303 (2003) 2–3. [20] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma (2008). Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083. [21] Frank Wilczek (2009). Majorana returns. Nature Physics volume 5, 614–618. [22] Jason Alicea (2012). New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75 076501. [23] C.W.J. Beenakker (2013). Search for Majorana Fermions in Superconductors. Annu. Rev. Condens. Matter Phys. 2013. 4:113–36. [24] David R. Lide (2004). CRC Handbook of Chemistry and Physics, 85th Edition. CRC Press. [25] C. Nico, T. Monteiro, M.P.F. Graça (2016). Niobium oxides and niobates physical properties: Review and prospects. Department of Physics & I3N, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. [26] Xiao-Liang Qi and Shou-Cheng Zhang (2011). Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057. [27] M. Z. Hasan and C. L. Kane (2010). Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045. [28] Liang Fu and C. L. Kane (2008). Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Phys. Rev. Lett. 100, 096407. [29]Onnes, H.K. (1911). The Resistance of Pure Mercury at Helium Temperatures. Commun. Phys. Lab. Univ. Leiden, 12, 1. [30]Meissner, W. and R. Ochsenfeld (1933). Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften , 21. [31]J. Bardeen, L. N. Cooper, and J. R. Schrieffer (1957). Microscopic Theory of Superconductivity. Phys. Rev. 106, 162. [32]J. G. Bednorz and K. A. Müller (1986). Possible high Tc superconductivity in the Ba−La−Cu−O system. Zeitschrift für Physik B Condensed Matter volume 64, pages189–193. [33]M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908. [34]Hiroshi Maeda, Yoshiaki Tanaka, Masao Fukutomi and Toshihisa Asano (1988). A New High-Tc Oxide Superconductor without a Rare Earth Element. Jpn. J. Appl. Phys. 27 L209. [35]Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, Hiroshi Yanagi, Toshio Kamiya, and Hideo Hosono (2006). Iron-Based Layered Superconductor: LaOFeP. J. Am. Chem. Soc. 2006, 128, 31, 10012–10013. [36] Poole. C.P. (2014). Phenomenon of superconductivity, in Superconductivity(Third Edition). Elsevier: London. p. 33-85. [37] H.A.BorgesM.A.Continentino (1991). Pressure study of the paraconductivity of high Tc superconductors. Volume 80, Issue 3. [38] C. Kittel. (2005). Introduction to Solid state Physics, (8th ed.). John Wiley & Sons, Inc. [39] Gorter, C.J. and H. Casimir (1934). On supraconductivity I. Physica. 1(1): p.306-320. [40] John Bardeen (1958). Two-Fluid Model of Superconductivity. Phys. Rev. Lett. 1, 399. [41] Gorter, C.J. (1955). Chapter I The Two Fluid Model for Superconductors and Helium II, in Progress in Low Temperature Physics. Elsevier. p. 1-16. [42] F. London and H. London (1935). The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A -Mathematical and Physical Sciences, 1935. 149(866): p. 71-88. [43] Michael Tinkham (2004). Introduction to Superconductivity: Second Edition. Mineola, N.Y: Dover Publications. [44] L. Landau (1930). Diamagnetismus der Metalle. Zeitschrift für Physik. [45] Y. B. Kim, C. F. Hempstead, and A. R. Strnad (1963). Flux Creep in Hard Superconductors. Phys. Rev. 131, 2486. [46] Seunghun Lee, Xiaohang Zhang, Yangang Liang, Sean W. Fackler, Jie Yong, Xiangfeng Wang, Johnpierre Paglione, Richard L. Greene, and Ichiro Takeuchi (2016). Observation of the Superconducting Proximity Effect in the Surface State of SmB6 Thin Films. Phys. Rev. X 6, 031031. [47] I.L.Landau and I.A.Parshin (1994). Increase in the superconducting transition temperature of thin films as a result of a normal metal deposition on their surface. Physica B: Condensed Matter, Volumes 194–196. [48] Sasaki, S., Kriener, M., Segawa, K., Yada, K., Tanaka, Y., Sato, M., & Ando, Y. (2011). Topological superconductivity in CuxBi2Se3. Physical review letters, 107(21), 217001. [49] Mackenzie, A. P., & Maeno, Y. (2000). P-wave superconductivity. Physica B: Condensed Matter, 280(1-4), 148-153. [50] Neelesh Kumar Jain, Mayur Sawant, Sagar Hanmant Nikam, Suyog Jhavar (2016). Metal Deposition: Plasma-Based Processes. Taylor and Francis, New York (USA). [51] William Henry Bragg and William Lawrence Bragg (1913). The reflection of X-rays by crystals. Royal Society. [52] Uwe Holzwarth and Neil Gibson (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology volume 6, p534. [53] J. T. Maniscalco†, D. Gonnella, D. L. Hall, M. Liepe, and E. Smith. (2005). Hc2 Measurements of Superconductors. Newport New, USA. [54] Jaskaran Singh, Anooja Jayaraj, D. Srivastava, S. Gayen, A. Thamizhavel, and Yogesh Singh (2018) Possible multigap type-I superconductivity in the layered boride RuB2. Phys. Rev. B 97, 054506. [55] Y. Bugoslavsky et al. (2001). Enhancement of Hc2 in MgB2 by Carbon Doping. Physical Review Letters. [56] S. K. Mishra et al. (2008). Effect of Transition Metal Doping on Hc2 of Nb3Sn. Journal of Applied Physics. [57] Qing Lin He, Hongchao Liu, Mingquan He, Ying Hoi Lai, Hongtao He, Gan Wang, Kam Tuen Law, Rolf Lortz, Jiannong Wang & Iam Keong Sou (2014). Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nature Communications volume 5, Article number: 4247. [58] Hong-Chao Liu, Hui Li1, Qing Lin He, Iam Keong Sou, Swee K.Goh, JiannongWang (2016). Robust two-dimensional superconductivity and vortex system in Bi2Te3/FeTe heterostructures. Scientific Reports. [59] Dong Shen, Chia Nung Kuo, Tien Wei Yang, I Nan Chen, Chin Shan Lue, Li Min Wang. (2020). Two-dimensional superconductivity and magnetotransport from topological surface states in AuSn4 semimetal. Communications Materials volume 1, Article number: 56. [60] M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur (1989). Theory of collective flux creep. Phys. Rev. Lett. 63, 2303. [61] Chithra H. Sharma, Ananthu P. Surendran, Sangeeth S. Varma & Madhu Thalakulam (2018). 2D superconductivity and vortex dynamics in 1T-MoS2. Communications Physics volume 1, Article number: 90. [62] Zhen Liu, Cheng Wang, Chuan Xu, Meng Hao, Hui-Ming Cheng, Wencai Ren and Ning Kang (2019). Effects of domain structures on vortex state of two-dimensional superconducting Mo2C crystals. 2D Mater. 6 021005. [63] B. I. Halperin & David R. Nelson (1979). Resistive transition in superconducting films. Journal of Low Temperature Physics volume 36, pages599–616. [64] Lei, H., Hu, R., Choi, E. S., & Petrovic, C. (2010). Thermally activated energy and flux-flow Hall effect of Fe1+ y(Te1+ xSx)z. Physical Review B, 82(13), 134525.
|