跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王家成
研究生(外文):Jia-Cheng Wang
論文名稱:鈮/碲化銻雙層薄膜之電磁傳輸特性研究
論文名稱(外文):Electromagnetic Transport Properties of Nb/Sb2Te3 Bilayer Films
指導教授:王立民王立民引用關係
指導教授(外文):Li-Min Wang
口試委員:郭建成陳昭翰
口試委員(外文):Chien-Cheng KuoJau-Han Chen
口試日期:2023-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:103
中文關鍵詞:碲化銻雙層膜鄰近效應拓撲超導二維超導
外文關鍵詞:NiobiumAntimony TellurideBilayer filmProximity effectTopological superconductivityTwo-dimensional superconductivity
DOI:10.6342/NTU202301403
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
近年來,Majorana費米子在量子存儲、量子計算等領域的前景極大程度吸引了物理學家對它的廣泛研究。而作為Majorana費米子研究的平台,拓撲超導體也成為許多實驗的研究重點。本論文主要討論在傳統超導材料鈮(Nb)薄膜上濺鍍拓撲材料碲化銻(Sb2Te3),分析該雙層膜系統之電磁傳輸特性與二維材料特性。
首先,本論文著重於以磁控濺鍍(Magnetron Sputtering)的方式在Si(100)基板上製備超導臨界溫度(T_c)為9.1 K的Nb薄膜樣品。經過多次調整參數後確認最佳基板溫度為540 ℃ ,並且增加薄膜厚度至120 nm以上可得到高T_c的Nb薄膜樣品。另外,發現在製程中淬火(Quenching)對Nb薄膜品質的提升優於退火(Annealing),有助於提高系統T_c。
進一步,在固定Nb薄膜製程參數後,在其上方濺鍍20 nm和50 nm厚度的Sb2Te3薄膜,以探討其對整個系統的影響。由於鄰近效應的影響,各組樣品的T_c下降了0.03~3.75 K,上臨界磁場(H_c2)增加了284~14958 Oe。除了以上對系統的研究之外,本論文還通過系統釘扎能U對外部磁場H之間的關係以及測量系統BKT相變兩方面來證明其二維材料特性。
最後量測系統在不同溫度下電導性與偏壓之間的關係,但沒有從中觀察到零偏電導峰(ZBCP) ,計算其能隙與超導臨界溫度比△/(k_B T_c )大於傳統BCS的理論計算結果,代表該系統為非傳統超導材料。
In recent years, the prospects of Majorana fermions in fields such as quantum storage and quantum computing have attracted significant attention from physicists, leading to extensive research. As a platform for Majorana fermion studies, topological superconductors have become a focal point of many experimental investigations. This paper primarily discusses the deposition of antimony telluride (Sb2Te3), a topological material, on niobium (Nb) thin films, analyzing the electromagnetic transport properties and two-dimensional characteristics of this bilayer film system.
First, this paper focuses on preparing Nb thin film samples with a superconducting critical temperature (T_c) of 9.1 K on Si(100) substrates using magnetron sputtering. After adjusting various parameters, the optimal substrate temperature was determined to be 540℃, and increasing the film thickness to above 120 nm resulted in high T_c Nb thin film samples. Additionally, it was found that quenching during the process improves the quality of Nb films more effectively than annealing, which helps to enhance the system's T_c.
Furthermore, after fixing the Nb thin film fabrication parameters, Sb2Te3 thin films with thicknesses of 20 nm and 50 nm were sputtered on top of the Nb film to investigate their effects on the entire system. Due to the proximity effect, the T_c of each set of samples decreased by 0.03 to 3.75 K, and the upper critical magnetic field (H_c2) increased by 284 to 14958 Oe. In addition to studying the system, this paper demonstrates the two-dimensional characteristics through the relationship between the pinning potential U and the external magnetic field H, as well as measuring the system's BKT phase transition.
Lastly, by examining the relationship between conductivity and bias voltage at different temperatures, no zero-bias conductance peak (ZBCP) was observed. The calculated energy gap and the ratio △/(k_B T_c ) were found to be greater than the theoretical calculations of traditional BCS theory, indicating that the system belongs to unconventional superconducting materials.
口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xv
第一章 緒論 1
1.1 拓撲超導材料 1
1.2 Majorana費米子 1
1.3 鈮(Nb)簡介 2
1.4 碲化銻(Sb2Te3)簡介 3
1.5 研究動機 3
第二章 理論基礎簡介 5
2.1 超導體之發展歷史 5
2.2 超導體性質 6
2.2.1 零電阻(Zero Resistance) 6
2.2.2 完全反磁性(Perfect Resistance) 7
2.2.3 臨界電流(Critical Current)與臨界磁場(Critical Magnetic Field) 7
2.2.4 一類超導體(Type I Superconductor)與二類超導體(Type II Superconductor) 7
2.3 超導體原理 10
2.3.1 二流體模型(Two-fluid Model) 10
2.3.2 倫敦方程(London Equation) 10
2.3.3 相干長度(Coherence Length) 12
2.3.4 釘扎效應(Pinning Effect) 13
2.3.5 安德森-金磁通蠕動模型(Anderson-Kim Flux Creep Model) 15
2.3.6 BKT相變 (Berezinskii–Kosterlitz–Thouless Transition) 15
2.3.7 比恩模型(Bean Model) 16
2.3.8 鄰近效應(Proximity Effect) 17
2.3.9 反鄰近效應(Inverse Proximity Effect) 19
2.3.10 磁冷(Field Cooling,FC)與零磁冷(Zero Field Cooling,ZFC) 20
2.3.11 零偏電導峰(Zero-Bias Conductance Peak,ZBCP) 22
2.3.12 p-wave超導體 22
第三章 實驗方法 23
3.1 實驗過程 23
3.2 樣品製程 24
3.2.1 系統搭建 24
3.2.2 濺鍍原理 25
3.2.3 樣品製程流程 26
3.2.4 樣品蝕刻流程 29
3.3 量測系統 33
3.3.1 X光繞射分析儀(X-ray Diffractometer) 33
3.3.2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,SEM) 35
3.3.3 磁性量測系統(Magnetic Property Measurement System,MPMS) 36
3.3.4 原子力顯微鏡(Atomic Force Microscope,AFM) 39
第四章 實驗結果與討論 40
4.1 Nb單層薄膜成長條件最佳化 40
4.1.1 調整基板溫度 40
4.1.2 調整薄膜厚度 46
4.1.3 增加退火(Annealing)過程 51
4.1.4 晶體結構與超導臨界溫度的關係 55
4.2 Nb/Sb2Te3雙層薄膜 56
4.2.1 SEM量測 56
4.2.2 XRD量測 57
4.2.3 R-T量測 58
4.2.4 磁性量測 61
4.2.5 外加磁場垂直於樣品之電性量測 64
4.2.6 外加磁場平行於樣品之電性量測 69
4.2.7 釘扎位能(Activation Energy)與磁場之關係 73
4.2.8 BKT相變量測 82
4.2.9 拓撲特性量測 91
第五章 結論 92
Conclusion 94
參考文獻 97
[1] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava (2010). Superconductivity in CuxBi2Se3 and its Implications for Pairing in the Undoped Topological Insulator. Phys. Rev. Lett. 104, 057001.
[2] M. Kriener, Kouji Segawa, Zhi Ren, Satoshi Sasaki, and Yoichi Ando (2011). Bulk Superconducting Phase with a Full Energy Gap in the Doped Topological Insulator CuxBi2Se3. Phys. Rev. Lett. 106, 127004.
[3] Satoshi Sasaki, M. Kriener, Kouji Segawa, Keiji Yada, Yukio Tanaka, Masatoshi Sato, and Yoichi Ando (2011). Topological Superconductivity in CuxBi2Se3. Phys. Rev. Lett. 107, 217001.
[4] Niv Levy, Tong Zhang, Jeonghoon Ha, Fred Sharifi, A. Alec Talin, Young Kuk, and Joseph A. Stroscio (2013). Experimental Evidence for s-Wave Pairing Symmetry in Superconducting CuxBi2Se3 Single Crystals Using a Scanning Tunneling Microscope. Phys. Rev. Lett. 110, 117001.
[5]Zhongheng Liu, Xiong Yao, Jifeng Shao, Ming Zuo, Li Pi, Shun Tan, Changjin Zhang and Yuheng Zhang (2015). Superconductivity with Topological Surface State in SrxBi2Se3. J. Am. Chem. Soc. 2015, 137, 33, 10512–10515.
[6] Shruti, V. K. Maurya, P. Neha, P. Srivastava, and S. Patnaik (2015). Superconductivity by Sr intercalation in the layered topological insulator Bi2Se3. Phys. Rev. B 92, 020506(R).
[7]B. J. Lawson, Paul Corbae, Gang Li, Fan Yu, Tomoya Asaba, Colin Tinsman, Y. Qiu, J. E. Medvedeva, Y. S. Hor, and Lu Li (2016). Multiple Fermi surfaces in superconducting Nb-doped Bi2Se3. Phys. Rev. B 94, 041114(R).
[8] M. P. Smylie, H. Claus, U. Welp, W.-K. Kwok, Y. Qiu, Y. S. Hor, and A. Snezhko (2016). Evidence of nodes in the order parameter of the superconducting doped topological insulator NbxBi2Se3 via penetration depth measurements. Phys. Rev. B 94, 180510(R).
[9] Mei-Xiao Wang,Canhua Liu,Jin-Peng Xu,Fang Yang,Lin Miao,Meng-Yu Yao,C. L. Gao,Chenyi Shen,Xucun Ma,X. Chen,Zhu-An Xu,Ying Liu,Shou-Cheng Zhang,Dong Qian,Jin-Feng Jia,Qi-Kun Xu (2012). The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films. Science 336 52.
[10] Jin-Peng Xu, Canhua Liu, Mei-Xiao Wang, Jianfeng Ge, Zhi-Long Liu, Xiaojun Yang, Yan Chen, Ying Liu, Zhu-An Xu, Chun-Lei Gao, Dong Qian, Fu-Chun Zhang, and Jin-Feng Jia (2014). Artificial Topological Superconductor by the Proximity Effect. Phys. Rev. Lett. 112, 217001.
[11] Jin-Peng Xu, Mei-Xiao Wang, Zhi Long Liu, Jian-Feng Ge, Xiaojun Yang, Canhua Liu, Zhu An Xu, Dandan Guan, Chun Lei Gao, Dong Qian, Ying Liu, Qiang-Hua Wang, Fu-Chun Zhang, Qi-Kun Xue, and Jin-Feng Jia (2015). Experimental Detection of a Majorana Mode in the core of a Magnetic Vortex inside a Topological Insulator-Superconductor Bi2Te3/NbSe2 Heterostructure. Phys. Rev. Lett. 114, 017001.
[12] Hao-Hua Sun, Kai-Wen Zhang, Lun-Hui Hu, Chuang Li, Guan-Yong Wang, Hai-Yang Ma, Zhu-An Xu, Chun-Lei Gao, Dan-Dan Guan, Yao-Yi Li, Canhua Liu, Dong Qian, Yi Zhou, Liang Fu, Shao-Chun Li, Fu-Chun Zhang, and Jin-Feng Jia (2016). Majorana Zero Mode Detected with Spin Selective Andreev Reflection in the Vortex of a Topological Superconductor. Phys. Rev. Lett. 116, 257003.
[13]Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q (2010). Pressure-induced superconductivity in topological parent compound Bi2Te3. Proc. Natl. Acad. Sci. U.S.A. 108 24.
[14] Chao Zhang, Liling Sun, Zhaoyu Chen, Xingjiang Zhou, Qi Wu, Wei Yi, Jing Guo, Xiaoli Dong, and Zhongxian Zhao (2011). Phase diagram of a pressure-induced superconducting state and its relation to the Hall coefficient of Bi2Te3 single crystals. Phys. Rev. B 83, 140504(R).
[15] Kevin Kirshenbaum, P. S. Syers, A. P. Hope, N. P. Butch, J. R. Jeffries, S. T. Weir, J. J. Hamlin, M. B. Maple, Y. K. Vohra, and J. Paglione (2013). Pressure-Induced Unconventional Superconducting Phase in the Topological Insulator Bi2Se3. Phys. Rev. Lett. 111, 087001.
[16] J. Zhu, J. L. Zhang, P. P. Kong, S. J. Zhang, X. H. Yu, J. L. Zhu, Q. Q. Liu, X. Li, R. C. Yu, R. Ahuja, W. G. Yang, G. Y. Shen, H. K. Mao, H. M. Weng, X. Dai, Z. Fang, Y. S. Zhao and C. Q. Jin (2013). Superconductivity in Topological Insulator Sb2Te3 Induced by Pressure. 2013 Sci. Rep. 3 2016.
[17]Ettore Majorana (1937). Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento 14 171.
[18]Gregory Moore and Nicholas Read (1991). Nonabelions in the fractional quantum hall effect. Nuclear Physics B360 (1991) 362-396.
[19] A.Yu.Kitaev (2003). Fault-tolerant quantum computation by anyons. Annals of Physics 303 (2003) 2–3.
[20] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma (2008). Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083.
[21] Frank Wilczek (2009). Majorana returns. Nature Physics volume 5, 614–618.
[22] Jason Alicea (2012). New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75 076501.
[23] C.W.J. Beenakker (2013). Search for Majorana Fermions in Superconductors. Annu. Rev. Condens. Matter Phys. 2013. 4:113–36.
[24] David R. Lide (2004). CRC Handbook of Chemistry and Physics, 85th Edition. CRC Press.
[25] C. Nico, T. Monteiro, M.P.F. Graça (2016). Niobium oxides and niobates physical properties: Review and prospects. Department of Physics & I3N, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
[26] Xiao-Liang Qi and Shou-Cheng Zhang (2011). Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057.
[27] M. Z. Hasan and C. L. Kane (2010). Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045.
[28] Liang Fu and C. L. Kane (2008). Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Phys. Rev. Lett. 100, 096407.
[29]Onnes, H.K. (1911). The Resistance of Pure Mercury at Helium Temperatures. Commun. Phys. Lab. Univ. Leiden, 12, 1.
[30]Meissner, W. and R. Ochsenfeld (1933). Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften , 21.
[31]J. Bardeen, L. N. Cooper, and J. R. Schrieffer (1957). Microscopic Theory of Superconductivity. Phys. Rev. 106, 162.
[32]J. G. Bednorz and K. A. Müller (1986). Possible high Tc superconductivity in the Ba−La−Cu−O system. Zeitschrift für Physik B Condensed Matter volume 64, pages189–193.
[33]M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908.
[34]Hiroshi Maeda, Yoshiaki Tanaka, Masao Fukutomi and Toshihisa Asano (1988). A New High-Tc Oxide Superconductor without a Rare Earth Element. Jpn. J. Appl. Phys. 27 L209.
[35]Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, Hiroshi Yanagi, Toshio Kamiya, and Hideo Hosono (2006). Iron-Based Layered Superconductor: LaOFeP. J. Am. Chem. Soc. 2006, 128, 31, 10012–10013.
[36] Poole. C.P. (2014). Phenomenon of superconductivity, in Superconductivity(Third Edition). Elsevier: London. p. 33-85.
[37] H.A.BorgesM.A.Continentino (1991). Pressure study of the paraconductivity of high Tc superconductors. Volume 80, Issue 3.
[38] C. Kittel. (2005). Introduction to Solid state Physics, (8th ed.). John Wiley & Sons, Inc.
[39] Gorter, C.J. and H. Casimir (1934). On supraconductivity I. Physica. 1(1): p.306-320.
[40] John Bardeen (1958). Two-Fluid Model of Superconductivity. Phys. Rev. Lett. 1, 399.
[41] Gorter, C.J. (1955). Chapter I The Two Fluid Model for Superconductors and Helium II, in Progress in Low Temperature Physics. Elsevier. p. 1-16.
[42] F. London and H. London (1935). The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A -Mathematical and Physical Sciences, 1935. 149(866): p. 71-88.
[43] Michael Tinkham (2004). Introduction to Superconductivity: Second Edition. Mineola, N.Y: Dover Publications.
[44] L. Landau (1930). Diamagnetismus der Metalle. Zeitschrift für Physik.
[45] Y. B. Kim, C. F. Hempstead, and A. R. Strnad (1963). Flux Creep in Hard Superconductors. Phys. Rev. 131, 2486.
[46] Seunghun Lee, Xiaohang Zhang, Yangang Liang, Sean W. Fackler, Jie Yong, Xiangfeng Wang, Johnpierre Paglione, Richard L. Greene, and Ichiro Takeuchi (2016). Observation of the Superconducting Proximity Effect in the Surface State of SmB6 Thin Films. Phys. Rev. X 6, 031031.
[47] I.L.Landau and I.A.Parshin (1994). Increase in the superconducting transition temperature of thin films as a result of a normal metal deposition on their surface. Physica B: Condensed Matter, Volumes 194–196.
[48] Sasaki, S., Kriener, M., Segawa, K., Yada, K., Tanaka, Y., Sato, M., & Ando, Y. (2011). Topological superconductivity in CuxBi2Se3. Physical review letters, 107(21), 217001.
[49] Mackenzie, A. P., & Maeno, Y. (2000). P-wave superconductivity. Physica B: Condensed Matter, 280(1-4), 148-153.
[50] Neelesh Kumar Jain, Mayur Sawant, Sagar Hanmant Nikam, Suyog Jhavar (2016). Metal Deposition: Plasma-Based Processes. Taylor and Francis, New York (USA).
[51] William Henry Bragg and William Lawrence Bragg (1913). The reflection of X-rays by crystals. Royal Society.
[52] Uwe Holzwarth and Neil Gibson (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology volume 6, p534.
[53] J. T. Maniscalco†, D. Gonnella, D. L. Hall, M. Liepe, and E. Smith. (2005). Hc2 Measurements of Superconductors. Newport New, USA.
[54] Jaskaran Singh, Anooja Jayaraj, D. Srivastava, S. Gayen, A. Thamizhavel, and Yogesh Singh (2018) Possible multigap type-I superconductivity in the layered boride RuB2. Phys. Rev. B 97, 054506.
[55] Y. Bugoslavsky et al. (2001). Enhancement of Hc2 in MgB2 by Carbon Doping. Physical Review Letters.
[56] S. K. Mishra et al. (2008). Effect of Transition Metal Doping on Hc2 of Nb3Sn. Journal of Applied Physics.
[57] Qing Lin He, Hongchao Liu, Mingquan He, Ying Hoi Lai, Hongtao He, Gan Wang, Kam Tuen Law, Rolf Lortz, Jiannong Wang & Iam Keong Sou (2014). Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nature Communications volume 5, Article number: 4247.
[58] Hong-Chao Liu, Hui Li1, Qing Lin He, Iam Keong Sou, Swee K.Goh, JiannongWang (2016). Robust two-dimensional superconductivity and vortex system in Bi2Te3/FeTe heterostructures. Scientific Reports.
[59] Dong Shen, Chia Nung Kuo, Tien Wei Yang, I Nan Chen, Chin Shan Lue, Li Min Wang. (2020). Two-dimensional superconductivity and magnetotransport from topological surface states in AuSn4 semimetal. Communications Materials volume 1, Article number: 56.
[60] M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur (1989). Theory of collective flux creep. Phys. Rev. Lett. 63, 2303.
[61] Chithra H. Sharma, Ananthu P. Surendran, Sangeeth S. Varma & Madhu Thalakulam (2018). 2D superconductivity and vortex dynamics in 1T-MoS2. Communications Physics volume 1, Article number: 90.
[62] Zhen Liu, Cheng Wang, Chuan Xu, Meng Hao, Hui-Ming Cheng, Wencai Ren and Ning Kang (2019). Effects of domain structures on vortex state of two-dimensional superconducting Mo2C crystals. 2D Mater. 6 021005.
[63] B. I. Halperin & David R. Nelson (1979). Resistive transition in superconducting films. Journal of Low Temperature Physics volume 36, pages599–616.
[64] Lei, H., Hu, R., Choi, E. S., & Petrovic, C. (2010). Thermally activated energy and flux-flow Hall effect of Fe1+ y(Te1+ xSx)z. Physical Review B, 82(13), 134525.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top