跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇昭絹
研究生(外文):Chao-Chuan Su
論文名稱:以生物反應器擴大培養並優化機能性臺灣藜發酵乳製品及其抗衰老功效評估
論文名稱(外文):Optimization of Functional Fermented Djulis Dairy Products along with Bioreactor and Its Potentials in Anti-aging Effects
指導教授:鄭光成鄭光成引用關係
指導教授(外文):Kuan-Chen Cheng
口試委員:陳億乘蔡宗佑沈賜川陳與國
口試委員(外文):Yi-Chen ChenTsung-Yu TsaiSzu-Chuan ShenYu-Kuo Chen
口試日期:2023-06-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:177
中文關鍵詞:臺灣藜乳酸菌秀麗隱桿線蟲生物反應器抗衰老
外文關鍵詞:Chenopodium formosanum Koidz.lactic acid bacteriaCaenorhabditis elegansbioreactoranti-aging
DOI:10.6342/NTU202302823
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣藜 (Chenopodium formosanum Koidz.) 又名 Djulis,是臺灣原生種假穀物,又被稱為「穀物界紅寶石」,因具有甜菜苷、多酚與黃酮類化合物使其具有優異之抗氧化能力。本研究目的是利用臺灣藜與在地優質乳源,結合乳酸菌以液態生物反應器 (發酵槽) 建構量產製程,並評估其於線蟲之抗衰老潛力。本研究以小量生產之臺灣藜發酵乳製品 (100 mL) 為控制組,藉由發酵槽進行擴大液態發酵。為增進機能性成分含量,以游離黃酮含量為指標進行發酵條件優化,階段式探討轉速、發酵溫度與發酵時間,開發五公升級臺灣藜發酵乳製品。首先於一公升液態發酵槽中加入鮮乳並添加 7.5 % 之臺灣藜、以 10^7 CFU/mL 個別接種Lactiplantibacillus plantarum subsp. plantarum BCRC 11697、Lactobacillus delbrueckii subsp. bulgaricus BCRC 10696 與 Streptococcus salivarius subsp. thermophilus BCRC 14085進行培養,而後以游離黃酮為指標確立最佳發酵條件為 40 °C、20 rpm、21 hr。以此優化條件進行五公升擴大液態發酵,並針對各營養組成、抗營養因子與機能性成分進行比較:於機能性成分,游離黃酮含量達 0.75±0.07 mg QE/g,顯著高於控制組並提升 30 %。游離酚含量達 1.54±0.05 mg GAE/g,顯著高於控制組;而結合酚含量則下降至 1.65±0.10 GAE/g,顯著下降 16 %。去醣基異黃酮daidzein含量達 2.17±0.35 μg/g,相較控制組顯著提升 47 %;游離胜肽含量達 3.27±0.44 mg SE/g,為控制組之 1.08 倍。於一般成分分析,粗脂肪含量顯著高於控制組 12 %。於抗營養因子,植酸則下降至 3.02±0.19 mg/g,相較控制組顯著下降 41 %。而於儲藏性試驗中,臺灣藜發酵乳製品之總乳酸菌數隨存放時間增加而逐漸下降,並於 14 ~ 21 天趨於平緩穩定維持在 9 log CFU/mL 左右。於感官品評試驗中,受試者對於臺灣藜發酵乳製品之接受度與喜好程度皆低於市售無糖穀物優格。而後以秀麗隱桿線蟲為模式生物,評估臺灣藜發酵乳製品之乙醇萃取物的抗衰老潛力與功效。臺灣藜發酵乳製品乙醇萃取物於氧化壓力抵禦能力提升線蟲的存活率至 56.68±5.22 %,顯著高於控制組並提升 15.24 %;而平均生命週期增加了 4.57 %,然於統計上無顯著差異;衰老相關指標-咽部抽動速率為 266.47±10.79 pumps/min,顯著提高至控制組的1.14倍。綜上所述,經優化之發酵條件能使五公升擴大液態發酵之臺灣藜發酵乳製品的機能性成分含量與不亞於小量生產組別 (100 mL),成功建立擴大生產製程,其萃取物也具有抵抗氧化壓力與延長線蟲健康壽命之潛力,透過後續產品風味與質地的改良,期望能成為具抗衰潛力之新型產品。
Chenopodium formosanum Koidz., also known as "Djulis", which is a pseudocereal native in Taiwan. It is also known as the "Ruby of Cereals "and has an excellent antioxidant capacity due to its betanin, polyphenols and flavonoids. The aim of this study was to use Djulis and local high-quality milk sources, combined with lactic acid bacteria to construct a mass production process in a liquid state bioreactor (fermentation tank), and evaluated its anti-aging potential in C. elegans. In this study, we took 100 mL small-scale production of fermented Djulis dairy products (FDDP) as the control group, and the enlarged liquid fermentation was carried out by fermentation tank. To increase the content of functional components, this study took the content of free flavonoids as target to optimize the fermentation conditions. By adjusting the stirring speed, fermentation temperature and fermentation time step by step, 5 L FDDP was developed. First, fresh milk and 7.5 % of Djulis were added to a 1 L liquid fermentation tank. Lactiplantibacillus plantarum subsp. plantarum BCRC 11697, Lactobacillus delbrueckii subsp. bulgaricus BCRC 10696 and Streptococcus salivarius subsp. thermophilus BCRC 14085 were inoculated at 10^7 CFU/mL for culture, respectively. The results indicated that the optimal condition of liquid fermentation was at 40 °C, 20 rpm, 21 hr. Based on this optimal condition, 5 L production was carried out, and various nutritional components, anti-nutritional factors and functional components were compared. For functional components, free flavonoids reached 0.75±0.07 mg QE/g, which was significantly higher than the control group and increased 30 %. Free phenols reached 1.54±0.05 mg GAE/g, which was significantly higher than the control group; while bound phenols decreased to 1.65±0.10 GAE/g, a significant decrease of 16 %. The content of daidzein was 2.17±0.35 μg/g, which was 47 % higher than the control group. Free peptide content reached 3.27±0.44 mg mg SE/g, which was 1.08 times higher than the control group. In proximate analysis, crude fat content was significantly higher than the control group by 12 %. The anti-nutritional factor-phytic acid decreased to 3.02±0.19 mg/g, which was 41% lower than the control group. In the storage test, the total lactic acid bacterial count of FDDP gradually decreased with the increase of storage time, and then tended to be stable and maintained at about 9 log CFU/mL from 14 to 21 days. In sensory evaluation, the acceptability and preference of FDDP were lower than those of commercially sugar-free cereal yogurt. Then, C. elegans was used as a model organism to evaluate the anti-aging potential and efficacy of ethanol extracts of FDDP. The ethanol extracts of FDDP improved the survival rate of C. elegans to 56.68±5.22 % in the resistance to oxidative stress, which was significantly higher than the control group and elevated 15.24 %. The mean life span of C. elegans increased by 4.57 %, but there was no statistically significant difference. Aging related index: pharyngeal pumping rate was 266.47±10.79 pumps/min, significantly increased to 1.14 times of the control group. To sum up, the optimal fermentation condition could make the functional components of 5 L FDDP no less than 100 mL small-scale production. The enlarged production process has been successfully established, and the extracts of FDDP also has the potential to resist oxidative stress and prolong the healthspan of C. elegans. Through the improvement of the flavor and texture of FDDP, it is expected to become a new product with anti-aging potential.
口試委員會審定書 I
謝誌 II
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XIII
List of Figures XIV
List of Tables XVI
壹、前言 1
貳、文獻回顧 2
2.1臺灣藜 2
2.1.1假穀物 2
2.1.2藜麥簡介 2
2.1.3臺灣藜簡介 3
2.1.4營養成分 4
2.1.5機能性成分與生理活性 8
2.2乳酸菌 11
2.2.1簡介 11
2.2.2乳酸菌發酵 14
2.2.3發酵乳製品之種類與其機能性 18
2.3發酵 21
2.3.1固態發酵 (Solid-state fermentation, SSF) 21
2.3.2液態深層發酵 (Submerged fermentation, SmF) 22
2.3.3生物反應器 (bioreactor) 22
2.4氧化壓力與衰老 24
2.4.1氧化壓力生成 24
2.4.2氧化壓力與衰老之關係 26
2.5秀麗隱桿線蟲 27
2.5.1簡介與生命週期 27
2.5.2線蟲老化之生物指標 (biomarker) 29
2.5.3胰島素/類胰島素生長因子信號途徑 (Insulin and insulin-like growth factor-1 (IGF-1) signaling pathway, IIS pathway) 29
2.5.4氧化壓力與DAF-16下游相關基因調控 32
參、研究目的與架構 33
3.1研究目的 33
3.2研究架構 33
肆、材料與方法 35
4.1材料 35
4.1.1原料及實驗生物 35
4.1.2實驗菌株 35
4.1.3培養基配製藥品 35
4.1.4分析實驗藥品 35
4.1.5基因實驗材料 37
4.1.6儀器設備 38
4.2培養基與緩衝液配製 40
4.2.1 MRS培養液與培養基配製 40
4.2.2 LB培養液與平板培養基配製 40
4.2.3 NGM平板培養基配製 41
4.2.4線蟲緩衝溶液M9 buffer 5X配製 42
4.3實驗方法 43
4.3.1乳酸菌活化 43
4.3.2臺灣藜發酵乳製品製備 43
4.3.3一公升液態發酵製程之階段式優化 44
4.3.4發酵指標 45
4.3.5一般成分分析 46
4.3.6機能性成分分析 48
4.3.7抗氧化能力分析 51
4.3.8抗營養因子測定 52
4.3.9儲藏性試驗 52
4.3.10感官品評 53
4.3.11以 C. elegans 為模式動物評估萃取物抗衰老功效 53
4.3.12統計分析 59
伍、結果與討論 60
5.1臺灣藜發酵乳製品之發酵槽製程建立與優化 60
5.1.1調整攪拌速率對發酵產物之影響 61
5.1.2調整發酵溫度對發酵產物之影響 64
5.1.3調整發酵時間對發酵產物之影響 66
5.2臺灣藜發酵乳製品之產物性質 70
5.3臺灣藜發酵乳製品之抗氧化力 72
5.4臺灣藜發酵乳製品之儲藏性試驗 74
5.5五公升臺灣藜發酵乳製品之產品性質描述 76
5.5.1發酵產物之一般成分分析 77
5.5.2發酵產物之抗營養因子 79
5.5.3發酵產物之機能性成分含量探討 81
5.6臺灣藜發酵乳製品之感官品評 85
5.6.1接受性試驗 85
5.6.2喜好性試驗 87
5.7以 C. elegans 為模式動物評估萃取物之抗衰老功效 91
5.7.1評估不同濃度乙醇萃取物對C. elegans N2之毒性 91
5.7.2評估C. elegans N2 經乙醇萃取物處理後對氧化壓力的抵禦能力 93
5.7.3評估C. elegans N2 經乙醇萃取物處理後之hsp-16.2表現量 96
5.7.4評估C. elegans N2 經乙醇萃取物處理後之生命週期影響 99
5.7.5評估C. elegans N2 經乙醇萃取物處理後之咽部抽動速率 103
陸、結論與未來展望 105
柒、參考文獻 107
捌、附錄 140
附錄一、感官品評表單。 140
附錄二、用於qPCR 的基因引子序列。 144
附錄三、論文原創性比對結果。 145
行政院 農業委員會 (2018)。臺灣藜概說。檢索日期:2023 年 1 月 7 日。檢自: https://kmweb.coa.gov.tw/subject/subject.php?id=32316。
行政院 農業委員會 (2018)。臺灣藜植物性狀。檢索日期:2023 年 1 月 7 日。檢自:https://kmweb.coa.gov.tw/subject/subject.php?id=32317。
行政院 農業委員會 (2021)。臺灣藜機能加值應用穀類紅寶石再進化。檢索日期:2023 年 1 月 7 日。檢自:https://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=8563
吳蓉安 (2021)。評估發芽糙薏仁之發酵產物對於抵抗氧化壓力的能力。國立臺灣大學食品科技研究所碩士論文,臺北市。
黃映綺 (2022)。臺灣藜麴味噌品質之研究。國立臺灣大學食品科技研究所碩士論文,臺北市。
臺灣食物營養成分資料庫 - 消費者知識服務網。檢索日期: 2023 年 1 月 7 日。檢自:https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178
蔡碧仁 (2008)。紅藜之營養與利用。紅藜推廣手冊,8-11。
劉于維 (2021)。評估固態發酵發芽臺灣藜減緩 PM 2.5 誘導 ROS 之潛力。國立臺灣大學食品科技研究所碩士論文,臺北市。
盧宛萱 (2021)。評估發芽臺灣藜發酵產物對減緩皮膚光衰老之潛力。國立臺灣大學食品科技研究所碩士論文,臺北市。
簡則宇 (2018)。以固態發酵開發機能性臺灣藜產品。國立臺灣大學食品科技研究所碩士論文,臺北市。
嚴婗 (2022)。評估臺灣藜甘糀延緩人類纖維母細胞衰老之功效。國立臺灣大學食品科技研究所碩士論文,臺北市。
Abadía-García, L., Cardador, A., del Campo, S. T. M., Arvízu, S. M., Castaño-Tostado, E., Regalado-González, C., Amaya-Llano, S. L. (2013). Influence of probiotic strains added to cottage cheese on generation of potentially antioxidant peptides, anti-listerial activity, and survival of probiotic microorganisms in simulated gastrointestinal conditions. International Dairy Journal, 33(2), 191-197.
Abbas, S., & Wink, M. (2010). Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine, 17(11), 902-909.
Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry, 183, 83-90.
Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46-55.
Adraskela, K., Veisaki, E., Koutsilieris, M., & Philippou, A. (2017). Physical exercise positively influences breast cancer evolution. Clinical Breast Cancer, 17(6), 408-417.
Aguirre-Ezkauriatza, E., Galarza-González, M., Uribe-Bujanda, A., Ríos-Licea, M., López-Pacheco, F., Hernández-Brenes, C., & Alvarez, M. (2008). Effect of mixing during fermentation in yogurt manufacturing. Journal of Dairy Science, 91(12), 4454-4465.
Allwood, J. G., Wakeling, L. T., & Bean, D. C. (2021). Fermentation and the microbial community of Japanese koji and miso: A review. Journal of Food Science, 86(6), 2194-2207.
Altintas, O., Park, S., & Lee, S.-J. V. (2016). The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Reports, 49(2), 81.
Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21(2), 106-113.
Ammor, M. S., & Mayo, B. (2007). Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Science, 76(1), 138-146.
Anjum, F. M., Ahmad, I., Butt, M. S., Sheikh, M., & Pasha, I. (2005). Amino acid composition of spring wheats and losses of lysine during chapati baking. Journal of Food Composition and Analysis, 18(6), 523-532.
Aplevicz, K. S., Ogliari, P. J., & Sant'Anna, E. S. (2013). Influence of fermentation time on characteristics of sourdough bread. Brazilian Journal of Pharmaceutical Sciences, 49, 233-239.
Aryana, K. J., & Olson, D. W. (2017). A 100-Year Review: Yogurt and other cultured dairy products. Journal of Dairy Science, 100(12), 9987-10013.
Avramovich-Tirosh, Y., Reznichenko, L., Amit, T., Zheng, H., Fridkin, M., Weinreb, O., Youdim, M. B. (2007). Neurorescue activity, APP regulation and amyloid-β peptide reduction by novel multi-functional brain permeable iron-chelating-antioxidants, M-30 and green tea polyphenol, EGCG. Current Alzheimer Research, 4(4), 403-411.
Axel, C., Brosnan, B., Zannini, E., Furey, A., Coffey, A., & Arendt, E. K. (2016). Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. International Journal of Food Microbiology, 239, 86-94.
Bansal, A., Zhu, L. J., Yen, K., & Tissenbaum, H. A. (2015). Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proceedings of the National Academy of Sciences, 112(3), E277-E286.
Barsyte, D., Lovejoy, D. A., & Lithgow, G. J. (2001). Longevity and heavy metal resistance in daf‐2 and age‐1 long‐lived mutants of Caenorhabditis elegans. The FASEB Journal, 15(3), 627-634.
Batali, M. E., Cotter, A. R., Frost, S. C., Ristenpart, W. D., & Guinard, J.-X. (2021). Titratable acidity, perceived sourness, and liking of acidity in drip brewed coffee. ACS Food Science & Technology, 1(4), 559-569.
Bazile, D., Jacobsen, S.-E., & Verniau, A. (2016). The global expansion of quinoa: trends and limits. Frontiers in Plant Science, 7, 622.
Benito, M., Martín, A., Aranda, E., Pérez‐Nevado, F., Ruiz‐Moyano, S., & Córdoba, M. (2007). Characterization and selection of autochthonous lactic acid bacteria isolated from traditional Iberian dry‐fermented salchichón and chorizo sausages. Journal of Food Science, 72(6), M193-M201.
Berdichevsky, A., Viswanathan, M., Horvitz, H. R., & Guarente, L. (2006). C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell, 125(6), 1165-1177.
Bettache, G., Fatma, A., Miloud, H., & Mebrouk, K. (2012). Isolation and identification of lactic acid bacteria from Dhan, a traditional butter and their major technological traits. World Applied Sciences Journal, 17(4), 480-488.
Bintsis, T. (2018). Lactic acid bacteria: their applications in foods. Journal of Bacteriology and Mycology, 6(2), 89-94.
Bintsis, T., & Papademas, P. (2022). The Evolution of fermented milks, from artisanal to industrial products: A Critical Review. Fermentation, 8(12), 679.
Birol, G., Ündey, C., & Cinar, A. (2002). A modular simulation package for fed-batch fermentation: penicillin production. Computers & Chemical Engineering, 26(11), 1553-1565.
Bong, Y.-J., Jeong, J.-K., & Park, K.-Y. (2013). Fermentation properties and increased health functionality of kimchi by kimchi lactic acid bacteria starters. Journal of the Korean Society of Food Science and Nutrition, 42(11), 1717-1726.
Boyd, W. A., McBride, S. J., Rice, J. R., Snyder, D. W., & Freedman, J. H. (2010). A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicology and Applied Pharmacology, 245(2), 153-159.
Cai, S., Gao, F., Zhang, X., Wang, O., Wu, W., Zhu, S., Ji, B. (2014). Evaluation of γ-aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi. Journal of Food Science and Technology, 51(10), 2544-2551.
Chandan, R. C. (2017). An overview of yogurt production and composition. Yogurt in Health and Disease Prevention, 31-47.
Chandrasekaran, A., Idelchik, M. d. P. S., & Melendez, J. A. (2017). Redox control of senescence and age-related disease. Redox Biology, 11, 91-102.
Chen, C., Zhao, S., Hao, G., Yu, H., Tian, H., & Zhao, G. (2017). Role of lactic acid bacteria on the yogurt flavour: A review. International Journal of Food Properties, 20(sup1), S316-S330.
Chen, H.-Y., Hsieh, C.-W., Chen, P.-C., Lin, S.-P., Lin, Y.-F., & Cheng, K.-C. (2021). Development and optimization of djulis sourdough bread fermented by lactic acid bacteria for antioxidant capacity. Molecules, 26(18), 5658.
Chen, M. N., Chan, C. F., Huang, S. L., & Lin, Y. S. (2019). Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles' antibacterial properties. Journal of the Science of Food and Agriculture, 99(7), 3693-3702.
Chen, S., Chu, C.-C., Lin, Y.-C., & Duh, P.-D. (2019). Djulis (Chenopodium formosanum) and its bioactive compounds for management of hyperlipidemia and hyperglycemia in high-fat diet-fed mice. Journal of Food and Nutrition Research, 7, 452-457.
Chew, Y. L., Lim, Y. Y., Omar, M., & Khoo, K. S. (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Science and Technology, 41(6), 1067-1072.
Chu, C.-C., Chen, S.-Y., Chyau, C.-C., Fu, Z.-H., Liu, C.-C., & Duh, P.-D. (2016). Protective effect of Djulis (Chenopodium formosanum) and its bioactive compounds against carbon tetrachloride-induced liver injury, in vivo. Journal of Functional Foods, 26, 585-597.
Chu, C.-C., Chen, S.-Y., Chyau, C.-C., Wu, Y.-C., Chu, H.-L., & Duh, P.-D. (2020). Anticancer activity and mediation of apoptosis in hepatoma carcinoma cells induced by djulis and its bioactive compounds. Journal of Functional Foods, 75, 104225.
Chuang, K.-J., Chen, Z.-J., Cheng, C.-L., & Hong, G.-B. (2018). Investigation of the antioxidant capacity, insecticidal ability and oxidation stability of Chenopodium formosanum seed extract. International Journal of Molecular Sciences, 19(9), 2726.
Chyau, C.-C., Chu, C.-C., Chen, S.-Y., & Duh, P.-D. (2015). Djulis (Chenopodiun formosaneum) and its bioactive compounds protect against oxidative stress in human HepG2 cells. Journal of Functional Foods, 18, 159-170.
Chyau, C.-C., Chu, C.-C., Chen, S.-Y., & Duh, P.-D. (2018). The inhibitory effects of djulis (Chenopodium formosanum) and its bioactive compounds on adipogenesis in 3T3-L1 adipocytes. Molecules, 23(7), 1780.
Cizeikiene, D., Gaide, I., & Basinskiene, L. (2021). Effect of lactic acid fermentation on quinoa characteristics and quality of quinoa-wheat composite bread. Foods, 10(1), 171.
Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E., Partridge, L. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 292(5514), 104-106.
Coulibaly, A., Kouakou, B., & Chen, J. (2011). Phytic acid in cereal grains: structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. American Journal of Plant Nutrition and Fertilization Technology, 1(1), 1-22.
Cremonesi, P., Vanoni, L., Morandi, S., Silvetti, T., Castiglioni, B., & Brasca, M. (2011). Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese. International Journal of Food Microbiology, 146(2), 207-211.
Cui, J., Xia, P., Zhang, L., Hu, Y., Xie, Q., & Xiang, H. (2020). A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity. Food Chemistry, 333, 127527.
Cutler, H. C., & Cardenas, M. (1947). Chicha, a native South American beer. Botanical Museum Leaflets, Harvard University, 13(3), 33-60.
Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Ghasemi, Y. (2019). Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 92.
De Vuyst, L., & Vancanneyt, M. (2007). Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiology, 24(2), 120-127.
De Vuyst, L., Zamfir, M., Mozzi, F., Adriany, T., Marshall, V., Degeest, B., & Vaningelgem, F. (2003). Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks. International Dairy Journal, 13(8), 707-717.
Dendougui, F., & Schwedt, G. (2004). In vitro analysis of binding capacities of calcium to phytic acid in different food samples. European Food Research and Technology, 219(4), 409-415.
Dhawan, V. (2014). Reactive oxygen and nitrogen species: general considerations. In Studies on respiratory disorders (pp. 27-47): Springer.
Dhole, V. J., & Reddy, K. S. (2016). Association of phytic acid content with biotic stress tolerance in mungbean (Vigna radiata L. Wilczek). Phytoparasitica, 44(2), 261-267.
Díaz-Ruiz, G., Guyot, J., Ruiz-Teran, F., Morlon-Guyot, J., & Wacher, C. (2003). Microbial and physiological characterization of weakly amylolytic but fast-growing lactic acid bacteria: a functional role in supporting microbial diversity in pozol, a Mexican fermented maize beverage. Applied and Environmental Microbiology, 69(8), 4367-4374.
Duangjan, C., Rangsinth, P., Gu, X., Wink, M., & Tencomnao, T. (2019). Lifespan extending and oxidative stress resistance properties of a leaf extracts from Anacardium occidentale L. in Caenorhabditis elegans. Oxidative Medicine and Cellular Longevity, 2019.
Fan, D., Hodges, D. M., Zhang, J., Kirby, C. W., Ji, X., Locke, S. J., Prithiviraj, B. (2011). Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chemistry, 124(1), 195-202.
Federici, S., Ciarrocchi, F., Campana, R., Ciandrini, E., Blasi, G., & Baffone, W. (2014). Identification and functional traits of lactic acid bacteria isolated from Ciauscolo salami produced in Central Italy. Meat Science, 98(4), 575-584.
Feizollahi, E., Mirmahdi, R. S., Zoghi, A., Zijlstra, R. T., Roopesh, M., & Vasanthan, T. (2021). Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International, 143, 110284.
Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64(1), 97-112.
Garde, S., Tomillo, J., Gaya, P., Medina, M., & Nuñez, M. (2002). Proteolysis in Hispánico cheese manufactured using a mesophilic starter, a thermophilic starter, and bacteriocin-producing Lactococcus lactis subsp. lactis INIA 415 adjunct culture. Journal of Agricultural and Food Chemistry, 50(12), 3479-3485.
Gaur, G., & Gänzle, M. G. (2023). Conversion of (poly) phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Current Research in Food Science, 100448.
Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120(1-2), 51-70.
Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401-1412.
Gibson, G. R., Scott, K. P., Rastall, R. A., Tuohy, K. M., Hotchkiss, A., Dubert-Ferrandon, A., Loh, G. (2010). Dietary prebiotics: current status and new definition. Food Science & Technology Bulletin Functional Foods, 7(1), 1-19.
Gilliland, S., Reilly, S., Kim, G., & Kim, H. (2002). Viability during storage of selected probiotic lactobacilli and bifidobacteria in a yogurt‐like product. Journal of Food Science, 67(8), 3091-3095.
Grünz, G., Haas, K., Soukup, S., Klingenspor, M., Kulling, S. E., Daniel, H., & Spanier, B. (2012). Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mechanisms of Ageing and Development, 133(1), 1-10.
Guldfeldt, L. U., Sørensen, K. I., Strøman, P., Behrndt, H., Williams, D., & Johansen, E. (2001). Effect of starter cultures with a genetically modified peptidolytic or lytic system on Cheddar cheese ripening. International Dairy Journal, 11(4-7), 373-382.
Gupta, R. K., Gangoliya, S. S., & Singh, N. K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52(2), 676-684.
Gusarov, I., Gautier, L., Smolentseva, O., Shamovsky, I., Eremina, S., Mironov, A., & Nudler, E. (2013). Bacterial nitric oxide extends the lifespan of C. elegans. Cell, 152(4), 818-830.
Hahm, J.-H., Kim, S., DiLoreto, R., Shi, C., Lee, S.-J. V., Murphy, C. T., & Nam, H. G. (2015). C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nature Communications, 6(1), 1-7.
Hartwig, K., Heidler, T., Moch, J., Daniel, H., & Wenzel, U. (2009). Feeding a ROS-generator to Caenorhabditis elegans leads to increased expression of small heat shock protein HSP-16.2 and hormesis. Genes & Nutrition, 4, 59-67.
Hassan, A., Ipsen, R., Janzen, T., & Qvist, K. (2003). Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides. Journal of Dairy Science, 86(5), 1632-1638.
Hati, S., Patel, N., & Mandal, S. (2018). Comparative growth behaviour and biofunctionality of lactic acid bacteria during fermentation of soy milk and bovine milk. Probiotics and Antimicrobial Proteins, 10(2), 277-283.
He, Z., Zhang, H., Wang, T., Wang, R., & Luo, X. (2022). Effects of five different lactic acid bacteria on bioactive components and volatile compounds of oat. Foods, 11(20), 3230.
Herndon, L. A., Wolkow, C. A., Driscoll, M., & Hall, D. H. (2017). Effects of ageing on the basic biology and natomy of C. elegans. In Ageing: Lessons from C. elegans (pp. 9-39): Springer.
Higashikawa, F., Noda, M., Awaya, T., Nomura, K., Oku, H., & Sugiyama, M. (2010). Improvement of constipation and liver function by plant-derived lactic acid bacteria: a double-blind, randomized trial. Nutrition, 26(4), 367-374.
Hole, A. S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J., & Sahlstrøm, S. (2012). Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 60(25), 6369-6375.
Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Géloën, A., Even, P. C., Le Bouc, Y. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421(6919), 182-187.
Honda, Y., & Honda, S. (1999). The daf‐2 gene network for longevity regulates oxidative stress resistance and Mn‐superoxide dismutase gene expression in Caenorhabditis elegans. The FASEB Journal, 13(11), 1385-1393.
Honda, Y., & Honda, S. (2002). Oxidative stress and life span determination in the nematode Caenorhabditis elegans. Annals of the New York Academy of Sciences, 959(1), 466-474.
Hong, Y.-H., Huang, Y.-L., Liu, Y.-C., & Tsai, P.-J. (2016). Djulis (Chenopodium formosanum Koidz.) water extract and its bioactive components ameliorate dermal damage in UVB-irradiated skin models. BioMed Research International, 2016.
Hou, C.-Y., Hsieh, C.-C., Huang, Y.-C., Kuo, C.-H., Chen, M.-H., Hsieh, C.-W., & Cheng, K.-C. (2022). Development of functional fermented dairy products containing Taiwan djulis (Chenopodium formosanum Koidz.) in regulating glucose utilization. Fermentation, 8(9), 423.
Hsiao, Y.-H., Ho, C.-T., & Pan, M.-H. (2020). Bioavailability and health benefits of major isoflavone aglycones and their metabolites. Journal of Functional Foods, 74, 104164.
Hsieh, C.-C., Yu, S.-H., Cheng, K.-W., Liou, Y.-W., Hsu, C.-C., Hsieh, C.-W., Cheng, K.-C. (2023). Production and analysis of metabolites from solid-state fermentation of Chenopodium formosanum (Djulis) sprouts in a bioreactor. Food Research International, 168, 112707.
Hsu, B.-Y., Pan, S.-Y., Wu, L.-Y., Ho, C.-T., & Hwang, L. S. (2018). Hypoglycemic activity of Chenopodium formosanum Koidz. components using a glucose uptake assay with 3T3-L1 adipocytes. Food Bioscience, 24, 9-16.
Hsu, B., Lin, S., Inbaraj, B. S., & Chen, B. (2017). Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz.(djulis) by HPLC-DAD-ESI–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 132, 109-116.
Hsu, K.-D., Chen, H.-J., Wang, C.-S., Lum, C.-C., Wu, S.-P., Lin, S.-P., & Cheng, K.-C. (2016). Extract of Ganoderma formosanum mycelium as a highly potent tyrosinase inhibitor. Scientific Reports, 6(1), 1-9.
Huang, C., Xiong, C., & Kornfeld, K. (2004). Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 101(21), 8084-8089.
Hulme, S. E., & Whitesides, G. M. (2011). Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research. Angewandte Chemie International Edition, 50(21), 4774-4807.
Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of Nutrition, 130(7), 1695-1699.
James, L. E. A. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research, 58, 1-31.
Jattujan, P., Chalorak, P., Siangcham, T., Sangpairoj, K., Nobsathian, S., Poomtong, T., Meemon, K. (2018). Holothuria scabra extracts possess anti-oxidant activity and promote stress resistance and lifespan extension in Caenorhabditis elegans. Experimental Gerontology, 110, 158-171.
Johnson, A. (1987). The control of fed-batch fermentation processes—a survey. Automatica, 23(6), 691-705.
Jones, M., Martoni, C., & Prakash, S. (2012). Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. European Journal of Clinical Nutrition, 66(11), 1234-1241.
Joshi, R., Sharma, V., & Kuila, A. (2018). Fermentation technology: current status and future prospects. Principles and Applications of Fermentation Technology, 1-13.
Kaeberlein, M. (2018). How healthy is the healthspan concept? Geroscience, 40(4), 361-364.
Kamboh, A., Leghari, R., Khan, M., Kaka, U., Naseer, M., Sazili, A., & Malhi, K. (2019). Flavonoids supplementation-An ideal approach to improve quality of poultry products. World's Poultry Science Journal, 75(1), 115-126.
Kampkötter, A., Timpel, C., Zurawski, R. F., Ruhl, S., Chovolou, Y., Proksch, P., & Wätjen, W. (2008). Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 149(2), 314-323.
Kang, H., Oh, Y. J., Ahn, K. S., Eom, H. J., Han, N., Kim, Y. B., & Sohn, N. W. (2009). Leuconostoc citreum HJ‐P4 (KACC 91035) regulates immunoglobulin E in an ovalbumin‐induced allergy model and induces interleukin‐12 through nuclear factor‐kappa B and p38/c‐Jun N‐terminal kinases signaling in macrophages. Microbiology and Immunology, 53(6), 331-339.
Kanner, J., Harel, S., & Granit, R. (2001). Betalains a new class of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry, 49(11), 5178-5185.
Karimi, S., Rashidian, E., Birjandi, M., & Mahmoodnia, L. (2018). Antagonistic effect of isolated probiotic bacteria from natural sources against intestinal Escherichia coli pathotypes. Electronic Physician, 10(3), 6534.
Kasahara, K., Krautkramer, K. A., Org, E., Romano, K. A., Kerby, R. L., Vivas, E. ILusis, A. J. (2018). Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature Microbiology, 3(12), 1461-1471.
Kedare, S. B., & Singh, R. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412-422.
Keith, S. A., Amrit, F. R. G., Ratnappan, R., & Ghazi, A. (2014). The C. elegans healthspan and stress-resistance assay toolkit. Methods, 68(3), 476-486.
Khalid, K. (2011). An overview of lactic acid bacteria. Int. J. Biosci, 1(3), 1-13.
Khan, M. I., & Giridhar, P. (2015). Plant betalains: Chemistry and biochemistry. Phytochemistry, 117, 267-295.
Kim, S. S., Heo, J., Kim, Y., Kim, M. J., & Kwak, H. S. (2020). Salt contents and aging period effects on the physicochemical properties and sensory quality of Korean traditional fermented soybean paste (doenjang). Food Bioscience, 36, 100645.
Kimura, K. D., Tissenbaum, H. A., Liu, Y., & Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 277(5328), 942-946.
Kittimongkolsuk, P., Roxo, M., Li, H., Chuchawankul, S., Wink, M., & Tencomnao, T. (2021). Extracts of the tiger milk mushroom (Lignosus rhinocerus) enhance stress resistance and extend lifespan in Caenorhabditis elegans via the DAF-16/FoxO signaling pathway. Pharmaceuticals, 14(2), 93.
Kıvanç, M., & Yapıcı, E. (2015). Kefir as a probiotic dairy beverage: determination lactic acid bacteria and yeast. International Journal of Food Engineering, 1(1), 55-60.
Koch, K., Havermann, S., Büchter, C., & Wätjen, W. (2014). Caenorhabditis elegans as model system in pharmacology and toxicology: effects of flavonoids on redox-sensitive signalling pathways and ageing. The Scientific World Journal, 2014.
Kok, D. E., Steegenga, W. T., Smid, E. J., Zoetendal, E. G., Ulrich, C. M., & Kampman, E. (2020). Bacterial folate biosynthesis and colorectal cancer risk: more than just a gut feeling. Critical Reviews in Food Science and Nutrition, 60(2), 244-256.
Kosikowski, F. V. (1981). Properties of commercial flavored frozen yogurts. Journal of Food Protection, 44(11), 853-856.
Kuila, A., & Sharma, V. (2018). Principles and applications of fermentation technology: John Wiley & Sons.
Kumar, R., Kaur, M., Garsa, A. K., Shrivastava, B., Reddy, V., & Tyagi, A. (2015). Natural and cultured buttermilk. Fermented Milk and Dairy Products, 203-225.
Kumari, R., & Jat, P. (2021). Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Frontiers in Cell and Developmental Biology, 9, 645593.
Kuo, H.-C., Kwong, H. K., Chen, H.-Y., Hsu, H.-Y., Yu, S.-H., Hsieh, C.-W., Cheng, K.-C. (2021). Enhanced antioxidant activity of Chenopodium formosanum Koidz. by lactic acid bacteria: Optimization of fermentation conditions. PLOS ONE, 16(5), e0249250.
Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M. T., Xiao, L., Li, X., & Hu, M. (2017). Effect of fermentation parameters and their optimization on the phytochemical properties of lactic-acid-fermented mulberry juice. Journal of Food Measurement and Characterization, 11, 1462-1473.
Lamitina, S. T., & Strange, K. (2005). Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress. American Journal of Physiology-Cell Physiology, 288(2), C467-C474.
Lee, C.-W., Chen, H.-J., Chien, Y.-H., Hsia, S.-M., Chen, J.-H., & Shih, C.-K. (2019). Synbiotic combination of Djulis (Chenopodium formosanum) and Lactobacillus acidophilus inhibits colon carcinogenesis in rats. Nutrients, 12(1), 103.
Lee, C.-W., Chen, H.-J., Xie, G.-R., & Shih, C.-K. (2019). Djulis (Chenopodium formosanum) prevents colon carcinogenesis via regulating antioxidative and apoptotic pathways in rats. Nutrients, 11(9), 2168.
Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67-78.
Li, C., Li, W., Chen, X., Feng, M., Rui, X., Jiang, M., & Dong, M. (2014). Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT-Food Science and Technology, 57(2), 477-485.
Li, M.-R., Zhou, Y.-Z., Du, G.-H., & Qin, X.-M. (2019). Research progress about the anti-aging effect and mechanism of flavonoids from traditional Chinese medicine. Acta Pharmaceutica Sinica, 1382-1391.
Li, P.-H., Chan, Y.-J., Hou, Y.-W., Lu, W.-C., Chen, W.-H., Tseng, J.-Y., & Mulio, A. T. (2021). Functionality of djulis (Chenopodium formosanum) by-products and in vivo anti-diabetes effect in type 2 diabetes mellitus patients. Biology, 10(2), 160.
Li, T., Chen, X. b., Chen, J. c., Wu, Q., & Chen, G. Q. (2014). Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnology Journal, 9(12), 1503-1511.
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Bonaduce, D. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757.
Lin, T.-A., Ke, B.-J., Cheng, C.-S., Wang, J.-J., Wei, B.-L., & Lee, C.-L. (2019). Red quinoa bran extracts protects against carbon tetrachloride-induced liver injury and fibrosis in mice via activation of antioxidative enzyme systems and blocking TGF-β1 pathway. Nutrients, 11(2), 395.
Lin, Y.-K., Chung, Y.-M., Lin, Y.-H., Lin, Y.-H., Hu, W.-C., & Chiang, C.-F. (2021). Health functional properties of unhulled red djulis (Chenopodium formosanum) in anti-aging. International Journal of Food Properties, 24(1), 833-844.
Lin, Y.-T. J., Chou, C.-C., & Hsu, C.-Y. S. (2017). Effects of Lactobacillus casei Shirota intake on caries risk in children. Journal of dental sciences, 12(2), 179-184.
Lithgow, G. J., White, T. M., Melov, S., & Johnson, T. E. (1995). Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proceedings of the National Academy of Sciences, 92(16), 7540-7544.
Liu, S.-n., Han, Y., & Zhou, Z.-j. (2011). Lactic acid bacteria in traditional fermented Chinese foods. Food Research International, 44(3), 643-651.
Lu, J.-J., Cheng, M.-C., Khumsupan, D., Hsieh, C.-C., Hsieh, C.-W., & Cheng, K.-C. (2023). Evaluation of fermented turmeric milk by lactic acid bacteria to prevent UV-induced oxidative stress in human fibroblast cells. Fermentation, 9(3), 230.
Luthria, D. L., Biswas, R., & Natarajan, S. (2007). Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chemistry, 105(1), 325-333.
Lutz, M., Martínez, A., & Martínez, E. A. (2013). Daidzein and Genistein contents in seeds of quinoa (Chenopodium quinoa Willd.) from local ecotypes grown in arid Chile. Industrial Crops and Products, 49, 117-121.
Lyu, J.-L., Liu, Y.-J., Wen, K.-C., Chiu, C.-Y., Lin, Y.-H., & Chiang, H.-M. (2022). Protective effect of Djulis (Chenopodium formosanum) extract against UV-and AGEs-induced skin aging via alleviating oxidative stress and collagen degradation. Molecules (Basel, Switzerland), 27(7), 2332.
Mahir, M., El Maakoul, A., Khay, I., Saadeddine, S., & Bakhouya, M. (2021). An investigation of heat transfer performance in an agitated vessel. Processes, 9(3), 468.
Makino, S., Sato, A., Goto, A., Nakamura, M., Ogawa, M., Chiba, Y., Okumura, K. (2016). Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of Dairy Science, 99(2), 915-923.
Maldonado Galdeano, C., Cazorla, S. I., Lemme Dumit, J. M., Vélez, E., & Perdigón, G. (2019). Beneficial effects of probiotic consumption on the immune system. Annals of Nutrition and Metabolism, 74(2), 115-124.
Manfredini, P. G., Cavanhi, V. A. F., Costa, J. A. V., & Colla, L. M. (2021). Bioactive peptides and proteases: characteristics, applications and the simultaneous production in solid-state fermentation. Biocatalysis and Biotransformation, 39(5), 360-377.
Mani-López, E., Palou, E., & López-Malo, A. (2014). Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. Journal of dairy science, 97(5), 2578-2590.
Martău, G.-A., Unger, P., Schneider, R., Venus, J., Vodnar, D. C., & López-Gómez, J. P. (2021). Integration of solid state and submerged fermentations for the valorization of organic municipal solid waste. Journal of Fungi, 7(9), 766.
Martínez-Villaluenga, C., Peñas, E., & Hernández-Ledesma, B. (2020). Pseudocereal grains: nutritional value, health benefits and current applications for the development of gluten-free foods. Food and Chemical Toxicology, 137, 111178.
Masood, M. I., Qadir, M. I., Shirazi, J. H., & Khan, I. U. (2011). Beneficial effects of lactic acid bacteria on human beings. Critical Reviews in Microbiology, 37(1), 91-98.
Matejčeková, Z., Liptáková, D., Spodniaková, S., & Valík, Ľ. (2016). Characterization of the growth of in milk in dependence on temperature. Acta Chimica Slovaca, 9(2), 104-108.
Mathot, A., Beliard, E., & Thuault, D. (2003). Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese. Journal of dairy science, 86(10), 3068-3074.
Mattarelli, P., Holzapfel, W., Franz, C. M., Endo, A., Felis, G. E., Hammes, W., Dellaglio, F. (2014). Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_4), 1434-1451.
Melini, F., & Melini, V. (2021). Impact of fermentation on phenolic compounds and antioxidant capacity of quinoa. Fermentation, 7(1), 20.
Mendenhall, A. R., Tedesco, P. M., Taylor, L. D., Lowe, A., Cypser, J. R., & Johnson, T. E. (2012). Expression of a single-copy hsp-16.2 reporter predicts life span. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 67(7), 726-733.
Miquel, J. (2009). An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Current Pharmaceutical Design, 15(26), 3003-3026.
Mohammad, M. A., Molloy, A., Scott, J., & Hussein, L. (2006). Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix. International Journal of Food Sciences and Nutrition, 57(7-8), 470-480.
Moncada, G. W., Martín, M. I. G., Escuredo, O., Fischer, S., & Míguez, M. (2013). Multivariate calibration by near infrared spectroscopy for the determination of the vitamin E and the antioxidant properties of quinoa. Talanta, 116, 65-70.
Morris, J. Z., Tissenbaum, H. A., & Ruvkun, G. (1996). A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature, 382(6591), 536-539.
Murakami, S., & Johnson, T. E. (1996). A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics, 143(3), 1207-1218.
Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ahringer, J., Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424(6946), 277-283.
Mustafa, S. M., Chua, L. S., El-Enshasy, H. A., Abd Majid, F. A., & Hanapi, S. Z. (2020). Kinetic profile and anti-diabetic potential of fermented Punica granatum juice using Lactobacillus casei. Process Biochemistry, 92, 224-231.
Muyanja, C., Narvhus, J. A., Treimo, J., & Langsrud, T. (2003). Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage. International Journal of Food Microbiology, 80(3), 201-210.
Myllyluoma, E., Kajander, K., Mikkola, H., Kyrönpalo, S., Rasmussen, M., Kankuri, E., Korpela, R. (2007). Probiotic intervention decreases serum gastrin-17 in Helicobacter pylori infection. Digestive and Liver Dsease, 39(6), 516-523.
Nagar, Y., Thakur, R. S., Parveen, T., Patel, D. K., Ram, K. R., & Satish, A. (2020). Toxicity assessment of parabens in Caenorhabditis elegans. Chemosphere, 246, 125730.
Narvhus, J. A., & Gadaga, T. H. (2003). The role of interaction between yeasts and lactic acid bacteria in African fermented milks: a review. International Journal of Food Microbiology, 86(1-2), 51-60.
Nielsen, I. L. F., & Williamson, G. (2007). Review of the factors affecting bioavailability of soy isoflavones in humans. Nutrition and Cancer, 57(1), 1-10.
Nighswonger, B. D., Brashears, M., & Gilliland, S. (1996). Viability of Lactobacillus acidophilus and Lactobacillus casei in fermented milk products during refrigerated storage. Journal of dairy science, 79(2), 212-219.
Niu, Y., Liao, J., Zhou, H., Wang, C.-c., Wang, L., & Fan, Y. (2022). Flavonoids from lycium barbarum leaves exhibit anti-aging effects through the redox-modulation. Molecules (Basel, Switzerland), 27(15), 4952.
Okabe, Y., Shimazu, T., & Tanimoto, H. (2011). Higher bioavailability of isoflavones after a single ingestion of aglycone‐rich fermented soybeans compared with glucoside‐rich non‐fermented soybeans in Japanese postmenopausal women. Journal of the Science of Food and Agriculture, 91(4), 658-663.
Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2(5), 270-278.
Paradis, S., & Ruvkun, G. (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes & Development, 12(16), 2488-2498.
Peres, C. M., Peres, C., Hernández-Mendoza, A., & Malcata, F. X. (2012). Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria–with an emphasis on table olives. Trends in Food Science & Technology, 26(1), 31-42.
Pérez-Díaz, I., Hayes, J., Medina, E., Anekella, K., Daughtry, K., Dieck, S., Lu, Z. (2017). Reassessment of the succession of lactic acid bacteria in commercial cucumber fermentations and physiological and genomic features associated with their dominance. Food Microbiology, 63, 217-227.
Pietsch, K., Saul, N., Chakrabarti, S., Stürzenbaum, S. R., Menzel, R., & Steinberg, C. E. (2011). Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid-and rosmarinic acid-mediated life extension in C. elegans. Biogerontology, 12, 329-347.
Pietsch, K., Saul, N., Menzel, R., Stürzenbaum, S. R., & Steinberg, C. E. (2009). Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology, 10, 565-578.
Pihlanto, A., Mattila, P., Mäkinen, S., & Pajari, A.-M. (2017). Bioactivities of alternative protein sources and their potential health benefits. Food & Function, 8(10), 3443-3458.
Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10(suppl_1), S49-S66.
Plengvidhya, V., Breidt Jr, F., Lu, Z., & Fleming, H. P. (2007). DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Applied and Environmental Microbiology, 73(23), 7697-7702.
Qi, Z., Ji, H., Le, M., Li, H., Wieland, A., Bauer, S., Herr, I. (2021). Sulforaphane promotes C. elegans longevity and healthspan via DAF-16/DAF-2 insulin/IGF-1 signaling. Aging, 13(2), 1649.
Qian, B., Xing, M., Cui, L., Deng, Y., Xu, Y., Huang, M., & Zhang, S. (2011). Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. Journal of Dairy Research, 78(1), 72-79.
Quinto, E. J., Jiménez, P., Caro, I., Tejero, J., Mateo, J., & Girbés, T. (2014). Probiotic lactic acid bacteria: a review. Food and Nutrition Sciences, 5(18), 1765.
Rai, A. K., Sanjukta, S., & Jeyaram, K. (2017). Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Critical Reviews in Food Science and Nutrition, 57(13), 2789-2800.
Rakhmanova, A., Khan, Z., & Shah, K. (2018). A mini review fermentation and preservation: role of lactic acid bacteria. MOJ Food Processing & Technology, 6(5), 414-417.
Randazzo, C., Pino, A., Ricciardi, L., Romano, C., Comito, D., Arena, E., Caggia, C. (2015). Probiotic supplementation in systemic nickel allergy syndrome patients: study of its effects on lactic acid bacteria population and on clinical symptoms. Journal of Applied Microbiology, 118(1), 202-211.
Rangsinth, P., Prasansuklab, A., Duangjan, C., Gu, X., Meemon, K., Wink, M., & Tencomnao, T. (2019). Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans. BMC Complementary and Alternative Medicine, 19(1), 1-13.
Rea, S. L., Wu, D., Cypser, J. R., Vaupel, J. W., & Johnson, T. E. (2005). A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nature Genetics, 37(8), 894-898.
Rekha, C., & Vijayalakshmi, G. (2010). Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. Journal of Applied Microbiology, 109(4), 1198-1208.
Rizzello, C. G., Lorusso, A., Russo, V., Pinto, D., Marzani, B., & Gobbetti, M. (2017). Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. International Journal of Food Microbiology, 241, 252-261.
Robert, L., & Labat-Robert, J. (2015). Stress in biology and medicine, role in aging. Pathologie Biologie, 63(4-5), 230-234.
Rohm, H., Lechner, F., & Lehner, M. (1990). Microflora of Austrian natural-set yogurt. Journal of Food Protection, 53(6), 478-480.
Saadeldeen, F. S., Niu, Y., Wang, H., Zhou, L., Meng, L., Chen, S., Kang, W. (2020). Natural products: regulating glucose metabolism and improving insulin resistance. Food Science and Human Wellness, 9(3), 214-228.
Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1), 1-15.
Saithong, P., Panthavee, W., Boonyaratanakornkit, M., & Sikkhamondhol, C. (2010). Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. Journal of Bioscience and Bioengineering, 110(5), 553-557.
San, K. Y., & Stephanopoulos, G. (1989). Optimization of fed‐batch penicillin fermentation: A case of singular optimal control with state constraints. Biotechnology and Bioengineering, 34(1), 72-78.
Sanalibaba, P., & Çakmak, G. A. (2016). Exopolysaccharides production by lactic acid bacteria. Journal of Applied Microbiology: Open Access, 2(115), 10.4172.
Sanjeewa, K. A., Jayawardena, T. U., Kim, S.-Y., Lee, H. G., Je, J.-G., Jee, Y., & Jeon, Y.-J. (2020). Sargassum horneri (Turner) inhibit urban particulate matter-induced inflammation in MH-S lung macrophages via blocking TLRs mediated NF-κB and MAPK activation. Journal of ethnopharmacology, 249, 112363.
Scerbak, C., Vayndorf, E. M., Parker, J. A., Neri, C., Driscoll, M., & Taylor, B. E. (2014). Insulin signaling in the aging of healthy and proteotoxically stressed mechanosensory neurons. Frontiers in Genetics, 5, 212.
Scott, B. A., Avidan, M. S., & Crowder, C. M. (2002). Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science, 296(5577), 2388-2391.
Seppo, L., Jauhiainen, T., Poussa, T., & Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. The American Journal of Clinical Nutrition, 77(2), 326-330.
Sert, D., Mercan, E., & Dertli, E. (2017). Characterization of lactic acid bacteria from yogurt-like product fermented with pine cone and determination of their role on physicochemical, textural and microbiological properties of product. LWT, 78, 70-76.
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757-781.
Sharma, N., Angural, S., Rana, M., Puri, N., Kondepudi, K. K., & Gupta, N. (2020). Phytase producing lactic acid bacteria: Cell factories for enhancing micronutrient bioavailability of phytate rich foods. Trends in Food Science & Technology, 96, 1-12.
Shi, Y.-C., Yu, C.-W., Liao, V. H.-C., & Pan, T.-M. (2012). Monascus-fermented dioscorea enhances oxidative stress resistance via DAF-16/FOXO in Caenorhabditis elegans. PLOS ONE, 7(6), e39515.
Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H., & Kapila, Y. L. (2016). Biomedical applications of nisin. Journal of Applied Microbiology, 120(6), 1449-1465.
Si, H., & Liu, D. (2014). Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. The Journal of Nutritional Biochemistry, 25(6), 581-591.
Simioni, C., Zauli, G., Martelli, A. M., Vitale, M., Sacchetti, G., Gonelli, A., & Neri, L. M. (2018). Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget, 9(24), 17181.
Smit, G., Smit, B. A., & Engels, W. J. (2005). Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews, 29(3), 591-610.
Sánchez-Blanco, A., & Kim, S. K. (2011). Variable pathogenicity determines individual lifespan in Caenorhabditis elegans. PLoS Genetics, 7(4), e1002047.
Son, H. G., Altintas, O., Kim, E. J. E., Kwon, S., & Lee, S. J. V. (2019). Age‐dependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell, 18(2), e12853.
Son, S.-H., Jeon, H.-L., Yang, S.-J., Sim, M.-H., Kim, Y.-J., Lee, N.-K., & Paik, H.-D. (2018). Probiotic lactic acid bacteria isolated from traditional Korean fermented foods based on β-glucosidase activity. Food Science and Biotechnology, 27(1), 123-129.
Song, B., Zheng, B., Li, T., & Liu, R. H. (2020). Raspberry extract ameliorates oxidative stress in Caenorhabditis elegans via the SKN-1/Nrf2 pathway. Journal of Functional Foods, 70, 103977.
Soomro, A., Masud, T., & Anwaar, K. (2002). Role of lactic acid bacteria (LAB) in food preservation and human health-a review. Pakistan Journal of Nutrition, 1(1), 20-24.
Subramaniyam, R., & Vimala, R. (2012). Solid state and submerged fermentation for the production of bioactive substances: a comparative study. International Journal of Natural Sciences, 3(3), 480-486.
Sugawara, T., & Sakamoto, K. (2020). Quercetin enhances motility in aged and heat-stressed Caenorhabditis elegans nematodes by modulating both HSF-1 activity, and insulin-like and p38-MAPK signalling. PLOS ONE, 15(9), e0238528.
Sun, L.-C., Sridhar, K., Tsai, P.-J., & Chou, C.-S. (2019). Effect of traditional thermal and high-pressure processing (HPP) methods on the color stability and antioxidant capacities of Djulis (Chenopodium formosanum Koidz.). LWT, 109, 342-349.
Surco-Laos, F., Cabello, J., Gomez-Orte, E., Gonzalez-Manzano, S., Gonzalez-Paramas, A. M., Santos-Buelga, C., & Duenas, M. (2011). Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food & Function, 2(8), 445-456.
Tagliazucchi, D., Martini, S., & Solieri, L. (2019). Bioprospecting for bioactive peptide production by lactic acid bacteria isolated from fermented dairy food. Fermentation, 5(4), 96.
Tamime, A. Y. (2002). Microbiology of starter cultures. ROBINSON, RK Dairy Microbiology Handbook, 3, 261.
Tao, M., Li, R., Xu, T., Zhang, Z., Wu, T., Pan, S., & Xu, X. (2021). Flavonoids from the mung bean coat promote longevity and fitness in Caenorhabditis elegans. Food &Function, 12(17), 8196-8207.
Tiku, V., Jain, C., Raz, Y., Nakamura, S., Heestand, B., Liu, W., Slagboom, P. E. (2017). Small nucleoli are a cellular hallmark of longevity. Nature Communications, 8(1), 1-9.
Tissenbaum, H. A. (2015). Using C. elegans for aging research. Invertebrate Reproduction & Development, 59(sup1), 59-63
Tomasik, P., & Tomasik, P. (2020). Probiotics, non-dairy prebiotics and postbiotics in nutrition. Applied Sciences, 10(4), 1470.
Topakas, E., Vafiadi, C., & Christakopoulos, P. (2007). Microbial production, characterization and applications of feruloyl esterases. Process Biochemistry, 42(4), 497-509.
Tsai, P.-J., Sheu, C.-H., Wu, P.-H., & Sun, Y.-F. (2010). Thermal and pH stability of betacyanin pigment of djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. Journal of Agricultural and Food Chemistry, 58(2), 1020-1025.
Tu, D.-G., Chyau, C.-C., Chen, S.-Y., Chu, H.-L., Wang, S.-C., & Duh, P.-D. (2020). Antiproliferative effect and mediation of apoptosis in human hepatoma HepG2 Cells induced by Djulis husk and its bioactive compounds. Foods, 9(10), 1514.
Ujiroghene, O. J., Liu, L., Zhang, S., Lu, J., Zhang, C., Lv, J., Zhang, M. (2019). Antioxidant capacity of germinated quinoa-based yoghurt and concomitant effect of sprouting on its functional properties. LWT, 116, 108592.
Van Kranenburg, R., Kleerebezem, M., van Hylckama Vlieg, J., Ursing, B. M., Boekhorst, J., Smit, B. A., Siezen, R. J. (2002). Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. International Dairy Journal, 12(2-3), 111-121.
Vega‐Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541-2547.
Verbelen, P. J., De Schutter, D. P., Delvaux, F., Verstrepen, K. J., & Delvaux, F. R. (2006). Immobilized yeast cell systems for continuous fermentation applications. Biotechnology Letters, 28(19), 1515-1525.
Vilcacundo, R., & Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1-6.
Walker, G. A., & Lithgow, G. J. (2003). Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin‐like signals. Aging Cell, 2(2), 131-139.
Wang, K., Niu, M., Song, D., Liu, Y., Wu, Y., Zhao, J., Lu, B. (2020). Evaluation of biochemical and antioxidant dynamics during the co‐fermentation of dehusked barley with Rhizopus oryzae and Lactobacillus plantarum. Journal of Food Biochemistry, 44(2), e13106.
Wang, L., Zhang, H., & Lei, H. (2022). Phenolics profile, antioxidant activity and flavor volatiles of pear juice: Influence of lactic acid fermentation using three Lactobacillus strains in monoculture and binary mixture. Foods, 11(1), 11.
Wang, S., Xue, J., Zhang, S., Zheng, S., Xue, Y., Xu, D., & Zhang, X. (2020). Composition of peony petal fatty acids and flavonoids and their effect on Caenorhabditis elegans lifespan. Plant Physiology and Biochemistry, 155, 1-12.
Wang, W., Ma, Q., Zhang, F., Tang, Y., Wang, J., & Sun, J. (2023). Changes in bioactive and volatile aroma compounds in vinegar fermented in a rotary drum bioreactor. Journal of Food Composition and Analysis, 121, 105345.
Widyastuti, Y., & Febrisiantosa, A. (2014). The role of lactic acid bacteria in milk fermentation. Food and Nutrition Sciences, 2014.
Xanthopoulos, V., Petridis, D., & Tzanetakis, N. (2001). Characterization and classification of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus strains isolated from traditional Greek yogurts. Journal of Food Science, 66(5), 747-752.
Yael, B., Liel, G., Hana, B., Ran, H., & Shmuel, G. (2012). Total phenolic content and antioxidant activity of red and yellow quinoa (Chenopodium quinoa Willd.) seeds as affected by baking and cooking conditions. Food and Nutrition Sciences, 2012.
Yang, Z., Li, S., Zhang, X., Zeng, X., Li, D., Zhao, Y., & Zhang, J. (2010). Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: Potential application in fermented milk products. Journal of Bioscience and Bioengineering, 110(1), 53-57.
Yang, Z.-Z., Yu, Y.-T., Lin, H.-R., Liao, D.-C., Cui, X.-H., & Wang, H.-B. (2018). Lonicera japonica extends lifespan and healthspan in Caenorhabditis elegans. Free Radical Biology and Medicine, 129, 310-322.
Yatmaz, E., & Turhan, I. (2019). Liquid State Bioreactor. In Essentials in fermentation technology (pp. 135-168): Springer.
Yu, C.-W., Li, W.-H., Hsu, F.-L., Yen, P.-L., Chang, S.-T., & Liao, V. H.-C. (2014). Essential oil alloaromadendrene from mixed-type Cinnamomum osmophloeum leaves prolongs the lifespan in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry, 62(26), 6159-6165.
Zečić, A., & Braeckman, B. P. (2020). DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells, 9(1), 109.
Zhang, L., Jie, G., Zhang, J., & Zhao, B. (2009). Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radical Biology and Medicine, 46(3), 414-421.
Zhang, S., Li, F., Zhou, T., Wang, G., & Li, Z. (2020). Caenorhabditis elegans as a useful model for studying aging mutations. Frontiers in Endocrinology, 11, 554994.
Zhao, J., Yu, J., Zhi, Q., Yuan, T., Lei, X., Zeng, K., & Ming, J. (2021). Anti-aging effects of the fermented anthocyanin extracts of purple sweet potato on Caenorhabditis elegans. Food & Function, 12(24), 12647-12658.
Zhu, Y., Cheng, Y., Wang, L., Fan, J., & Li, L. (2008). Enhanced antioxidative activity of Chinese traditionally fermented Okara (Meitauza) prepared with various microorganism. International Journal of Food Properties, 11(3), 519-529.
Zhu, Y., Wang, Z., & Zhang, L. (2019). Optimization of lactic acid fermentation conditions for fermented tofu whey beverage with high-isoflavone aglycones. LWT, 111, 211-217.
Żółkiewicz, J., Marzec, A., Ruszczyński, M., & Feleszko, W. (2020). Postbiotics—a step beyond pre-and probiotics. Nutrients, 12(8), 2189.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top