|
Ai, L.;Guo, W.;Chen, W.;Teng, Y.;Bai, L., The gal80 Deletion by CRISPR-Cas9 in Engineered Saccharomyces cerevisiae Produces Artemisinic Acid Without Galactose Induction. Curr. Microbiol. 2019, 76 (11), 1313-1319. Alagu Lakshmi, S.;Shafreen, R. M. B.;Priya, A.;Shunmugiah, K. P., Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. J. Biomol. Struct. Dyn. 2021, 39 (13), 4594-4609. Basson, M. E.; Thorsness, M,; Rine, J., Saccharomyces cerevisiae contains two functional genes encoging 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc. Natl. Acad. Sci. 1986, 83, 5563-5567. Behura, S. K.;Severson, D. W., Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol. rev. biol. proc. Camb. Philos. Soc. 2013, 88 (1), 49-61. Bentley, F. K.; Zurbriggen, A.; Melis, A. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 2014, 7 (1), 71-86. Chen, J. C.; Chiu, M. H.; Nie, R. L.; Cordell, G. A.; Qiu, S. X. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat. Prod. Rep. 2005, 22 (3), 386-99. Dai, L.; Liu, C.; Zhu, Y.; Zhang, J.; Men, Y.; Zeng, Y.; Sun, Y. Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii. Plant Cell Physiol. 2015, 56 (6), 1172-82. Dai, S.;Wang, C.;Zhao, X.;Ma, C.;Fu, K.;Liu, Y.;Peng, C.;Li, Y., Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics. Pharmacol. Res. 2023, 187, 106587. Dai, Z.;Wang, B.;Liu, Y.;Shi, M.;Wang, D.;Zhang, X.;Liu, T.;Huang, L.;Zhang, X., Producing aglycons of ginsenosides in bakers' yeast. Sci. Rep. 2014, 4, 3698. Daly, R.;Hearn, M. T., Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 2005, 18 (2), 119-38. DeBose-Boyd, R. A., Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res. 2008, 18 (6), 609-21. Devendra, N. K.;Attard, E. G.;Raghunandan, D.;Seetharam, Y. N., Study on Seasonal Variation on the Content of Cucurbitacin of Various Vegetative Parts of Trichosanthes cucumerina L. var. cucumerina. Int. J. Plant Res. 2012, 1 (1), 25-28. Dong, L.;Almeida, A.;Pollier, J.;Khakimov, B.;Bassard, J. E.;Miettinen, K.;Staerk, D.;Mehran, R.;Olsen, C. E.;Motawia, M. S.;Goossens, A.;Bak, S., An Independent Evolutionary Origin for Insect Deterrent Cucurbitacins in Iberis amara. Mol. Biol. Evol. 2021, 38 (11), 4659-4673. Fu, H.;Liang, Y.;Zhong, X.;Pan, Z.;Huang, L.;Zhang, H.;Xu, Y.;Zhou, W.;Liu, Z., Codon optimization with deep learning to enhance protein expression. Sci. Rep. 2020, 10 (1), 17617. Fukunaga, T.;Cha-Aim, K.;Hirakawa, Y.;Sakai, R.;Kitagawa, T.;Nakamura, M.;Nonklang, S.;Hoshida, H.;Akada, R., Designed construction of recombinant DNA at the ura3Delta0 locus in the yeast Saccharomyces cerevisiae. Yeast 2013, 30 (6), 243-53. Garg, S.;Kaul, S. C.;Wadhwa, R., Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review). Int. J. Oncol. 2018, 52 (1), 19-37. Ge, W.;Chen, X.;Han, F.;Liu, Z.;Wang, T.;Wang, M.;Chen, Y.;Ding, Y.;Zhang, Q., Synthesis of Cucurbitacin B Derivatives as Potential Anti-Hepatocellular Carcinoma Agents. Molecules 2018, 23 (12). Gibson, D. G.; Young, L.; Chuang, R. Y.; Venter, J. C.; Hutchison, C. A., 3rd; Smith, H. O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6 (5), 343-5. Guo, H.; Wang, H.; Huo, Y.-x. Engineering of critical enzymes and pathways for improved triterpenoid biosynthesis in yeast. ACS Synth. Biol. 2020, 9 (9), 2214-2227. Hassan, S. T. S.;Berchová-Bímová, K.;Petráš, J.;Hassan, K. T. S., Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. S. Afr. J. Bot. 2017, 108, 90-94. Hua, D.;Fu, J.;Liu, L.;Yang, X.;Zhang, Q.;Xie, M., Change in Bitterness, Accumulation of Cucurbitacin B and Expression Patterns of CuB Biosynthesis-related Genes in Melon During Fruit Development. Hort. J. 2019, 88 (2), 253-262. Jorda, T.;Puig, S., Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes (Basel) 2020, 11 (7). Kaushik, U.; Aeri, V.; Mir, S. R., Cucurbitacins - An insight into medicinal leads from nature. Pharmacogn Rev. 2015, 9 (17), 12-8. Kim, Y. C.;Choi, D.;Cha, A.;Lee, Y. G.;Baek, N. I.;Rimal, S.;Sang, J.;Lee, Y.;Lee, S., Critical enzymes for biosynthesis of cucurbitacin derivatives in watermelon and their biological significance. Commun. Biol. 2020, 3 (1), 444. Kirby, J.;Romanini, D. W.;Paradise, E. M.;Keasling, J. D., Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua. FEBS J. 2008, 275 (8), 1852-9. Klingenberg, M., Pigments of Rat Liver Microsomes. Arch. Biochem. Biophys. 1958, 75, 376-386. Kurman, Y.;Kiliccioglu, I.;Dikmen, A. U.;Esendagli, G.;Bilen, C. Y.;Sozen, S.;Konac, E., Cucurbitacin B and cisplatin induce the cell death pathways in MB49 mouse bladder cancer model. Exp. Biol. Med. (Maywood) 2020, 245 (9), 805-814. Lee, Y. S.; Park, H. S.; Lee, D. K.; Jayakodi, M.; Kim, N. H.; Koo, H. J.; Lee, S. C.; Kim, Y. J.; Kwon, S. W.; Yang, T. J. Integrated Transcriptomic and Metabolomic Analysis of Five Panax ginseng Cultivars Reveals the Dynamics of Ginsenoside Biosynthesis. Front. Plant Sci. 2017, 8, 1048. Lundemo, M. T.;Woodley, J. M., Guidelines for development and implementation of biocatalytic P450 processes. Appl. Microbiol. Biotechnol. 2015, 99 (6), 2465-83. Luo, F.; Li, Q.; Yu, L.; Wang, C.; Qi, H. High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt. Plant Physiol. Biochem. 2020, 154, 770-781. Ma, T.; Shi, B.; Ye, Z.; Li, X.; Liu, M.; Chen, Y.; Xia, J.; Nielsen, J.; Deng, Z.; Liu, T. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab. Eng. 2019, 52, 134-142. Malhotra, K.;Franke, J., Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants. Beilstein J. Org. Chem. 2022, 18, 1289-1310. Marostica, L. L.;de Barros, A. L. B.;Oliveira, J.;Salgado, B. S.;Cassali, G. D.;Leite, E. A.;Cardoso, V. N.;Lang, K. L.;Caro, M. S. B.;Duran, F. J.;Schenkel, E. P.;de Oliveira, M. C.;Simoes, C. M. O., Antitumor effectiveness of a combined therapy with a new cucurbitacin B derivative and paclitaxel on a human lung cancer xenograft model. Toxicol. Appl. Pharmacol. 2017, 329, 272-281. Morant, M.;Bak, S.;Møller, B. L.;Werck-Reichhart, D., Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr. Opin. Biotechnol. 2003, 14 (2), 151-162. Nicolaou, K.; Yang, Z.; Liu, J.; Ueno, H.; Nantermet, P.; Guy, R.; Claiborne, C.; Renaud, J.; Couladorous, E.; Paulvannan, K., Total synthesis of taxol. Nature 1994, 367, 630. Niu, Y.;Luo, H.;Sun, C.;Yang, T. J.;Dong, L.;Huang, L.;Chen, S., Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene 2014, 533 (1), 295-303. Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M. D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D. R.; Teoh, K. H.; Reed, D. W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K. W.; Fickes, S.; Galazzo, J.; Gaucher, S. P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L. F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P. S.; Keasling, J. D.; Reiling, K. K.; Renninger, N. S.; Newman, J. D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496 (7446), 528-32. Pandian, B. A.; Sathishraj, R.; Djanaguiraman, M.; Prasad, P. V. V.; Jugulam, M. Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants 2020, 9 (5). Peng, B.;Wood, R. J.;Nielsen, L. K.;Vickers, C. E., An Expanded Heterologous GAL Promoter Collection for Diauxie-Inducible Expression in Saccharomyces cerevisiae. ACS Synth. Biol. 2018, 7 (2), 748-751. Polakowski T. ;Stahl U. ;C., L., Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl. Microbiol. Biotechnol. 1998, 49, 66-71. Sang, J.;Dhakal, S.;Lee, Y., Cucurbitacin B Suppresses Hyperglycemia Associated with a High Sugar Diet and Promotes Sleep in Drosophila melanogaster. Mol. Cells 2021, 44 (2), 68-78. Sawai, S.; Saito, K. Triterpenoid biosynthesis and engineering in plants. Front. Plant Sci. 2011, 2, 25. Seo, C. R.; Yang, D. K.; Song, N. J.; Yun, U. J.; Gwon, A. R.; Jo, D. G.; Cho, J. Y.; Yoon, K.; Ahn, J. Y.; Nho, C. W.; Park, W. J.; Yang, S. Y.; Park, K. W. Cucurbitacin B and cucurbitacin I suppress adipocyte differentiation through inhibition of STAT3 signaling. Food Chem. Toxicol. 2014, 64, 217-24. Shang, Y.; Ma, Y.; Zhou, Y.; Zhang, H.; Duan, L.; Chen, H.; Zeng, J.; Zhou, O.; Wang, S.; Gu, W., Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 2014, 346, 1084-1088. Sikorski, R. S.; Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122, 19-27. Souza-Moreira, T. M.;Navarrete, C.;Chen, X.;Zanelli, C. F.;Valentini, S. R.;Furlan, M.;Nielsen, J.;Krivoruchko, A., Screening of 2A peptides for polycistronic gene expression in yeast. FEMS Yeast Res. 2018, 18 (5). Sun, J.;Shao, Z.;Zhao, H.;Nair, N.;Wen, F.;Xu, J. H.;Zhao, H., Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109 (8), 2082-92. Varela, C.;Melim, C.;Neves, B. G.;Sharifi-Rad, J.;Calina, D.;Mamurova, A.;Cabral, C., Cucurbitacins as potential anticancer agents: new insights on molecular mechanisms. J. Transl. Med. 2022, 20 (1), 630. Wong, G.;Lim, L. R.;Tan, Y. Q.;Go, M. K.;Bell, D. J.;Freemont, P. S.;Yew, W. S., Reconstituting the complete biosynthesis of D-lysergic acid in yeast. Nat. Commun. 2022, 13 (1), 712. Xu, J.; Chen, Y.; Yang, R.; Zhou, T.; Ke, W.; Si, Y.; Yang, S.; Zhang, T.; Liu, X.; Zhang, L.; Xiang, K.; Guo, Y.; Liu, Y. Cucurbitacin B inhibits gastric cancer progression by suppressing STAT3 activity. Arch. Biochem. Biophys. 2020, 684, 108314. Zhang, T.;Lei, J.;Yang, H.;Xu, K.;Wang, R.;Zhang, Z., An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast 2011, 28 (11), 795-8. Zhou, Y.; Ma, Y.; Zeng, J.; Duan, L.; Xue, X.; Wang, H.; Lin, T.; Liu, Z.; Zeng, K.; Zhong, Y.; Zhang, S.; Hu, Q.; Liu, M.; Zhang, H.; Reed, J.; Moses, T.; Liu, X.; Huang, P.; Qing, Z.; Liu, X.; Tu, P.; Kuang, H.; Zhang, Z.; Osbourn, A.; Ro, D. K.; Shang, Y.; Huang, S. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat. Plants 2016, 2, 16183.
|