( 您好!臺灣時間:2024/06/14 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Kai-Chun Peng
論文名稱:FAR-RED INSENSITIVE 219/JAR1與phytochrome B透過調控核斑型態共同抑制阿拉伯芥之遮蔭反應
論文名稱(外文):FAR-RED INSENSITIVE 219/JAR1 and phytochrome B co-repress shade avoidance response in Arabidopsis via modulating nuclear speckle formation
指導教授(外文):Hsu-Liang Hsieh
口試委員(外文):Keqiang WuShu-Hsing WuShih-Long TuHuang-Lung TsaiChin-Mei Lee
外文關鍵詞:phyBFIN219shade avoidance responseJAnuclear speckles
  • 被引用被引用:1
  • 點閱點閱:33
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
遮蔭環境所促使的植物生長通常伴隨著抑制植物對於病蟲害抵禦的能力。根據現有研究可知phytochrome B (phyB) 可以透過調控茉莉酸(JAs)生合成及訊息傳遞路徑中的多個關鍵分子來抑制植物的防禦反應,如JAZs,MYCs,ST2a等。因此本研究想探討活化態茉莉酸(JA-Ile)關鍵之合成酵素FAR-RED INSENSITIVE 219 (FIN219)是否也參與在phyB所調控的生長與防禦之權衡反應中。研究中指出FIN219在避蔭反應之中扮演負調控者,同時也與phyB有直接的交互作用。有趣的是從實驗結果中發現活化態的FIN219在遮蔭環境中為主要的表現型態,然而,此現象與已知遮蔭環境下防禦反應會被削弱的論點有所衝突。因此這也暗示在遮蔭環境下phyB與FIN219的結合可能有特別的調控關係,推測phyB會透過與FIN219的直接結合去削弱其調控之茉莉酸訊息傳遞反應。此外本研究也發現外源性茉莉酸(MeJA)處理以及內源性大量表現茉莉酸的突變株dgd1-1皆可透過促使細胞核中phyB核斑(nuclear speckles)的形成,直接抑制植物遮蔭反應中的下胚軸生長。從轉錄體分析的結果中也可以發現phyB與FIN219以協同方式抑制避蔭反應相關基因的表現,如HFR1,IAA29等。藉此得知phyB所調控的避蔭反應中有部分路徑需要FIN219參與,同時也有部分路徑是獨立於FIN219調控之外。綜合以上資訊,本研究提出一個避蔭反應調控機制的模型:在植物受到遮蔭的情況下,細胞質中的phyB會透過與活化態的FIN219結合,干擾茉莉酸的訊息傳遞反應,並且導致細胞核中的phyB核斑瓦解,因此植物得以促使一系列避蔭反應相關基因的表現,向上生長延長以獲得足夠的光照能量,最終適應遮蔭的環境。
Shade-triggered plant growth is regularly associated with attenuating the capability of plants’ innate immune responses against herbivores. According to previous reports, phytochrome B (phyB) repressed defense response under the shaded environment by regulating several critical components in JA signaling pathway, such as JAZs, MYCs, and ST2a. However, whether the JA-Ile biosynthetic enzyme FAR-RED INSENSITIVE 219 (FIN219), is involved in the phyB-mediated growth-defense tradeoff has not been reported. Our studies showed that FIN219 played a negative role in shade avoidance response and showed physical interaction with phyB under shading conditions. Interestingly, the active form of FIN219 is present under shading conditions by analyzing the phosphorylation state of FIN219. Combined with the up-regulated expression level of JA-responsive genes in phyB-deficient mutants under shade, it implies that phyB might suppress the JA response by directly targeting FIN219.
On the other hand, we found that exogenous JA treatment and the high level of endogenous JA in the dgd1-1 mutant promote the formation of nuclear speckles of phyB even in the shaded environment, leading to the photomorphogenic phenotype. Moreover, the microarray analysis showed that phyB and FIN219 co-suppressed the expression of typical SAR marker genes, HFR1 and IAA29. Our data suggest that phyB negatively regulates SAR via FIN219-dependent and FIN219-independent pathways. Taken together, phyB represses the signaling transduction of JA via physically interacting with FIN219, resulting in the deconstruction of phyB-associated nuclear speckles so that the plants can elongate rapidly for sufficient light absorption under shade environments.
口試委員審定書 I
誌謝 II
中文摘要 III
Abstract IV
Contents V
List of Figures VII
List of Appendixes XI
Introduction 1
Materials and Methods 6
1. Plant materials and growth conditions 6
2. Measurement of hypocotyl and petiole lengths 6
3. Protein extraction and western blotting 7
4. Yeast two-hybrid assays 7
5. Bimolecular fluorescence complementation 7
6. Co-immunoprecipitation 8
7. Subcellular localization 8
8. RT-qPCR and semiquantitative RT-PCR 9
9. Assays of phyB nuclear speckle formation 9
10. Determination of the phosphorylation status of FIN219 in Arabidopsis 9
11. Microarray assays 10
12. Analysis of differential expression genes (DEGs) 10
13. Preparation of cytosol and nuclear fractionation 10
Results 12
1. FIN219 is a negative regulator of shade-triggered hypocotyl and petiole elongation 12
2. FIN219 is dephosphorylated in response to light transition from high to low R:FR conditions 12
3. phyB interacts with phosphorylated and dephosphorylated FIN219 in the cytosol under ambient light and shading conditions, respectively, and phyB might suppress the JA signaling by targeting dephosphorylated FIN219 14
4. Genetic evidence shows that phyB is epistatic to FIN219 in shade avoidance response 16
5. JA treatment promotes the formation of phyB-associated nuclear speckles and suppresses the hypocotyl elongation under shading conditions 17
6. A high level of endogenous JA in PHYBOE-Y dgd1-1 promotes the formation of phyB-associated nuclear speckles and suppresses the hypocotyl elongation under shading conditions 18
7. phyB and FIN219 synergistically repress the gene expression of shade avoidance response 20
Discussion 22
1. Both FIN219 and phyB play opposing roles in shade avoidance response 22
2. The phosphorylation state and enzyme activity of FIN219 is regulated in a light-dependent manner 24
3. The photoreceptor phyB might play a key role in suppressing FIN219-mediated JA signaling transduction under shading conditions 24
4. FIN219 and phyB mutually regulate each other in a negative way 25
5. The jasmonic acid signaling pathway represses plant growth by triggering phyB-contained nuclear speckles formation 25
Figures 28
References 47
Appendixes 54
Bohmer, M. and Schroeder, J.I. (2011). Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J. 67: 105–118.
Buskirk, E.K. Van, Reddy, A.K., Nagatani, A., and Chen, M. (2014). Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the dark. Plant Physiol. 165: 595–607.
Campos, M.L., Yoshida, Y., Major, I.T., De Oliveira Ferreira, D., Weraduwage, S.M., Froehlich, J.E., Johnson, B.F., Kramer, D.M., Jander, G., Sharkey, T.D., and Howe, G.A. (2016). Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat. Commun. 7: 1–10.
Casal, J.J. (2013). Photoreceptor Signaling Networks in Plant Responses to Shade. Annu. Rev. Plant Biol. 64: 403–427.
Chen, D., Lyu, M., Kou, X., Li, J., Yang, Z., Gao, L., Li, Y., Fan, L., Shi, H., and Zhong, S. (2022). Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol. Cell 82: 3015-3029.e6.
Chen, H.J., Chen, C.L., and Hsieh, H.L. (2015). Far-Red Light-Mediated Seedling Development in Arabidopsis Involves FAR- RED INSENSITIVE 219 / JASMONATE RESISTANT 1-Dependent and -Independent Pathways. PLoS One 10: e0132723.
Chen, L. and Madura, K. (2002). Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22: 4902–4913.
Chen, M., Galvão, R.M., Li, M., Burger, B., Bugea, J., and Chory, J. (2010). Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 141: 1230–1240.
Chen, M., Schwab, R., and Chory, J. (2003). Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc. Natl. Acad. Sci. 100: 14493–14498.
Chico, J., Fernández-barbero, G., Chini, A., Fernández-calvo, P., Díez-díaz, M., and Solano, R. (2014). Repression of jasmonate-dependent defenses by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis. Plant Cell 26: 1967–1980.
Christie, J.M. (2007). Phototropin Blue-Light Receptors. Annu. Rev. Plant Biol. 58: 21–45.
Cipollini, D. (2004). Stretching the limits of plasticity: Can a plant defend against both competitors and herbivores? Ecology 85: 28–37.
Delfin, J.C., Kanno, Y., Seo, M., Kitaoka, N., Matsuura, H., Tohge, T., and Shimizu, T. (2022). AtGH3.10 is another jasmonic acid-amido synthetase in Arabidopsis thaliana. Plant J. 110: 1082–1096.
Deregibus, V.A., Casal, J.J., Jacobo, E.J., Gibson, D., and Kauffmant, M. (1994). Evidence that heavy grazing may promote the germination of Lolium multiflorum seeds via phytochrome-mediated perception of high red / far-red ratios. Funct. Ecol. 8: 536–542.
Estavillo, G.M., Verhertbruggen, Y., Scheller, H. V., Pogson, B.J., Heazlewood, J.L., and Ito, J. (2014). Isolation of the plant cytosolic fraction for proteomic analysis. Methods Mol. Biol. 1072: 453–467.
Fankhauser, C. and Chory, J. (1997). Light control of plant. Annu. Rev. Cell Dev. Biol. 13: 203–219.
Fernández-Milmanda, G.L., Crocco, C.D., Reichelt, M., Mazza, C.A., Köllner, T.G., Zhang, T., Cargnel, M.D., Lichy, M.Z., Fiorucci, A.S., Fankhauser, C., Koo, A.J., Austin, A.T., Gershenzon, J., and Ballaré, C.L. (2020) A light-dependent molecular link between competition cues and defense responses in plants. Nat. Plants 6: 223–230.
Guo, Q., Yoshida, Y., Major, I.T., Wang, K., Sugimoto, K., Kapali, G., Havko, N.E., Benning, C., and Howe, G.A. (2018). JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115: E10768–E10777.
Havko, N.E., Major, I.T., Jewell, J.B., Attaran, E., Browse, J., and Howe, G.A. (2016). Control of carbon assimilation and partitioning by jasmonate: An accounting of growth–defense tradeoffs. Plants 5: 7.
Hirschfeld, M., Tepperman, J.M., Clack, T., Quail, P.H., and Sharrock, R.A. (1998). Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies. Genet. Soc. Am. Coord. 149: 523–535.
Hornitschek, P., Kohnen, M. V, Lorrain, S., Rougemont, J., Ljung, K., Lopez-Vidriero, I., Franco-Zorrilla, J.M., Solano, R., Trevisan, M., Pradervand, S., Xenarios, I., and Fankhauser, C. (2012). Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 71: 699–711.
Hsieh, H., Okamoto, H., Wang, M., Ang, L., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14: 1958–1970.
Hu, W., Su, Y., and Lagarias, J.C. (2009). A light-independent allele of phytochrome b faithfully recapitulates photomorphogenic transcriptional networks. Mol. Plant 2: 166–182.
Huang, X., Zhang, Q., Jiang, Y., Yang, C., Wang, Q., and Li, L. (2018). Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in arabidopsis. Elife 7: 1–17.
Huot, B., Yao, J., Montgomery, B.L., and He, S.Y. (2014). Growth–defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant 7: 1267–1287.
Izaguirre, M.M., Mazza, C.A., Biondini, M., Baldwin, I.T., and Ballare, C.L. (2006). Remote sensing of future competitors: Impacts on plant defenses. Proc. Natl. Acad. Sci. 103: 7170–7174.
Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., Angelo, C.D., and Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light , drought and cold stress responses. Plant J. 50: 347–363.
Klopfenstein, D. V, Zhang, L., Pedersen, B.S., Ramírez, F., Warwick, A., Naldi, A., Mungall, C.J., Yunes, J.M., and Botvinnik, O. (2018). OPEN GOATOOLS : A Python library for Gene Ontology analyses. Sci. Rep. 8: 10872.
Krall, L. and Reed, J.W. (2000). The histidine kinase-related domain participates in phytochrome B function but is dispensable. Proc. Natl. Acad. Sci. 97: 8169–8174.
Legris, M., Nieto, C., Sellaro, R., Prat, S., and Casal, J.J. (2017). Perception and signalling of light and temperature cues in plants. Plant J. 90: 683–697.
Leivar, P., Monte, E., Al-Sady, B., Carle, C., Storer, A., Alonso, J.M., Ecker, J.R., and Quail, P.H. (2008). The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20: 337–352.
Leone, M., Keller, M.M., Cerrudo, I., and Ballaré, C.L. (2014). To grow or defend? Low red: Far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. New Phytol. 204: 355–367.
Li, J., Li, G., Wang, H., and Deng, X.W. (2011). Phytochrome signaling mechanisms. Arab. B. 9: e0148.
Li, L., Ljung, K., Breton, G., Schmitz, R.J., Pruneda-paz, J., Cowing-zitron, C., Cole, B.J., Ivans, L.J., Pedmale, U.V., Jung, H., Ecker, J.R., Kay, S.A., and Chory, J. (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 26: 785–790.
Lin, Y., Lin, Y., Chen, L., Herrfurth, C., Feussner, I., and Li, H. (2016). Reduced biosynthesis of digalactosyldiacylglycerol, a major chloroplast membrane lipid, leads to oxylipin overproduction and phloem cap lignification in Arabidopsis. Plant Cell 28: 219–232.
Lu, X.D., Zhou, C.M., Xu, P.B., Luo, Q., Lian, H.L., and Yang, H.Q. (2015). Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol. Plant 8: 467–478.
Luo, Q., Lian, H.L., He, S.B., Li, L., Jia, K.P., and Yang, H.Q. (2014). COP1 and phyB physically interact with PIL1 to regulate its stability and photomorphogenic development in Arabidopsis. Plant Cell 26: 2441–2456.
Major, I.T., Guo, Q., Zhai, J., Kapali, G., Kramer, D.M., and Howea, G.A. (2020). A phytochrome B-independent pathway restricts growth at high levels of jasmonate defense. Plant Physiol. 183: 733–749.
Martínez-García, J.F., Gallemí, M., Molina-Contreras, M.J., Llorente, B., Bevilaqua, M.R.R., and Quail, P.H. (2014). The shade avoidance syndrome in Arabidopsis: The antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade. PLoS One 9.
Moreno, J.E., Tao, Y., Chory, J., and Ballaré, C.L. (2009). Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc. Natl. Acad. Sci. 106: 4935–4940.
Ni, W., Xu, S.-L., Gonzalez-Grandio, E., RobertChalkley, R.J., Huhmer, A.F.R., Ni, W., Xu, S., Gonza, E., Burlingame, A.L., Wang, Z., and Quail, P.H. (2017). PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat. Commun. 8: 15236.
Pandey, S., Wang, R., Wilson, L., Li, S., Zhao, Z., Gookin, T.E., and Assmann, S.M. (2010). Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol. Syst. Biol. 6: 372.
Qiu, Y., Pasoreck, E.K., Yoo, C.Y., He, J., Wang, H., Bajracharya, A., Li, M., Larsen, H.D., Cheung, S., and Chen, M. (2021). RCB initiates Arabidopsis thermomorphogenesis by stabilizing the thermoregulator PIF4 in the daytime. Nat. Commun. 12: 2042.
Robson, F., Okamoto, H., Patrick, E., Brearley, C., and Turner, J.G. (2010). Jasmonate and Phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22: 1143–1160.
Siao, W. (2012). CK2-mediated phosphorylation of FIN219/JAR1 fine-tunes the cross-talk between far-red light and jasmonate signaling pathway. 碩士論文,植物科學研究所,臺灣大學,台北
Staswick, P.E., Staswick, P.E., Tiryaki, I., Tiryaki, I., Rowe, M.L., and Rowe, M.L. (2002). Jasmonate response locus. Plant Cell 14: 1405–1415.
Su, Y. and Lagarias, J.C. (2007). Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic plants. Plant Cell 19: 2124–2139.
Sullivan, J.A. and Deng, X.W. (2003). From seed to seed: The role of photoreceptors in Arabidopsis development. Dev. Biol. 260: 289–297.
Swain, S., Jiang, H.W., and Hsieh, H.L. (2017). FAR-RED INSENSITIVE 219/JAR1 contributes to shade avoidance responses of Arabidopsis seedlings by modulating key shade signaling components. Front. Plant Sci. 8: 1–14.
Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661–666.
Vázquez-Yanes, C and Smith, H. (1982). Phytochrome Control of Seed Germination in the tropical rain forest pioneer trees Cecropja obtusjfolia and Piper auritum and its ecological significance. New Phytol 92: 477–485.
Wang, J.G., Chen, C.H., Chien, C. Te, and Hsieh, H.L. (2011). FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Plant Physiol. 156: 631–646.
Yu, X., Liu, H., Klejnot, J., and Lin, C. (2010). The cryptochrome blue light receptors. Arab. B. 8: e0135.
電子全文 電子全文(網際網路公開日期:20280110)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top