|
Adams, S., Manfield, I., Stockley, P., and Carré, I.A. (2015). Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions. PLoS One 10, e0143943. Airoldi, C.A., Hearn, T.J., Brockington, S.F., Webb, A.A.R., and Glover, B.J. (2019). TTG1 proteins regulate circadian activity as well as epidermal cell fate and pigmentation. Nat Plants 5, 1145-1153. Alabadí, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Más, P., and Kay, S.A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880-883. Ali, S., Liu, Y., Ishaq, M., Shah, T., Abdullah, Ilyas, A., and Din, I.U. (2017). Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan. Foods 6. Alonso-Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K.M., Cao, J., Chae, E., Dezwaan, T.M., and Ding, W. (2016). 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481-491. Barak, S., Tobin, E.M., Andronis, C., Sugano, S., and Green, R.M. (2000). All in good time: the Arabidopsis circadian clock. Trends Plant Sci 5, 517-522. Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., Golden, S.S., Hardin, P.E., Thomas, T.L., and Zoran, M.J. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6, 544-556. Borbély, A.A., Daan, S., Wirz-Justice, A., and Deboer, T. (2016). The two-process model of sleep regulation: a reappraisal. J Sleep Res 25, 131-143. Bours, R., Muthuraman, M., Bouwmeester, H., and van der Krol, A. (2012). OSCILLATOR: A system for analysis of diurnal leaf growth using infrared photography combined with wavelet transformation. Plant Methods 8, 29. Chow, B.Y., Helfer, A., Nusinow, D.A., and Kay, S.A. (2012). ELF3 recruitment to the PRR9 promoter requires other Evening Complex members in the Arabidopsis circadian clock. Plant Signal Behav 7, 170-173. Daniel, X., Sugano, S., and Tobin, E.M. (2004). CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci U S A 101, 3292-3297. Deng, W., Ying, H., Helliwell, C.A., Taylor, J.M., Peacock, W.J., and Dennis, E.S. (2011). FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci U S A 108, 6680-6685. Dornbusch, T., Michaud, O., Xenarios, I., and Fankhauser, C. (2014). Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation. Plant Cell 26, 3911-3921. Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., Kozma-Bognár, L., Nagy, F., Millar, A.J., and Amasino, R.M. (2002). The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74-77. Edwards, K.D., and Millar, A.J. (2007). Analysis of circadian leaf movement rhythms in Arabidopsis thaliana. Methods Mol Biol 362, 103-113. Edwards, K.D., Lynn, J.R., Gyula, P., Nagy, F., and Millar, A.J. (2005). Natural allelic variation in the temperature-compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics 170, 387-400. Edwards, K.D., Anderson, P.E., Hall, A., Salathia, N.S., Locke, J.C., Lynn, J.R., Straume, M., Smith, J.Q., and Millar, A.J. (2006). FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18, 639-650. Engelmann, W., Simon, K., and Phen, C.J. (1992). Leaf Movement Rhythm In Arabidopsis Thaliana. Zeitschrift für Naturforschung C 47, 925-928. Farré, E.M. (2012). The regulation of plant growth by the circadian clock. Plant Biol (Stuttg) 14, 401-410. Ferrero-Serrano, Á., and Assmann, S.M. (2019). Phenotypic and genome-wide association with the local environment of Arabidopsis. Nat Ecol Evol 3, 274-285. Fujiwara, S., Wang, L., Han, L., Suh, S.S., Salomé, P.A., McClung, C.R., and Somers, D.E. (2008). Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. J Biol Chem 283, 23073-23083. Gil, K.E., and Park, C.M. (2019). Thermal adaptation and plasticity of the plant circadian clock. New Phytol 221, 1215-1229. Gould, P.D., Diaz, P., Hogben, C., Kusakina, J., Salem, R., Hartwell, J., and Hall, A. (2009). Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J 58, 893-901. Greenham, K., Lou, P., Remsen, S.E., Farid, H., and McClung, C.R. (2015). TRiP: Tracking Rhythms in Plants, an automated leaf movement analysis program for circadian period estimation. Plant Methods 11, 33. Greenham, K., Lou, P., Puzey, J.R., Kumar, G., Arnevik, C., Farid, H., Willis, J.H., and McClung, C.R. (2017). Geographic Variation of Plant Circadian Clock Function in Natural and Agricultural Settings. J Biol Rhythms 32, 26-34. Grobbelaar, N., Huang, T., Lin, H., and Chow, T. (1986). Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1. FEMS Microbiology Letters 37, 173-177. Harmer, S.L., and Kay, S.A. (2005). Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17, 1926-1940. Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113. Hazen, S.P., Schultz, T.F., Pruneda-Paz, J.L., Borevitz, J.O., Ecker, J.R., and Kay, S.A. (2005). LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U S A 102, 10387-10392. Helfer, A., Nusinow, D.A., Chow, B.Y., Gehrke, A.R., Bulyk, M.L., and Kay, S.A. (2011). LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol 21, 126-133. Herrero, E., Kolmos, E., Bujdoso, N., Yuan, Y., Wang, M., Berns, M.C., Uhlworm, H., Coupland, G., Saini, R., Jaskolski, M., Webb, A., Gonçalves, J., and Davis, S.J. (2012). EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 24, 428-443. Hicks, K.A., Albertson, T.M., and Wagner, D.R. (2001). EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13, 1281-1292. Horton, M.W., Hancock, A.M., Huang, Y.S., Toomajian, C., Atwell, S., Auton, A., Muliyati, N.W., Platt, A., Sperone, F.G., Vilhjalmsson, B.J., Nordborg, M., Borevitz, J.O., and Bergelson, J. (2012). Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 44, 212-216. Huang, H., and Nusinow, D.A. (2016). Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends Genet 32, 674-686. Iwasaki, M., Penfield, S., and Lopez-Molina, L. (2022). Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. Annu Rev Plant Biol 73, 355-378. James, A.B., Syed, N.H., Bordage, S., Marshall, J., Nimmo, G.A., Jenkins, G.I., Herzyk, P., Brown, J.W., and Nimmo, H.G. (2012). Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24, 961-981. Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074-1080. Johansson, M., and Köster, T. (2019). On the move through time - a historical review of plant clock research. Plant Biol (Stuttg) 21 Suppl 1, 13-20. Johnson, C.H., Zhao, C., Xu, Y., and Mori, T. (2017). Timing the day: what makes bacterial clocks tick? Nat Rev Microbiol 15, 232-242. Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyama, T., Kinoshita, T., and Nakamichi, N. (2016). Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock. Plant Cell 28, 696-711. Kerwin, R.E., Jimenez-Gomez, J.M., Fulop, D., Harmer, S.L., Maloof, J.N., and Kliebenstein, D.J. (2011). Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis. Plant Cell 23, 471-485. Kim, H., Kim, Y., Yeom, M., Lim, J., and Nam, H.G. (2016). Age-associated circadian period changes in Arabidopsis leaves. J Exp Bot 67, 2665-2673. Kim, T.S., Wang, L., Kim, Y.J., and Somers, D.E. (2020). Compensatory Mutations in GI and ZTL May Modulate Temperature Compensation in the Circadian Clock. Plant Physiol 182, 1130-1141. Kolmos, E., Chow, B.Y., Pruneda-Paz, J.L., and Kay, S.A. (2014). HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci U S A 111, 16172-16177. Kooke, R., Kruijer, W., Bours, R., Becker, F., Kuhn, A., van de Geest, H., Buntjer, J., Doeswijk, T., Guerra, J., Bouwmeester, H., Vreugdenhil, D., and Keurentjes, J.J. (2016). Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. Plant Physiol 170, 2187-2203. Koornneef, M., Alonso-Blanco, C., and Vreugdenhil, D. (2004). Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55, 141-172. Korte, A., and Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29. Kubota, A., Shim, J.S., and Imaizumi, T. (2015). Natural variation in transcriptional rhythms modulates photoperiodic responses. Trends Plant Sci 20, 259-261. Kusakina, J., Gould, P.D., and Hall, A. (2014). A fast circadian clock at high temperatures is a conserved feature across Arabidopsis accessions and likely to be important for vegetative yield. Plant Cell Environ 37, 327-340. Lee, C.R., Svardal, H., Farlow, A., Exposito-Alonso, M., Ding, W., Novikova, P., Alonso-Blanco, C., Weigel, D., and Nordborg, M. (2017). On the post-glacial spread of human commensal Arabidopsis thaliana. Nat Commun 8, 14458. Lempe, J., Balasubramanian, S., Sureshkumar, S., Singh, A., Schmid, M., and Weigel, D. (2005). Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet 1, 109-118. Li, G., Siddiqui, H., Teng, Y., Lin, R., Wan, X.Y., Li, J., Lau, O.S., Ouyang, X., Dai, M., Wan, J., Devlin, P.F., Deng, X.W., and Wang, H. (2011). Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13, 616-622. Li, M.W., and Lam, H.M. (2020). The Modification of Circadian Clock Components in Soybean During Domestication and Improvement. Front Genet 11, 571188. Lou, P., Greenham, K., and McClung, C.R. (2022). Rhythmic Leaf and Cotyledon Movement Analysis. Methods Mol Biol 2494, 125-134. Lu, S.X., Webb, C.J., Knowles, S.M., Kim, S.H., Wang, Z., and Tobin, E.M. (2012). CCA1 and ELF3 Interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiol 158, 1079-1088. Mach, J. (2015). A Sleep Like Death: Identification of Genes Related to Seed Longevity in Medicago truncatula and Arabidopsis. Plant Cell 27, 2671. Makino, S., Matsushika, A., Kojima, M., Yamashino, T., and Mizuno, T. (2002). The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol 43, 58-69. Malapeira, J., Khaitova, L.C., and Mas, P. (2012). Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 109, 21540-21545. McClung, C.R. (2006). Plant circadian rhythms. Plant Cell 18, 792-803. Michael, T.P., Salomé, P.A., Yu, H.J., Spencer, T.R., Sharp, E.L., McPeek, M.A., Alonso, J.M., Ecker, J.R., and McClung, C.R. (2003). Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049-1053. Mizuno, T., Nomoto, Y., Oka, H., Kitayama, M., Takeuchi, A., Tsubouchi, M., and Yamashino, T. (2014). Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol 55, 958-976. Müller, N.A., Wijnen, C.L., Srinivasan, A., Ryngajllo, M., Ofner, I., Lin, T., Ranjan, A., West, D., Maloof, J.N., Sinha, N.R., Huang, S., Zamir, D., and Jiménez-Gómez, J.M. (2016). Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet 48, 89-93. Nagel, D.H., and Kay, S.A. (2012). Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22, R648-657. Nagel, D.H., Pruneda-Paz, J.L., and Kay, S.A. (2014). FBH1 affects warm temperature responses in the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 111, 14595-14600. Nakamichi, N., Kiba, T., Henriques, R., Mizuno, T., Chua, N.H., and Sakakibara, H. (2010). PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22, 594-605. Nguyen, T.P., Cueff, G., Hegedus, D.D., Rajjou, L., and Bentsink, L. (2015). A role for seed storage proteins in Arabidopsis seed longevity. J Exp Bot 66, 6399-6413. Nohales, M.A., and Kay, S.A. (2016). Molecular mechanisms at the core of the plant circadian oscillator. Nat Struct Mol Biol 23, 1061-1069. Nolte, C., and Staiger, D. (2015). RNA around the clock - regulation at the RNA level in biological timing. Front Plant Sci 6, 311. Noordally, Z.B., and Millar, A.J. (2015). Clocks in algae. Biochemistry 54, 171-183. Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farré, E.M., and Kay, S.A. (2011). The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398-402. Onai, K., Okamoto, K., Nishimoto, H., Morioka, C., Hirano, M., Kami-Ike, N., and Ishiura, M. (2004). Large-scale screening of Arabidopsis circadian clock mutants by a high-throughput real-time bioluminescence monitoring system. Plant J 40, 1-11. Pedersen, M., Eidesmo, T., and Johnsson, A. (1992). A method to record circadian plant movements, with application to Oxalis leaf rhythms. Physiologia Plantarum 84, 514-520. Perales, M., and Más, P. (2007). A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19, 2111-2123. Polko, J.K., van Zanten, M., van Rooij, J.A., Maree, A.F., Voesenek, L.A., Peeters, A.J., and Pierik, R. (2012a). Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion. New Phytol 193, 339-348. Polko, J.K., van Zanten, M., van Rooij, J.A., Marée, A.F., Voesenek, L.A., Peeters, A.J., and Pierik, R. (2012b). Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion. New Phytol 193, 339-348. Portolés, S., and Más, P. (2010). The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet 6, e1001201. Pruneda-Paz, J.L., Breton, G., Para, A., and Kay, S.A. (2009). A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481-1485. Rauf, M., Arif, M., Fisahn, J., Xue, G.P., Balazadeh, S., and Mueller-Roeber, B. (2013). NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis. Plant Cell 25, 4941-4955. Rees, H., Joynson, R., Brown, J.K.M., and Hall, A. (2021). Naturally occurring circadian rhythm variation associated with clock gene loci in Swedish Arabidopsis accessions. Plant Cell Environ 44, 807-820. Salomé, P.A., Weigel, D., and McClung, C.R. (2010). The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22, 3650-3661. Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carré, I.A., and Coupland, G. (1998). The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219-1229. Seaton, D.D., Smith, R.W., Song, Y.H., MacGregor, D.R., Stewart, K., Steel, G., Foreman, J., Penfield, S., Imaizumi, T., Millar, A.J., and Halliday, K.J. (2015). Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol Syst Biol 11, 776. Seo, P.J., Park, M.J., Lim, M.H., Kim, S.G., Lee, M., Baldwin, I.T., and Park, C.M. (2012). A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 24, 2427-2442. Seren, U. (2018). GWA-Portal: Genome-Wide Association Studies Made Easy. Methods Mol Biol 1761, 303-319. Shindo, C., Aranzana, M.J., Lister, C., Baxter, C., Nicholls, C., Nordborg, M., and Dean, C. (2005). Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138, 1163-1173. Sugano, S., Andronis, C., Green, R.M., Wang, Z.Y., and Tobin, E.M. (1998). Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci U S A 95, 11020-11025. Sugano, S., Andronis, C., Ong, M.S., Green, R.M., and Tobin, E.M. (1999). The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci U S A 96, 12362-12366. Tindall, A.J., Waller, J., Greenwood, M., Gould, P.D., Hartwell, J., and Hall, A. (2015). A comparison of high-throughput techniques for assaying circadian rhythms in plants. Plant Methods 11, 32. Uehlein, N., and Kaldenhoff, R. (2008). Aquaporins and plant leaf movements. Ann Bot 101, 1-4. Vercruysse, J., Baekelandt, A., Gonzalez, N., and Inze, D. (2020). Molecular networks regulating cell division during Arabidopsis leaf growth. J Exp Bot 71, 2365-2378. Wagner, L., Schmal, C., Staiger, D., and Danisman, S. (2017). The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana. Plant Methods 13, 2. Wang, L., Fujiwara, S., and Somers, D.E. (2010). PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 29, 1903-1915. Wang, Z.Y., and Tobin, E.M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207-1217. Wheeler, T., and von Braun, J. (2013). Climate change impacts on global food security. Science 341, 508-513. Wu, J.F., Wang, Y., and Wu, S.H. (2008). Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol 148, 948-959. Wu, J.F., Tsai, H.L., Joanito, I., Wu, Y.C., Chang, C.W., Li, Y.H., Wang, Y., Hong, J.C., Chu, J.W., Hsu, C.P., and Wu, S.H. (2016). LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7, 13181. Xie, Q., Wang, P., Liu, X., Yuan, L., Wang, L., Zhang, C., Li, Y., Xing, H., Zhi, L., Yue, Z., Zhao, C., McClung, C.R., and Xu, X. (2014). LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell 26, 2843-2857. Xing, H., Wang, P., Cui, X., Zhang, C., Wang, L., Liu, X., Yuan, L., Li, Y., Xie, Q., and Xu, X. (2015). LNK1 and LNK2 recruitment to the evening element require morning expressed circadian related MYB-like transcription factors. Plant Signal Behav 10, e1010888. Xu, X., Yuan, L., Yang, X., Zhang, X., Wang, L., and Xie, Q. (2022). Circadian clock in plants: Linking timing to fitness. J Integr Plant Biol 64, 792-811. Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S. (2004). Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367-378. Young, M.W., and Kay, S.A. (2001). Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2, 702-715. Zhang, L.L., Luo, A., Davis, S.J., and Liu, J.X. (2021). Timing to grow: roles of clock in thermomorphogenesis. Trends Plant Sci 26, 1248-1257. Zielinski, T., Moore, A.M., Troup, E., Halliday, K.J., and Millar, A.J. (2014). Strengths and limitations of period estimation methods for circadian data. PLoS One 9, e96462.
|