跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡妮樵
研究生(外文):Ni-Chiao Tsai
論文名稱:透過阿拉伯芥自然品系之全基因組關聯分析探討生物時鐘節律高溫補償之調控
論文名稱(外文):Genome-wide association study of temperature compensation of circadian rhythms in Arabidopsis thaliana natural accessions
指導教授:李金美李金美引用關係
指導教授(外文):Chin-Mei Lee
口試委員:李承叡蔡皇龍
口試委員(外文):Cheng-Ruei LeeHuang-Lung Tsai
口試日期:2023-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:169
中文關鍵詞:阿拉伯芥伊比利半島自然品系生物時鐘溫度補償葉片開合影像偵測系統全基因組關聯分析
外文關鍵詞:Arabidopsis Iberian natural accessionscircadian clocktemperature compensationleaf movement imaging systemGWAS
DOI:10.6342/NTU202302048
相關次數:
  • 被引用被引用:0
  • 點閱點閱:55
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物時鐘為生物體重要的生理調控機制,可驅使生理活動在合適的時間點運行。由於地球自轉週期為24小時,因此生物的生物時鐘週期也大約為24小時。生物時鐘具有一個稱為溫度補償的特性,當環境溫度變化時,能讓生物時鐘週期的長度維持在一個相對穩定的範圍內,以保持生物時鐘計時功能的穩定性。近年來,雖已有前人研究找到可在高溫下穩定生物時鐘週期長度的基因,然而此方面的研究仍然有限。因此,我希望透過全基因組關聯分析(GWAS)來找尋新的調控者。GWAS透過運算性狀與不同基因型間之單一核苷酸多型性(SNP)的關聯性強度,來篩選可能參與調控性狀之基因。為了收集性狀資料,我建立了葉片開合影像偵測系統以收集生物時鐘週期資料,並挑選四十個具有豐富基因多樣性的伊比利半島阿拉伯芥自然品系作為植物材料。我分別檢測了這四十個自然品系在22度下及29度下的生物時鐘週期長度,發現無論是在哪個溫度下,品系之間的週期長度存在明顯的差異。此外,不同品系也展現出了不同的溫度補償能力,實驗結果顯示有20個品系對於高溫比較敏感,當溫度變化時,週期長度會有顯著性的不同,顯示這些品系將週期補償回來的能力較弱;而另外20個品系具備較強的溫度補償能力,在轉移到高溫下後,週期長度較能維持在一個相對穩定的範圍內。實驗結果也顯示,當被轉移到高溫下時,不同品系的週期變化方向也會有所不同,在這20個對溫度較敏感的品系中,有15個品系的週期會變短,而有5個品系的週期會有加長的現象。雖然透過GWAS的分析,並沒有找到與高溫下週期變化有顯著關聯性的SNP,然而我有搜索到數個GWAS分數較高、會造成非同義突變的SNP,在未來,可以進一步去偵測這些SNP所坐落之基因的突變株性狀,以篩選出可能的調控者。另外,我也觀察到品系的週期資料與數個地理環境因子具有顯著的相關性,顯示生物時鐘系統中的功能差異,可能會對於品系去適應其當地環境有所助益。總結以上,GWAS的分析揭示了數個具有潛力的基因,可待未來進一步檢測其生物時鐘性狀,而為適應不同的地理環境,伊比利半島自然品系可能各自演化出了適合其生存的生物時鐘功能。
Circadian clocks act as crucial regulators to switch on or off biological events in proper timing in plants. The clock rhythm is entrained by daily environmental changes to roughly 24 hours. A crucial property of circadian clocks, called temperature compensation, can keep the clock periods relatively steady over temperature change to accommodate environmental temperature changes. In recent years, several temperature-compensation factors for maintaining clock rhythms at high temperature have been identified. However, factors for regulating temperature compensation still remain to be explored. Here, I used genome-wide association study (GWAS) to analyze the correlations between period changes and single-nucleotide polymorphisms (SNPs), trying to reveal potential regulators. To obtain period data, I set up a leaf movement imaging system which can detect clock rhythms by analyzing the open-and-fold configuration of leaves. With high genetic diversity, 40 Arabidopsis thaliana Iberian natural accessions were selected, and the clock periods of the accessions were measured at both 22℃ (normal temperature) and 29℃ (high temperature). The period lengths of the 40 accessions varied at the same temperature condition, 22℃ or 29℃, implying the diverse clock regulation among the accessions. Furthermore, the sensitivities to temperature changes were also different within the accessions. The results showed that 20 accessions were relatively sensitive to high temperature. Their period lengths were significantly different between 22℃ and 29℃, while the period lengths remained relatively constant in the other 20 accessions. Moreover, the directions of period shifting were also different. Among the 20 relatively sensitive accessions, the period lengths of 15 accessions shortened at high temperature, while 5 accessions exhibited longer period lengths after being transferred to high temperature. Despite the diverse period data among the accessions, no SNP was significantly associated with the period changes through GWAS analyses. Even though no significant association was identified, several non-synonymous SNPs with relatively high GWAS scores were found, and further measurements of clock traits could still be carried out on those SNP-located genes for preliminary validations. I also found that the diverse period lengths at both 22℃ and 29℃ correlated with several environmental variables, indicating that the diverse clock regulation might contribute to the adaptation of the Iberian accessions. To sum up, GWAS analyses revealed several potential components which may be worth further investigation, and the diverse clock regulation might adapt the Iberian accessions to their local environment.
口試委員審定書 i
致謝 ii
摘要 iii
Abstract v
Abbreviations vii
Contents x
Contents of Figures and Table xiii
Contents of Appendix Figures xv
Contents of Appendix Tables xvi
Contents of Appendix Data xviii
Chapter 1. Introduction 1
1-1. Circadian clock 1
1-2. Measurement of the circadian clock with leaf movement 6
1-3. Ambient high-temperature effects on the plant’s circadian clock 10
1-4. Arabidopsis thaliana natural accessions 12
1-5. The plant circadian clock research in Arabidopsis accessions 14
1-6. Research objectives 16
Chapter 2. Materials and Methods 17
2-1. Plant materials 17
2-2. Materials for setting up the leaf movement imaging system 17
2-3. Programs and settings for period data analyses 17
2-4. PCoA plot 20
2-5. GWAS analyses 20
2-6. Geographic maps 21
2-7. Correlations between period data and environmental variables 21
Chapter 3. Results 22
3-1. Setup of leaf movement imaging system to measure the circadian clock 22
3-1-1. The procedure of leaf movement imaging system setup 22
3-1-2. Setup of the imaging systems 22
3-1-3. Optimization of plant growth condition 25
3-1-4. Adjustment of data analyzing process 33
3-1-5. Testing of leaf movement imaging system 38
3-2. The circadian rhythms and GWAS analyses of 40 Iberian accessions 39
2003/2/1 Selection of 40 Arabidopsis Iberian accessions for GWAS analyses of circadian rhythms in response to temperature 39
2003/2/2 The 40 Iberian accessions exhibited diverse endogenous clock periods 40
2003/2/3 The 40 Iberian accessions displayed various temperature-compensation functions at high temperature 41
2003/2/4 GWAS analyses revealed potential candidates for regulating clock systems 42
2003/2/5 The diverse clock period lengths might contribute to the adaptation of the 40 Iberian accessions to their local environment 44
Chapter 4. Discussion 46
4-1. The limitations and advantages of the leaf movement imaging system to measure the clock rhythms of specific accessions 46
4-2. The 40 Iberian accessions exhibited diverse leaf-movement rhythms considering the geographic factor 48
4-3. The different temperature-compensation responses of accession 9941 might result from the various leaf movement imaging systems 49
4-4. The 40 Iberian accessions showed a broad range of temperature-compensation responses to high temperature despite the period differences being buffered in leaf rhythms 51
4-5. The Iberian relicts tended to exhibit extreme clock period traits 53
4-6. The lack of significant association findings in GWAS analyses might be attributed to the polygenic nature of leaf movement as well as the small sample size 54
Reference 56
Figures 63
Table 111
Appendix Figures 112
Appendix Tables 135
Appendix Data 157
Adams, S., Manfield, I., Stockley, P., and Carré, I.A. (2015). Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions. PLoS One 10, e0143943.
Airoldi, C.A., Hearn, T.J., Brockington, S.F., Webb, A.A.R., and Glover, B.J. (2019). TTG1 proteins regulate circadian activity as well as epidermal cell fate and pigmentation. Nat Plants 5, 1145-1153.
Alabadí, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Más, P., and Kay, S.A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880-883.
Ali, S., Liu, Y., Ishaq, M., Shah, T., Abdullah, Ilyas, A., and Din, I.U. (2017). Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan. Foods 6.
Alonso-Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K.M., Cao, J., Chae, E., Dezwaan, T.M., and Ding, W. (2016). 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481-491.
Barak, S., Tobin, E.M., Andronis, C., Sugano, S., and Green, R.M. (2000). All in good time: the Arabidopsis circadian clock. Trends Plant Sci 5, 517-522.
Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., Golden, S.S., Hardin, P.E., Thomas, T.L., and Zoran, M.J. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6, 544-556.
Borbély, A.A., Daan, S., Wirz-Justice, A., and Deboer, T. (2016). The two-process model of sleep regulation: a reappraisal. J Sleep Res 25, 131-143.
Bours, R., Muthuraman, M., Bouwmeester, H., and van der Krol, A. (2012). OSCILLATOR: A system for analysis of diurnal leaf growth using infrared photography combined with wavelet transformation. Plant Methods 8, 29.
Chow, B.Y., Helfer, A., Nusinow, D.A., and Kay, S.A. (2012). ELF3 recruitment to the PRR9 promoter requires other Evening Complex members in the Arabidopsis circadian clock. Plant Signal Behav 7, 170-173.
Daniel, X., Sugano, S., and Tobin, E.M. (2004). CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci U S A 101, 3292-3297.
Deng, W., Ying, H., Helliwell, C.A., Taylor, J.M., Peacock, W.J., and Dennis, E.S. (2011). FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci U S A 108, 6680-6685.
Dornbusch, T., Michaud, O., Xenarios, I., and Fankhauser, C. (2014). Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation. Plant Cell 26, 3911-3921.
Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., Kozma-Bognár, L., Nagy, F., Millar, A.J., and Amasino, R.M. (2002). The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74-77.
Edwards, K.D., and Millar, A.J. (2007). Analysis of circadian leaf movement rhythms in Arabidopsis thaliana. Methods Mol Biol 362, 103-113.
Edwards, K.D., Lynn, J.R., Gyula, P., Nagy, F., and Millar, A.J. (2005). Natural allelic variation in the temperature-compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics 170, 387-400.
Edwards, K.D., Anderson, P.E., Hall, A., Salathia, N.S., Locke, J.C., Lynn, J.R., Straume, M., Smith, J.Q., and Millar, A.J. (2006). FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18, 639-650.
Engelmann, W., Simon, K., and Phen, C.J. (1992). Leaf Movement Rhythm In Arabidopsis Thaliana. Zeitschrift für Naturforschung C 47, 925-928.
Farré, E.M. (2012). The regulation of plant growth by the circadian clock. Plant Biol (Stuttg) 14, 401-410.
Ferrero-Serrano, Á., and Assmann, S.M. (2019). Phenotypic and genome-wide association with the local environment of Arabidopsis. Nat Ecol Evol 3, 274-285.
Fujiwara, S., Wang, L., Han, L., Suh, S.S., Salomé, P.A., McClung, C.R., and Somers, D.E. (2008). Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. J Biol Chem 283, 23073-23083.
Gil, K.E., and Park, C.M. (2019). Thermal adaptation and plasticity of the plant circadian clock. New Phytol 221, 1215-1229.
Gould, P.D., Diaz, P., Hogben, C., Kusakina, J., Salem, R., Hartwell, J., and Hall, A. (2009). Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J 58, 893-901.
Greenham, K., Lou, P., Remsen, S.E., Farid, H., and McClung, C.R. (2015). TRiP: Tracking Rhythms in Plants, an automated leaf movement analysis program for circadian period estimation. Plant Methods 11, 33.
Greenham, K., Lou, P., Puzey, J.R., Kumar, G., Arnevik, C., Farid, H., Willis, J.H., and McClung, C.R. (2017). Geographic Variation of Plant Circadian Clock Function in Natural and Agricultural Settings. J Biol Rhythms 32, 26-34.
Grobbelaar, N., Huang, T., Lin, H., and Chow, T. (1986). Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1. FEMS Microbiology Letters 37, 173-177.
Harmer, S.L., and Kay, S.A. (2005). Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17, 1926-1940.
Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113.
Hazen, S.P., Schultz, T.F., Pruneda-Paz, J.L., Borevitz, J.O., Ecker, J.R., and Kay, S.A. (2005). LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U S A 102, 10387-10392.
Helfer, A., Nusinow, D.A., Chow, B.Y., Gehrke, A.R., Bulyk, M.L., and Kay, S.A. (2011). LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol 21, 126-133.
Herrero, E., Kolmos, E., Bujdoso, N., Yuan, Y., Wang, M., Berns, M.C., Uhlworm, H., Coupland, G., Saini, R., Jaskolski, M., Webb, A., Gonçalves, J., and Davis, S.J. (2012). EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 24, 428-443.
Hicks, K.A., Albertson, T.M., and Wagner, D.R. (2001). EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13, 1281-1292.
Horton, M.W., Hancock, A.M., Huang, Y.S., Toomajian, C., Atwell, S., Auton, A., Muliyati, N.W., Platt, A., Sperone, F.G., Vilhjalmsson, B.J., Nordborg, M., Borevitz, J.O., and Bergelson, J. (2012). Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 44, 212-216.
Huang, H., and Nusinow, D.A. (2016). Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends Genet 32, 674-686.
Iwasaki, M., Penfield, S., and Lopez-Molina, L. (2022). Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. Annu Rev Plant Biol 73, 355-378.
James, A.B., Syed, N.H., Bordage, S., Marshall, J., Nimmo, G.A., Jenkins, G.I., Herzyk, P., Brown, J.W., and Nimmo, H.G. (2012). Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24, 961-981.
Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074-1080.
Johansson, M., and Köster, T. (2019). On the move through time - a historical review of plant clock research. Plant Biol (Stuttg) 21 Suppl 1, 13-20.
Johnson, C.H., Zhao, C., Xu, Y., and Mori, T. (2017). Timing the day: what makes bacterial clocks tick? Nat Rev Microbiol 15, 232-242.
Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyama, T., Kinoshita, T., and Nakamichi, N. (2016). Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock. Plant Cell 28, 696-711.
Kerwin, R.E., Jimenez-Gomez, J.M., Fulop, D., Harmer, S.L., Maloof, J.N., and Kliebenstein, D.J. (2011). Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis. Plant Cell 23, 471-485.
Kim, H., Kim, Y., Yeom, M., Lim, J., and Nam, H.G. (2016). Age-associated circadian period changes in Arabidopsis leaves. J Exp Bot 67, 2665-2673.
Kim, T.S., Wang, L., Kim, Y.J., and Somers, D.E. (2020). Compensatory Mutations in GI and ZTL May Modulate Temperature Compensation in the Circadian Clock. Plant Physiol 182, 1130-1141.
Kolmos, E., Chow, B.Y., Pruneda-Paz, J.L., and Kay, S.A. (2014). HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci U S A 111, 16172-16177.
Kooke, R., Kruijer, W., Bours, R., Becker, F., Kuhn, A., van de Geest, H., Buntjer, J., Doeswijk, T., Guerra, J., Bouwmeester, H., Vreugdenhil, D., and Keurentjes, J.J. (2016). Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. Plant Physiol 170, 2187-2203.
Koornneef, M., Alonso-Blanco, C., and Vreugdenhil, D. (2004). Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55, 141-172.
Korte, A., and Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29.
Kubota, A., Shim, J.S., and Imaizumi, T. (2015). Natural variation in transcriptional rhythms modulates photoperiodic responses. Trends Plant Sci 20, 259-261.
Kusakina, J., Gould, P.D., and Hall, A. (2014). A fast circadian clock at high temperatures is a conserved feature across Arabidopsis accessions and likely to be important for vegetative yield. Plant Cell Environ 37, 327-340.
Lee, C.R., Svardal, H., Farlow, A., Exposito-Alonso, M., Ding, W., Novikova, P., Alonso-Blanco, C., Weigel, D., and Nordborg, M. (2017). On the post-glacial spread of human commensal Arabidopsis thaliana. Nat Commun 8, 14458.
Lempe, J., Balasubramanian, S., Sureshkumar, S., Singh, A., Schmid, M., and Weigel, D. (2005). Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet 1, 109-118.
Li, G., Siddiqui, H., Teng, Y., Lin, R., Wan, X.Y., Li, J., Lau, O.S., Ouyang, X., Dai, M., Wan, J., Devlin, P.F., Deng, X.W., and Wang, H. (2011). Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13, 616-622.
Li, M.W., and Lam, H.M. (2020). The Modification of Circadian Clock Components in Soybean During Domestication and Improvement. Front Genet 11, 571188.
Lou, P., Greenham, K., and McClung, C.R. (2022). Rhythmic Leaf and Cotyledon Movement Analysis. Methods Mol Biol 2494, 125-134.
Lu, S.X., Webb, C.J., Knowles, S.M., Kim, S.H., Wang, Z., and Tobin, E.M. (2012). CCA1 and ELF3 Interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiol 158, 1079-1088.
Mach, J. (2015). A Sleep Like Death: Identification of Genes Related to Seed Longevity in Medicago truncatula and Arabidopsis. Plant Cell 27, 2671.
Makino, S., Matsushika, A., Kojima, M., Yamashino, T., and Mizuno, T. (2002). The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol 43, 58-69.
Malapeira, J., Khaitova, L.C., and Mas, P. (2012). Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 109, 21540-21545.
McClung, C.R. (2006). Plant circadian rhythms. Plant Cell 18, 792-803.
Michael, T.P., Salomé, P.A., Yu, H.J., Spencer, T.R., Sharp, E.L., McPeek, M.A., Alonso, J.M., Ecker, J.R., and McClung, C.R. (2003). Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049-1053.
Mizuno, T., Nomoto, Y., Oka, H., Kitayama, M., Takeuchi, A., Tsubouchi, M., and Yamashino, T. (2014). Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol 55, 958-976.
Müller, N.A., Wijnen, C.L., Srinivasan, A., Ryngajllo, M., Ofner, I., Lin, T., Ranjan, A., West, D., Maloof, J.N., Sinha, N.R., Huang, S., Zamir, D., and Jiménez-Gómez, J.M. (2016). Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet 48, 89-93.
Nagel, D.H., and Kay, S.A. (2012). Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22, R648-657.
Nagel, D.H., Pruneda-Paz, J.L., and Kay, S.A. (2014). FBH1 affects warm temperature responses in the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 111, 14595-14600.
Nakamichi, N., Kiba, T., Henriques, R., Mizuno, T., Chua, N.H., and Sakakibara, H. (2010). PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22, 594-605.
Nguyen, T.P., Cueff, G., Hegedus, D.D., Rajjou, L., and Bentsink, L. (2015). A role for seed storage proteins in Arabidopsis seed longevity. J Exp Bot 66, 6399-6413.
Nohales, M.A., and Kay, S.A. (2016). Molecular mechanisms at the core of the plant circadian oscillator. Nat Struct Mol Biol 23, 1061-1069.
Nolte, C., and Staiger, D. (2015). RNA around the clock - regulation at the RNA level in biological timing. Front Plant Sci 6, 311.
Noordally, Z.B., and Millar, A.J. (2015). Clocks in algae. Biochemistry 54, 171-183.
Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farré, E.M., and Kay, S.A. (2011). The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398-402.
Onai, K., Okamoto, K., Nishimoto, H., Morioka, C., Hirano, M., Kami-Ike, N., and Ishiura, M. (2004). Large-scale screening of Arabidopsis circadian clock mutants by a high-throughput real-time bioluminescence monitoring system. Plant J 40, 1-11.
Pedersen, M., Eidesmo, T., and Johnsson, A. (1992). A method to record circadian plant movements, with application to Oxalis leaf rhythms. Physiologia Plantarum 84, 514-520.
Perales, M., and Más, P. (2007). A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19, 2111-2123.
Polko, J.K., van Zanten, M., van Rooij, J.A., Maree, A.F., Voesenek, L.A., Peeters, A.J., and Pierik, R. (2012a). Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion. New Phytol 193, 339-348.
Polko, J.K., van Zanten, M., van Rooij, J.A., Marée, A.F., Voesenek, L.A., Peeters, A.J., and Pierik, R. (2012b). Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion. New Phytol 193, 339-348.
Portolés, S., and Más, P. (2010). The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet 6, e1001201.
Pruneda-Paz, J.L., Breton, G., Para, A., and Kay, S.A. (2009). A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481-1485.
Rauf, M., Arif, M., Fisahn, J., Xue, G.P., Balazadeh, S., and Mueller-Roeber, B. (2013). NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis. Plant Cell 25, 4941-4955.
Rees, H., Joynson, R., Brown, J.K.M., and Hall, A. (2021). Naturally occurring circadian rhythm variation associated with clock gene loci in Swedish Arabidopsis accessions. Plant Cell Environ 44, 807-820.
Salomé, P.A., Weigel, D., and McClung, C.R. (2010). The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22, 3650-3661.
Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carré, I.A., and Coupland, G. (1998). The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219-1229.
Seaton, D.D., Smith, R.W., Song, Y.H., MacGregor, D.R., Stewart, K., Steel, G., Foreman, J., Penfield, S., Imaizumi, T., Millar, A.J., and Halliday, K.J. (2015). Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol Syst Biol 11, 776.
Seo, P.J., Park, M.J., Lim, M.H., Kim, S.G., Lee, M., Baldwin, I.T., and Park, C.M. (2012). A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 24, 2427-2442.
Seren, U. (2018). GWA-Portal: Genome-Wide Association Studies Made Easy. Methods Mol Biol 1761, 303-319.
Shindo, C., Aranzana, M.J., Lister, C., Baxter, C., Nicholls, C., Nordborg, M., and Dean, C. (2005). Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138, 1163-1173.
Sugano, S., Andronis, C., Green, R.M., Wang, Z.Y., and Tobin, E.M. (1998). Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci U S A 95, 11020-11025.
Sugano, S., Andronis, C., Ong, M.S., Green, R.M., and Tobin, E.M. (1999). The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci U S A 96, 12362-12366.
Tindall, A.J., Waller, J., Greenwood, M., Gould, P.D., Hartwell, J., and Hall, A. (2015). A comparison of high-throughput techniques for assaying circadian rhythms in plants. Plant Methods 11, 32.
Uehlein, N., and Kaldenhoff, R. (2008). Aquaporins and plant leaf movements. Ann Bot 101, 1-4.
Vercruysse, J., Baekelandt, A., Gonzalez, N., and Inze, D. (2020). Molecular networks regulating cell division during Arabidopsis leaf growth. J Exp Bot 71, 2365-2378.
Wagner, L., Schmal, C., Staiger, D., and Danisman, S. (2017). The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana. Plant Methods 13, 2.
Wang, L., Fujiwara, S., and Somers, D.E. (2010). PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 29, 1903-1915.
Wang, Z.Y., and Tobin, E.M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207-1217.
Wheeler, T., and von Braun, J. (2013). Climate change impacts on global food security. Science 341, 508-513.
Wu, J.F., Wang, Y., and Wu, S.H. (2008). Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol 148, 948-959.
Wu, J.F., Tsai, H.L., Joanito, I., Wu, Y.C., Chang, C.W., Li, Y.H., Wang, Y., Hong, J.C., Chu, J.W., Hsu, C.P., and Wu, S.H. (2016). LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7, 13181.
Xie, Q., Wang, P., Liu, X., Yuan, L., Wang, L., Zhang, C., Li, Y., Xing, H., Zhi, L., Yue, Z., Zhao, C., McClung, C.R., and Xu, X. (2014). LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell 26, 2843-2857.
Xing, H., Wang, P., Cui, X., Zhang, C., Wang, L., Liu, X., Yuan, L., Li, Y., Xie, Q., and Xu, X. (2015). LNK1 and LNK2 recruitment to the evening element require morning expressed circadian related MYB-like transcription factors. Plant Signal Behav 10, e1010888.
Xu, X., Yuan, L., Yang, X., Zhang, X., Wang, L., and Xie, Q. (2022). Circadian clock in plants: Linking timing to fitness. J Integr Plant Biol 64, 792-811.
Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S. (2004). Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367-378.
Young, M.W., and Kay, S.A. (2001). Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2, 702-715.
Zhang, L.L., Luo, A., Davis, S.J., and Liu, J.X. (2021). Timing to grow: roles of clock in thermomorphogenesis. Trends Plant Sci 26, 1248-1257.
Zielinski, T., Moore, A.M., Troup, E., Halliday, K.J., and Millar, A.J. (2014). Strengths and limitations of period estimation methods for circadian data. PLoS One 9, e96462.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top