|
1Bishop, D. G. & Work, E. An Extracellular Glycolipid Produced by Escherichia Coli Grown under Lysine-Limiting Conditions. Biochem J 96, 567-+ (1965). https://doi.org:DOI 10.1042/bj0960567 2Knox, K. W., Vesk, M. & Work, E. Relation between Excreted Lipopolysaccharide Complexes and Surface Structures of a Lysine-Limited Culture of Escherichia Coli. Journal of Bacteriology 92, 1206-& (1966). https://doi.org:Doi 10.1128/Jb.92.4.1206-1217.1966 3Mergenhagen, S. E., Bladen, H. A. & Hsu, K. C. Electron microscopic localization of endotoxic lipopolysaccharide in gram-negative organisms. Ann N Y Acad Sci 133, 279-291 (1966). https://doi.org:10.1111/j.1749-6632.1966.tb52371.x 4Chatterj.Sn & Das, J. Electron Microscopic Observations on Excretion of Cell-Wall Materials by Vibrio Cholerae. J Gen Microbiol 49, 1-& (1967). 5Rothfield, L. & Pearlman.M. Synthesis and Assembly of Bacterial Membrane Components - a Lipopolysaccharide-Phospholipid-Protein Complex Excreted by Living Bacteria. Journal of Molecular Biology 44, 477-+ (1969). https://doi.org:Doi 10.1016/0022-2836(69)90374-X 6Devoe, I. W. & Gilchrist, J. E. Pili on Meningococci from Primary Cultures of Nasopharyngeal Carriers and Cerebrospinal-Fluid of Patients with Acute Disease. J Exp Med 141, 297-305 (1975). https://doi.org:DOI 10.1084/jem.141.2.297 7Blenkiron, C. et al. Uropathogenic Escherichia coli Releases Extracellular Vesicles That Are Associated with RNA. PLoS One 11, e0160440 (2016). https://doi.org:10.1371/journal.pone.0160440 8Vanaja, S. K. et al. Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. Cell 165, 1106-1119 (2016). https://doi.org:10.1016/j.cell.2016.04.015 9Horstman, A. L. & Kuehn, M. J. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. Journal of Biological Chemistry 275, 12489-12496 (2000). https://doi.org:DOI 10.1074/jbc.275.17.12489 10Perez-Cruz, C., Delgado, L., Lopez-Iglesias, C. & Mercade, E. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One 10, e0116896 (2015). https://doi.org:10.1371/journal.pone.0116896 11Amalia, L. & Tsai, S. L. Functionalization of OMVs for Biocatalytic Applications. Membranes (Basel) 13 (2023). https://doi.org:10.3390/membranes13050459 12Schwechheimer, C. & Kuehn, M. J. Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli. J Bacteriol 195, 4161-4173 (2013). https://doi.org:10.1128/JB.02192-12 13Maredia, R. et al. Vesiculation from Pseudomonas aeruginosa under SOS. ScientificWorldJournal 2012, 402919 (2012). https://doi.org:10.1100/2012/402919 14Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. Bmc Microbiology 11 (2011). https://doi.org:Artn 25810.1186/1471-2180-11-258 15Elhenawy, W., Debelyy, M. O. & Feldman, M. F. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. mBio 5, e00909-00914 (2014). https://doi.org:10.1128/mBio.00909-14 16Fulsundar, S. et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microbiol 80, 3469-3483 (2014). https://doi.org:10.1128/AEM.04248-13 17Mashburn-Warren, L. M. & Whiteley, M. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61, 839-846 (2006). https://doi.org:10.1111/j.1365-2958.2006.05272.x 18Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13, 605-619 (2015). https://doi.org:10.1038/nrmicro3525 19Fitzgerald, K. A. & Kagan, J. C. Toll-like Receptors and the Control of Immunity. Cell 180, 1044-1066 (2020). https://doi.org:10.1016/j.cell.2020.02.041 20Sutmuller, R. P. et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116, 485-494 (2006). https://doi.org:10.1172/JCI25439 21Bellocchio, S. et al. TLRs govern neutrophil activity in aspergillosis. J Immunol 173, 7406-7415 (2004). https://doi.org:10.4049/jimmunol.173.12.7406 22Sun, C. M., Deriaud, E., Leclerc, C. & Lo-Man, R. Upon TLR9 signaling, CD5+ B cells control the IL-12-dependent Th1-priming capacity of neonatal DCs. Immunity 22, 467-477 (2005). https://doi.org:10.1016/j.immuni.2005.02.008 23McClure, R. & Massari, P. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens. Front Immunol 5, 386 (2014). https://doi.org:10.3389/fimmu.2014.00386 24Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11, 373-384 (2010). https://doi.org:10.1038/ni.1863 25Blasius, A. L. & Beutler, B. Intracellular toll-like receptors. Immunity 32, 305-315 (2010). https://doi.org:10.1016/j.immuni.2010.03.012 26Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783-801 (2006). https://doi.org:10.1016/j.cell.2006.02.015 27Akira, S. & Takeda, K. Toll-like receptor signalling. Nat Rev Immunol 4, 499-511 (2004). https://doi.org:10.1038/nri1391 28Shen, H., Tesar, B. M., Walker, W. E. & Goldstein, D. R. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J Immunol 181, 1849-1858 (2008). https://doi.org:10.4049/jimmunol.181.3.1849 29Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169, 6668-6672 (2002). https://doi.org:10.4049/jimmunol.169.12.6668 30Ullah, M. O., Sweet, M. J., Mansell, A., Kellie, S. & Kobe, B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol 100, 27-45 (2016). https://doi.org:10.1189/jlb.2RI1115-531R 31Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat Rev Immunol 14, 36-49 (2014). https://doi.org:10.1038/nri3581 32Duan, T., Du, Y., Xing, C., Wang, H. Y. & Wang, R.-F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Frontiers in Immunology 13 (2022). https://doi.org:10.3389/fimmu.2022.812774 33Mancini, F., Rossi, O., Necchi, F. & Micoli, F. OMV Vaccines and the Role of TLR Agonists in Immune Response. Int J Mol Sci 21 (2020). https://doi.org:10.3390/ijms21124416 34Kang, J. Y. et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31, 873-884 (2009). https://doi.org:10.1016/j.immuni.2009.09.018 35Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099-1103 (2001). https://doi.org:Doi 10.1038/35074106 36Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745 (2000). https://doi.org:Doi 10.1038/35047123 37Beutler, B. & Rietschel, E. T. Innate immune sensing and its roots: the story of endotoxin. Nature Reviews Immunology 3, 169-176 (2003). https://doi.org:10.1038/nri1004 38Whitfield, C., Williams, D. M. & Kelly, S. D. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J Biol Chem 295, 10593-10609 (2020). https://doi.org:10.1074/jbc.REV120.009402 39Duerr, C. U. et al. O-antigen delays lipopolysaccharide recognition and impairs antibacterial host defense in murine intestinal epithelial cells. PLoS Pathog 5, e1000567 (2009). https://doi.org:10.1371/journal.ppat.1000567 40Frirdich, E. & Whitfield, C. Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. J Endotoxin Res 11, 133-144 (2005). https://doi.org:10.1179/096805105X46592 41Lu, Y. C., Yeh, W. C. & Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151 (2008). https://doi.org:10.1016/j.cyto.2008.01.006 42Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10, 787-796 (2010). https://doi.org:10.1038/nri2868 43Li, M. et al. Bacterial outer membrane vesicles as a platform for biomedical applications: An update. J Control Release 323, 253-268 (2020). https://doi.org:10.1016/j.jconrel.2020.04.031 44Swain, S. L., McKinstry, K. K. & Strutt, T. M. Expanding roles for CD4(+) T cells in immunity to viruses. Nat Rev Immunol 12, 136-148 (2012). https://doi.org:10.1038/nri3152 45Gorringe, A. R. & Pajon, R. Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum Vaccin Immunother 8, 174-183 (2012). https://doi.org:10.4161/hv.18500 46Awate, S., Babiuk, L. A. & Mutwiri, G. Mechanisms of action of adjuvants. Front Immunol 4, 114 (2013). https://doi.org:10.3389/fimmu.2013.00114 47Tan, K., Li, R., Huang, X. & Liu, Q. Outer Membrane Vesicles: Current Status and Future Direction of These Novel Vaccine Adjuvants. Front Microbiol 9, 783 (2018). https://doi.org:10.3389/fmicb.2018.00783 48Miyaji, E. N., Carvalho, E., Oliveira, M. L., Raw, I. & Ho, P. L. Trends in adjuvant development for vaccines: DAMPs and PAMPs as potential new adjuvants. Braz J Med Biol Res 44, 500-513 (2011). https://doi.org:10.1590/s0100-879x2011007500064 49Sardinas, G., Reddin, K., Pajon, R. & Gorringe, A. Outer membrane vesicles of Neisseria lactamica as a potential mucosal adjuvant. Vaccine 24, 206-214 (2006). https://doi.org:10.1016/j.vaccine.2005.07.064 50Daleke-Schermerhorn, M. H. et al. Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach. Appl Environ Microbiol 80, 5854-5865 (2014). https://doi.org:10.1128/AEM.01941-14 51Gujrati, V. et al. Bioengineered Bacterial Outer Membrane Vesicles as Cell-Specific Drug-Delivery Vehicles for Cancer Therapy. Acs Nano 8, 1525-1537 (2014). https://doi.org:10.1021/nn405724x 52McCarthy, E. F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26, 154-158 (2006). 53Kim, O. Y. et al. Bacterial outer membrane vesicles suppress tumor by interferon-gamma-mediated antitumor response. Nat Commun 8, 626 (2017). https://doi.org:10.1038/s41467-017-00729-8 54Urban-Wojciuk, Z. et al. The Role of TLRs in Anti-cancer Immunity and Tumor Rejection. Front Immunol 10, 2388 (2019). https://doi.org:10.3389/fimmu.2019.02388 55Imanishi, T. et al. Cutting edge: TLR2 directly triggers Th1 effector functions. J Immunol 178, 6715-6719 (2007). https://doi.org:10.4049/jimmunol.178.11.6715 56Salerno, F., Freen-van Heeren, J. J., Guislain, A., Nicolet, B. P. & Wolkers, M. C. Costimulation through TLR2 Drives Polyfunctional CD8(+) T Cell Responses. J Immunol 202, 714-723 (2019). https://doi.org:10.4049/jimmunol.1801026 57Freen-van Heeren, J. J. Toll-like receptor-2/7-mediated T cell activation: An innate potential to augment CD8(+) T cell cytokine production. Scand J Immunol 93, e13019 (2021). https://doi.org:10.1111/sji.13019 58Zhang, E., Ma, Z. & Lu, M. Contribution of T- and B-cell intrinsic toll-like receptors to the adaptive immune response in viral infectious diseases. Cell Mol Life Sci 79, 547 (2022). https://doi.org:10.1007/s00018-022-04582-x 59Greten, F. R. & Grivennikov, S. I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 51, 27-41 (2019). https://doi.org:10.1016/j.immuni.2019.06.025 60Ribatti, D. & Tamma, R. A revisited concept. Tumors: Wounds that do not heal. Crit Rev Oncol Hematol 128, 65-69 (2018). https://doi.org:10.1016/j.critrevonc.2018.05.016 61Zhou, H., Jiang, M., Yuan, H., Ni, W. & Tai, G. Dual roles of myeloid-derived suppressor cells induced by Toll-like receptor signaling in cancer. Oncol Lett 21, 149 (2021). https://doi.org:10.3892/ol.2020.12410 62Lu, H. TLR Agonists for Cancer Immunotherapy: Tipping the Balance between the Immune Stimulatory and Inhibitory Effects. Front Immunol 5, 83 (2014). https://doi.org:10.3389/fimmu.2014.00083 63Munn, D. H. & Mellor, A. L. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol 37, 193-207 (2016). https://doi.org:10.1016/j.it.2016.01.002 64Wolfle, S. J. et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41, 413-424 (2011). https://doi.org:10.1002/eji.201040979 65Greulich, B. M., Plotnik, J. P., Jerde, T. J. & Hollenhorst, P. C. Toll-like receptor 4 signaling activates ERG function in prostate cancer and provides a therapeutic target. NAR Cancer 3, zcaa046 (2021). https://doi.org:10.1093/narcan/zcaa046 66Chen, X., Zhang, Y. & Fu, Y. The critical role of Toll-like receptor-mediated signaling in cancer immunotherapy. Medicine in Drug Discovery 14 (2022). https://doi.org:10.1016/j.medidd.2022.100122 67Sperandeo, P., Martorana, A. M. & Polissi, A. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 1862, 1451-1460 (2017). https://doi.org:10.1016/j.bbalip.2016.10.006 68Alexander, C. & Rietschel, E. T. Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7, 167-202 (2001). 69Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J. & Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274, 10689-10692 (1999). https://doi.org:10.1074/jbc.274.16.10689 70Rosso, M. et al. LPS-Induced Cytokine Production in Human Monocytes and Macrophages. Crit Rev Immunol 31, 379-446 (2011). https://doi.org:DOI 10.1615/CritRevImmunol.v31.i5.20 71Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885-891 (2002). https://doi.org:10.1038/nature01326 72Schulte, W., Bernhagen, J. & Bucala, R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm 2013, 165974 (2013). https://doi.org:10.1155/2013/165974 73Chicoine, M. R., Won, E. K. & Zahner, M. C. Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme. Neurosurgery 48, 607-614; discussion 614-605 (2001). https://doi.org:10.1097/00006123-200103000-00032 74Hattori, Y., Szabo, C., Gross, S. S., Thiemermann, C. & Vane, J. R. Lipid-a and the Lipid-a Analog Antitumor Compound Ono-4007 Induce Nitric-Oxide Synthase in-Vitro and in-Vivo. Eur J Pharm-Molec Ph 291, 83-90 (1995). https://doi.org:Doi 10.1016/0922-4106(95)90128-0 75Andreani, V., Gatti, G., Simonella, L., Rivero, V. & Maccioni, M. Activation of Toll-like receptor 4 on tumor cells in vitro inhibits subsequent tumor growth in vivo. Cancer Res 67, 10519-10527 (2007). https://doi.org:10.1158/0008-5472.CAN-07-0079 76de Bono, J. S. et al. Phase I study of ONO-4007, a synthetic analogue of the lipid a moiety of bacterial lipopolysaccharide. Clin Cancer Res 6, 397-405 (2000). 77Goto, S. et al. Intradermal administration of lipopolysaccharide in treatment of human cancer. Cancer Immunol Immun 42, 255-261 (1996). https://doi.org:DOI 10.1007/s002620050279 78Park, B. S. & Lee, J. O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 45, e66 (2013). https://doi.org:10.1038/emm.2013.97 79Maeshima, N. & Fernandez, R. C. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol 3, 3 (2013). https://doi.org:10.3389/fcimb.2013.00003 80Tsuneyoshi, N. et al. Penta-acylated lipopolisaccharide binds to murine MD-2 but does not induce the oligomerization of TLR4 required for signal transduction. Cell Immunol 244, 57-64 (2006). https://doi.org:10.1016/j.cellimm.2007.02.010 81Feodorova, V. A. et al. Pleiotropic effects of the lpxM mutation in Yersinia pestis resulting in modification of the biosynthesis of major immunoreactive antigens. Vaccine 27, 2240-2250 (2009). https://doi.org:10.1016/j.vaccine.2009.02.020 82Kim, S. H., Jia, W., Bishop, R. E. & Gyles, C. An msbB homologue carried in plasmid pO157 encodes an acyltransferase involved in lipid A biosynthesis in Escherichia coli O157:H7. Infect Immun 72, 1174-1180 (2004). https://doi.org:10.1128/IAI.72.2.1174-1180.2004 83Mamat, U. et al. Endotoxin-free protein production—ClearColi™ technology. Nature Methods 10, 916-916 (2013). https://doi.org:10.1038/nmeth.f.367 84Faivre, S., Chan, D., Salinas, R., Woynarowska, B. & Woynarowski, J. M. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem Pharmacol 66, 225-237 (2003). https://doi.org:10.1016/s0006-2952(03)00260-0 85Tesniere, A. et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482-491 (2010). https://doi.org:10.1038/onc.2009.356 86Fucikova, J. et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 11, 1013 (2020). https://doi.org:10.1038/s41419-020-03221-2 87Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729-741 (2013). https://doi.org:10.1016/j.immuni.2013.03.003 88Schwechheimer, C., Kulp, A. & Kuehn, M. J. Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiol 14, 324 (2014). https://doi.org:10.1186/s12866-014-0324-1 89Rastogi, I. et al. Role of B cells as antigen presenting cells. Front Immunol 13, 954936 (2022). https://doi.org:10.3389/fimmu.2022.954936 90Patente, T. A. et al. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol 9, 3176 (2018). https://doi.org:10.3389/fimmu.2018.03176 91Martin-Orozco, N., Isibasi, A. & Ortiz-Navarrete, V. Macrophages present exogenous antigens by class I major histocompatibility complex molecules via a secretory pathway as a consequence of interferon-gamma activation. Immunology 103, 41-48 (2001). https://doi.org:10.1046/j.0019-2805.2001.01226.x 92Schetters, S. T. T. et al. Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8(+) T cells. Acta Biomater 91, 248-257 (2019). https://doi.org:10.1016/j.actbio.2019.04.033 93Xu, H. et al. The modulatory effects of lipopolysaccharide-stimulated B cells on differential T-cell polarization. Immunology 125, 218-228 (2008). https://doi.org:10.1111/j.1365-2567.2008.02832.x 94Besser, M. J. et al. Modifying interleukin-2 concentrations during culture improves function of T cells for adoptive immunotherapy. Cytotherapy 11, 206-217 (2009). https://doi.org:10.1080/14653240802590391 95Sudarsanam, H., Buhmann, R. & Henschler, R. Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions. Front Bioeng Biotechnol 10, 886637 (2022). https://doi.org:10.3389/fbioe.2022.886637 96Kobayashi, S. D., Malachowa, N. & DeLeo, F. R. Neutrophils and Bacterial Immune Evasion. J Innate Immun 10, 432-441 (2018). https://doi.org:10.1159/000487756 97Boutilier, A. J. & Elsawa, S. F. Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci 22 (2021). https://doi.org:10.3390/ijms22136995 98Sun, F. et al. Oxaliplatin induces immunogenic cells death and enhances therapeutic efficacy of checkpoint inhibitor in a model of murine lung carcinoma. J Recept Signal Transduct Res 39, 208-214 (2019). https://doi.org:10.1080/10799893.2019.1655050 99Goldberg, J. L. & Sondel, P. M. Enhancing Cancer Immunotherapy Via Activation of Innate Immunity. Semin Oncol 42, 562-572 (2015). https://doi.org:10.1053/j.seminoncol.2015.05.012 100Nguyen, C. T. et al. Flagellin enhances tumor-specific CD8(+) T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model. Vaccine 31, 3879-3887 (2013). https://doi.org:10.1016/j.vaccine.2013.06.054 101Rhee, S. H., Im, E. & Pothoulakis, C. Toll-like receptor 5 engagement modulates tumor development and growth in a mouse xenograft model of human colon cancer. Gastroenterology 135, 518-528 (2008). https://doi.org:10.1053/j.gastro.2008.04.022 102Cai, Z. et al. Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res 71, 2466-2475 (2011). https://doi.org:10.1158/0008-5472.CAN-10-1993 103Sfondrini, L. et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol 176, 6624-6630 (2006). https://doi.org:10.4049/jimmunol.176.11.6624 104Sonnenborn, U. & Schulze, J. The non-pathogenicEscherichia colistrain Nissle 1917 – features of a versatile probiotic. Microbial Ecology in Health and Disease 21, 122-158 (2009). https://doi.org:10.3109/08910600903444267 105Kumar, S., Sunagar, R. & Gosselin, E. Bacterial Protein Toll-Like-Receptor Agonists: A Novel Perspective on Vaccine Adjuvants. Front Immunol 10, 1144 (2019). https://doi.org:10.3389/fimmu.2019.01144 106Kim, J. Y. et al. Engineered bacterial outer membrane vesicles with enhanced functionality. J Mol Biol 380, 51-66 (2008). https://doi.org:10.1016/j.jmb.2008.03.076 107Morrison, D. C. & Jacobs, D. M. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13, 813-818 (1976). https://doi.org:10.1016/0019-2791(76)90181-6 108Whitehead, B., Antennuci, F., Boysen, A. T. & Nejsum, P. Polymyxin B inhibits pro-inflammatory effects of E. coli outer membrane vesicles whilst increasing immune cell uptake and clearance. J Antibiot (Tokyo) 76, 360-364 (2023). https://doi.org:10.1038/s41429-023-00615-0 109Wu, L. S. et al. LPS Enhances the Chemosensitivity of Oxaliplatin in HT29 Cells via GSDMD-Mediated Pyroptosis. Cancer Manag Res 12, 10397-10409 (2020). https://doi.org:10.2147/CMAR.S244374
|