跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張秀羚
研究生(外文):Hsiu-Ling Chang
論文名稱:探討UDP-半乳糖轉運蛋白SLC35A2在神經母細胞瘤中的角色
論文名稱(外文):To investigate the role of UDP-galactose transporter SLC35A2 in Neuroblastoma
指導教授:林能裕
指導教授(外文):Neng-Yu Lin
口試委員:張修豪黃敏銓余兆武
口試委員(外文):Hsiu-Hao ChangMin-Chuan HuangChao-Wu Yu
口試日期:2023-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:解剖學暨細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:70
中文關鍵詞:神經母細胞瘤UDP-半乳糖轉運蛋白(UGT)SLC35A2自噬細胞凋亡
外文關鍵詞:NeuroblastomaUDP-galactose transporter (UGT)SLC35A2autophagyapoptosis
DOI:10.6342/NTU202303651
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經母細胞瘤(NB)是兒童期常見的惡性實體瘤,起源於神經母細胞的異常分化,主要影響交感神經節和腎上腺髓質。它約佔兒童癌症相關死亡的15%。
細胞表面的異常醣基化為癌細胞的顯著特徵之一,與惡性細胞轉化有關。這種非典型醣基化可能是由於生物合成酶的異常所造成,例如糖基轉移酶和核苷酸糖轉運蛋白。溶質載體家族35成員A2(SLC35A2),為UDP-半乳糖轉運蛋白(UGT),會將UDP-半乳糖轉運至高基氏體囊泡中參與醣基化。SLC35A2突變與先天性醣基化障礙疾病相關,但其在神經母細胞瘤中的作用仍不清楚。
在本研究中,我們透過臨床病理、生物學因素及免疫組織化學確認SLC35A2和MYCN在神經母細胞瘤中的臨床相關性。首先我們使用定量實時PCR分析了14種人類NB細胞系中SLC35A2的表現量。隨後,我們敲落或過表現SLC35A2基因以研究其對GI-ME-N、SKN-BE和SH-SY5Y細胞系表型的影響。研究結果表明,SLC35A2過表現顯著降低GI-ME-N的細胞活力,而在SKN-BE及SH-SY5Y細胞中抑制SLC35A2表現都顯著增加細胞活力。為了評估醣基化變化,我們使用了識別GlcNAc的LEL和STL等凝集素,結果顯示與對照組相比,SKN-BE細胞中的SLC35A2敲落導致GlcNAcylation增加。
此外,本研究還探討了SLC35A2在神經母細胞瘤中自噬作用和細胞凋亡的潛在參與。由於細胞自噬及細胞凋亡失調在多種疾病包括癌症有關。利用細胞凋亡測定顯示,與對照組相比,在葡萄糖剝奪條件下,SLC35A2敲落的SKN-BE細胞較不易死亡,而在穿透式電子顯微鏡及西方墨點法結果顯示,SLC35A2敲落會促進SKN-BE細胞自噬。總之,本研究強調了SLC35A2在調節神經母細胞瘤中醣蛋白改變和葡萄糖代謝中的潛在作用,並表明自噬的參與。然而,還需要進一步的研究來闡明SLC35A2和自噬作用在神經母細胞瘤發病機制中的潛在機制和影響。
Neuroblastoma (NB) is a common malignant solid tumor in childhood that originates from abnormal differentiation of neuroblasts, primarily affecting the sympathetic ganglia and adrenal medulla. It accounts for approximately 15% of childhood cancer-related deaths. Aberrant glycosylation on the cell surface is one of the prominent characteristics of cancer cells and is associated with malignant cell transformation. This atypical glycosylation may be caused by abnormalities in biosynthetic enzymes such as glycosyltransferases and nucleotide sugar transporters. Solute carrier family 35 member A2 (SLC35A2), also known as UDP-galactose transporter (UGT), transports UDP-galactose into the Golgi apparatus vesicles for glycosylation. Mutations in SLC35A2 are associated with congenital disorders of glycosylation, but its role in neuroblastoma remains unclear. In this study, we investigated the clinical relevance of SLC35A2 and MYCN in neuroblastoma through clinical pathology, biological factors, and immunohistochemistry. Firstly, we analyzed the expression levels of SLC35A2 in 14 human neuroblastoma cell lines using quantitative real-time PCR. Subsequently, we knocked down or overexpressed the SLC35A2 gene to study its effects on the phenotype of GI-ME-N, SKN-BE, and SH-SY5Y cell lines. The results showed that overexpression of SLC35A2 significantly reduced cell viability in GI-ME-N cells, while inhibiting SLC35A2 expression in SKN-BE and SH-SY5Y cells significantly increased cell viability. To evaluate glycosylation changes, we used lectins such as LEL and STL that recognize GlcNAc residues, and the results showed that SLC35A2 knockdown in SKN-BE cells led to increased GlcNAcylation compared to the control group. Furthermore, this study also investigated the potential involvement of SLC35A2 in autophagy and apoptosis in neuroblastoma. Dysregulation of autophagy and apoptosis is associated with various diseases, including cancer. Apoptosis assays demonstrated that SKN-BE cells with SLC35A2 knockdown were less prone to cell death under glucose deprivation conditions, and transmission electron microscopy and Western blotting results indicated that SLC35A2 knockdown promoted autophagy in SKN-BE cells. In conclusion, this study highlights the potential role of SLC35A2 in regulating glycoprotein alterations and glucose metabolism in neuroblastoma and suggests the involvement of autophagy. However, further research is needed to elucidate the potential mechanisms and impacts of SLC35A2 and autophagy in the pathogenesis of neuroblastoma.
誌謝 i
摘要 ii
Abstract iii
縮寫表(Abbreviation) v
目錄(Contents) vii
圖目錄(List of Figures) x
表目錄(List of Tables) xi
第一章 緒論(Introduction) 1
1.1神經母細胞瘤(Neuroblastoma) 1
1.1.1神經母細胞瘤的流行病學 1
1.1.2神經母細胞瘤的致病原因與病理成因 2
1.1.4神經母細胞瘤的病理分類與臨床分期 5
1.1.5神經母細胞瘤的治療 9
1.2醣基化(Glycosylation) 12
1.2.1異常的醣基化 12
1.2.2糖基轉移酶(Glycosyltransferases) 14
1.2.3核苷酸糖轉運蛋白(Nucleotide Sugar Transporters, NST) 15
1.3自體吞噬(Autophagy) 17
1.3.1自噬作用與細胞凋亡(Autophagy and Apoptosis) 17
1.3.2自噬作用與癌症(Autophagy and Cancer) 20
第二章 研究目的(Aim) 22
2.1探討SLC35A2在神經母細胞瘤中的角色 22
2.2探討SLC35A2和自噬作用在神經母細胞瘤發病機制中的潛在機制和影響 22
第三章 研究材料與方法(Materials & Methods) 23
3.1實驗材料(Materials) 23
3.1.1抗體(Antibody) 23
3.1.2引子(Primers) 23
3.1.3 RNA interference(shRNA) 23
3.1.4藥品、試劑及其他(Drugs、Reagents and Others) 24
3.1.5儀器設備(Instruments and Equipment) 27
3.2病患資料與檢體收集(Patients and tissue samples) 28
3.3組織石蠟包埋與切片(Paraffin embedding & Paraffin section) 28
3.4免疫組織化學染色法(Immunohistochemistry staining; IHC) 29
3.5蘇木精-伊紅染色(Hematoxylin & Eosin stain) 30
3.6免疫螢光染色(Immunofluorescence staining; IF) 31
3.7細胞株及細胞培養(Cell lines & Cell culture) 32
3.8控制細胞SLC35A2表現 32
3.9細胞蛋白質萃取、定量及配製樣本(Cell Protein extraction & Bradford protein assay & Prepare protein sample) 32
3.10西方墨點法(Western blot) 33
3.11 RNA萃取與反轉錄-聚合酶連鎖反應(RNA Extraction & Reverse Transcription Polymerase Chain Reaction, RT-PCR) 35
3.12定量反轉錄-聚合酶連鎖反應(Real-time Polymerase Chain Reaction; Quantitative RT-PCR, RT-qPCR) 36
3.13細胞存活率分析(Cell viability assay; MTT assay) 36
3.14流式細胞儀(Flow cytometry) 36
3.15 穿透式電子顯微鏡細胞樣本包埋(Transmission Electron microscope cell sample embedding) 36
3.16統計分析(Statistical analysis) 37
第四章 結果(Results) 39
4.1 SLC35A2在神經母細胞瘤病患中的表現及其與臨床病理和生物性因子的關聯性 39
4.2 SLC35A2的表現與存活率之分析 39
4.3 SLC35A2過表達增加在NB細胞的高基氏體中大量表現 40
4.4 Knockdown SLC35A2會增加神經母細胞瘤的GlcNAcylation 41
4.5 Knockdown SLC35A2會增強神經母細胞瘤的活性及形成群落能力 41
4.6在無葡萄糖與無血清環境中,knockdown SLC35A2的神經母細胞瘤細 胞較不易死亡 42
4.7 Knockdown SLC35A2會導致在神經母細胞瘤中的自噬作用增強 42
第五章 結論(Conclusion) 44
第六章 討論(Discussion) 46
第七章 圖表(Tables & Figures) 48
第八章 參考文獻(References) 62
David R, Lamki N, Fan S, Singleton EB, Eftekhari F, Shirkhoda A, Kumar R, Madewell JE. The many faces of neuroblastoma. Radiographics. 1989 Sep;9(5):859-82.
Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007 Jun 23;369(9579):2106-20.
Adv Pediatr. 2011; 58(1): 297–311.
Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010 Feb;24(1):65-86.
Whittle SB, Smith V, Doherty E, Zhao S, McCarty S, Zage PE. Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther. 2017 Apr;17(4):369-386.
Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 2013 Jun;13(6):397-411.
Marshall GM, Carter DR, Cheung BB, Liu T, Mateos MK, Meyerowitz JG, Weiss WA. The prenatal origins of cancer. Nat Rev Cancer. 2014 Apr;14(4):277-89.
Motohashi T, Kunisada T. Extended multipotency of neural crest cells and neural crest-derived cells. Curr Top Dev Biol. 2015;111:69-95.
Louis CU, Shohet JM. Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med. 2015;66:49-63.
Tomolonis JA, Agarwal S, Shohet JM. Neuroblastoma pathogenesis: deregulation of embryonic neural crest development. Cell Tissue Res. 2018 May;372(2):245-262.
Delloye-Bourgeois C, Castellani V. Hijacking of Embryonic Programs by Neural Crest-Derived Neuroblastoma: From Physiological Migration to Metastatic Dissemination. Front Mol Neurosci. 2019 Mar 1;12:52.
Johnsen JI, Dyberg C, Wickström M. Neuroblastoma-A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci. 2019 Jan 29;12:9.
Ponzoni M, Bachetti T, Corrias MV, Brignole C, Pastorino F, Calarco E, Bensa V, Giusto E, Ceccherini I, Perri P. Recent advances in the developmental origin of neuroblastoma: an overview. J Exp Clin Cancer Res. 2022 Mar 11;41(1):92.
Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA. Neuroblastoma. Nat Rev Dis Primers. 2016 Nov 10;2:16078.
Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 2018 Feb 23;3:5.
Genes Dev. 2002 Oct 15; 16(20): 2699–2712.
Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. 2013 Oct 1;3(10):a014415.
Liu R, Shi P, Wang Z, Yuan C, Cui H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front Oncol. 2021 Feb 3;10:625332.
Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, Perri P, Laureys G, Speleman F, Kim C, Hou C, Hakonarson H, Torkamani A, Schork NJ, Brodeur GM, Tonini GP, Rappaport E, Devoto M, Maris JM. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008 Oct 16;455(7215):930-5
Palmer RH, Vernersson E, Grabbe C, Hallberg B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem J. 2009 May 27;420(3):345-61.
Takita J. The role of anaplastic lymphoma kinase in pediatric cancers. Cancer Sci. 2017 Oct;108(10):1913-1920.
Wulf AM, Moreno MM, Paka C, Rampasekova A, Liu KJ. Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int J Mol Sci. 2021 Oct 29;22(21):11718.
Hata JL, Correa H, Krishnan C, Esbenshade AJ, Black JO, Chung DH, Mobley BC. Diagnostic utility of PHOX2B in primary and treated neuroblastoma and in neuroblastoma metastatic to the bone marrow. Arch Pathol Lab Med. 2015 Apr;139(4):543-6.
Ke XX, Zhang D, Zhao H, Hu R, Dong Z, Yang R, Zhu S, Xia Q, Ding HF, Cui H. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol Lett. 2015 Jun;9(6):2507-2514.
Gonzalez Malagon SG, Liu KJ. Linking neural crest development to neuroblastoma pathology. Development. 2022 Aug 1;149(15):dev200331.
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol. 2018 Mar 1;48(3):214-241.
Paolini L, Hussain S, Galardy PJ. Chromosome instability in neuroblastoma: A pathway to aggressive disease. Front Oncol. 2022 Oct 20;12:988972.
Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, Castleberry RP. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer. 1999 Jul 15;86(2):364-72.
Peuchmaur M, d'Amore ES, Joshi VV, Hata J, Roald B, Dehner LP, Gerbing RB, Stram DO, Lukens JN, Matthay KK, Shimada H. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer. 2003 Nov 15;98(10):2274-81.
Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, Giammarile F, Schmidt M, Shulkin BL, Matthay KK, Lewington VJ, Sarnacki S, Hero B, Kaneko M, London WB, Pearson AD, Cohn SL, Monclair T; International Neuroblastoma Risk Group Project. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011 Oct;261(1):243-57.
Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993 Aug;11(8):1466-77.
Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, Mosseri V, Simon T, Garaventa A, Castel V, Matthay KK; INRG Task Force. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009 Jan 10;27(2):289-97.
Maris JM. The biologic basis for neuroblastoma heterogeneity and risk stratification. Curr Opin Pediatr. 2005 Feb;17(1):7-13.
J Clin Oncol. 2009 Jan 10; 27(2): 298–303.
Liang WH, Federico SM, London WB, Naranjo A, Irwin MS, Volchenboum SL, Cohn SL. Tailoring Therapy for Children With Neuroblastoma on the Basis of Risk Group Classification: Past, Present, and Future. JCO Clin Cancer Inform. 2020 Oct;4:895-905.
Tolbert VP, Matthay KK. Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell Tissue Res. 2018 May;372(2):195-209.
Nuchtern JG, London WB, Barnewolt CE, Naranjo A, McGrady PW, Geiger JD, Diller L, Schmidt ML, Maris JM, Cohn SL, Shamberger RC. A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: a Children's Oncology Group study. Ann Surg. 2012 Oct;256(4):573-80.
Baker DL, Schmidt ML, Cohn SL, Maris JM, London WB, Buxton A, Stram D, Castleberry RP, Shimada H, Sandler A, Shamberger RC, Look AT, Reynolds CP, Seeger RC, Matthay KK; Children’s Oncology Group. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N Engl J Med. 2010 Sep 30;363(14):1313-23.
Irwin MS, Park JR. Neuroblastoma: paradigm for precision medicine. Pediatr Clin North Am. 2015 Feb;62(1):225-56.
Irwin MS, Naranjo A, Zhang FF, Cohn SL, London WB, Gastier-Foster JM, Ramirez NC, Pfau R, Reshmi S, Wagner E, Nuchtern J, Asgharzadeh S, Shimada H, Maris JM, Bagatell R, Park JR, Hogarty MD. Revised Neuroblastoma Risk Classification System: A Report From the Children's Oncology Group. J Clin Oncol. 2021 Oct 10;39(29):3229-3241.
Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, Nakagawara A, Berthold F, Schleiermacher G, Park JR, Valteau-Couanet D, Pearson AD, Cohn SL. Advances in Risk Classification and Treatment Strategies for Neuroblastoma. J Clin Oncol. 2015 Sep 20;33(27):3008-17.
Bansal D, Totadri S, Chinnaswamy G, Agarwala S, Vora T, Arora B, Prasad M, Kapoor G, Radhakrishnan V, Laskar S, Kaur T, Rath GK, Bakhshi S. Management of Neuroblastoma: ICMR Consensus Document. Indian J Pediatr. 2017 Jun;84(6):446-455.
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev. 2021 Mar;41(2):961-1021.
Bartolucci D, Montemurro L, Raieli S, Lampis S, Pession A, Hrelia P, Tonelli R. MYCN Impact on High-Risk Neuroblastoma: From Diagnosis and Prognosis to Targeted Treatment. Cancers (Basel). 2022 Sep 12;14(18):4421.
Rivera Z, Escutia C, Madonna MB, Gupta KH. Biological Insight and Recent Advancement in the Treatment of Neuroblastoma. Int J Mol Sci. 2023 May 9;24(10):8470.
Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006 Sep 8;126(5):855-67.
Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015 Sep;15(9):540-55.
Wang M, Zhu J, Lubman DM, Gao C. Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med. 2019 Mar 26;57(4):407-416.
Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer. 2021 Jan;1875(1):188464.
Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020 Dec;21(12):729-749.
Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521-55.
James M. Rini, Kelley W. Moremen, Benjamin G. Davis, an Jeffrey D. Esko: Essentials of Glycobiology [Internet]. 4th edition.
Molecules. 2020 Dec; 25(23): 5755. Published online 2020 Dec 6.
Clin Cancer Res. 2009 May 15; 15(10): 3244–3250.
Lin NY, Chen ST, Chang HL, Lu MY, Yang YL, Chou SW, Lin DT, Lin KH, Jou ST, Hsu WM, Huang MC, Chang HH. C1GALT1 expression predicts a favorable prognosis and suppresses malignant phenotypes via TrkA signaling in neuroblastoma. Oncogenesis. 2022 Feb 15;11(1):8.
Song Z. Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Aspects Med. 2013 Apr-Jun;34(2-3):590-600.
Parker JL, Newstead S. Gateway to the Golgi: molecular mechanisms of nucleotide sugar transporters. Curr Opin Struct Biol. 2019 Aug;57:127-134.
Hadley B, Litfin T, Day CJ, Haselhorst T, Zhou Y, Tiralongo J. Nucleotide Sugar Transporter SLC35 Family Structure and Function. Comput Struct Biotechnol J. 2019 Aug 7;17:1123-1134.
Comput Struct Biotechnol J. 2014 Jun; 10(16): 23–32.
Ng BG, Freeze HH. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet. 2018 Jun;34(6):466-476.
Bonduelle T, Hartlieb T, Baldassari S, Sim NS, Kim SH, Kang HC, Kobow K, Coras R, Chipaux M, Dorfmüller G, Adle-Biassette H, Aronica E, Lee JH, Blumcke I, Baulac S. Frequent SLC35A2 brain mosaicism in mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). Acta Neuropathol Commun. 2021 Jan 6;9(1):3.
Cheng H, Wang S, Gao D, Yu K, Chen H, Huang Y, Li M, Zhang J, Guo K. Nucleotide sugar transporter SLC35A2 is involved in promoting hepatocellular carcinoma metastasis by regulating cellular glycosylation. Cell Oncol (Dordr). 2023 Apr;46(2):283-297.
Wiertelak W, Chabowska K, Szulc B, Zadorozhna Y, Olczak M, Maszczak-Seneczko D. SLC35A2 deficiency reduces protein levels of core 1 β-1,3-galactosyltransferase 1 (C1GalT1) and its chaperone Cosmc and affects their subcellular localization. Biochim Biophys Acta Mol Cell Res. 2023 Jun;1870(5):119462.
Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004 Apr 12;23(16):2891-906.
D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019 Jun;43(6):582-592.
Amaravadi RK, Kimmelman AC, Debnath J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov. 2019 Sep;9(9):1167-1181.
Yun CW, Lee SH. The Roles of Autophagy in Cancer. Int J Mol Sci. 2018 Nov 5;19(11):3466.
Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017 Sep;17(9):528-542.
Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014 Feb;15(2):81-94.
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52.
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo MI, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen EL, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez-Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera RM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Sadoshima J, Santambrogio L, Scorrano L, Simon HU, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J. 2021 Oct 1;40(19):e108863.
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Kim DR. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim Biophys Acta Rev Cancer. 2021 Aug;1876(1):188565.
Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023 Mar 2:1–16.
Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P. The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J. 2012 Dec;29(8-9):609-18.
Aponte PM, Caicedo A. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int. 2017;2017:5619472.
電子全文 電子全文(網際網路公開日期:20280808)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊