跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 16:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張伊君
研究生(外文):Yi-Chun Chang
論文名稱:應用社會網絡分析於跨境走私犯罪風險評估—以臺灣海上走私犯罪為例
論文名稱(外文):Applying Social Network Analysis to Assess Transnational Trafficking Risk: The Case of Maritime Trafficking in Taiwan
指導教授:曹承礎曹承礎引用關係
指導教授(外文):Seng-cho T. Chou
口試委員:江彥生陳鴻基陳建錦盧信銘
口試委員(外文):Yen-shen ChiangHoun-Gee ChenChien Chin ChenHsin-Min Lu
口試日期:2023-06-09
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:132
中文關鍵詞:海上走私犯罪風險管理社會網絡分析梯度提升決策樹圖神經網絡分析
外文關鍵詞:Maritime traffickingrisk managementsocial network analysisgradient boost decision treeGNN
DOI:10.6342/NTU202301119
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
海上走私犯罪指的是在海上非法貿易或是載運違禁品入境,包括毒品、菸酒等經濟貨物、野生動物、人口販運等,針對運輸途徑斷絕通路,可以有效打擊走私犯罪。臺灣四面環海,最常見的走私模式就是透過漁船進行海上走私,目前臺灣查獲海上走私犯罪的情資來源主要都是透過線報,一般檢查查獲的走私犯罪案件數量非常少,若能提供安檢人員更多有關風險評估的資訊,可增加海巡機關針對船舶風險管理的效率。
研究主題分成三部分,首先建構海上走私網絡(Maritime trafficking network)並識別走私集團中的重要角色,第二部分則是提出使用SNA作為特徵值進行風險評估的「海上走私風險評估模型(Maritime Trafficking Risk Assessment,MTRA)」,使用社會網絡分析(SNA)法結合梯度提升決策樹(Gradient Boosting Decision Tree,GBDT)方法進行風險評估,由過去的海上活動行為預測未來可能會有走私犯罪風險的人員,最後使用圖神經網絡(Graph Neural Network, GNN)方法進行風險偵測,並比較圖形資料中不同關係權重對於分析結果的影響,找出適合的風險評估方式。在MTRA模型中加入風險因子與SNA因子,研究過程使用16種方始來處理資料不平衡的問題並選擇出最佳的方案,經實驗結果顯示SNA因子之後能夠能讓模型整體準確率上升20%以上,而且MTRA模型能發現60%的高風險者。採取學術單位與實務界一起共同合作模式,研究成果可提供執法機關未來進行漁船風險管理系統參考。
Maritime trafficking crimes involve the illegal trade or importation of contraband by sea, including goods such as tobacco, alcohol, wild animals, drugs, as wellas human trafficking. Taiwan is surrounded by the sea, and smuggling commonly occurs via vessels. Cutting off transportation can effectively combat smuggling. The successful interception of maritime trafficking crimes primarily stems from information provided from imformants but rarely from vessel inspections. Therefore, it is important to provide more information to law enforcement to improve the efficiency of inspectors and risk management.
In this paper, there are three major tasks. First, to establish a maritime trafficking networks (MTN), and identify the key members in smuggling groups. Second, to propose a framework of risk assessment model called “Maritime trafficking risk assessment“ (MTRA) model . The MTRA model combines social network analysis (SNA) and gradient boosting decision tree (GDBT). It is a binary classification model to identify the high risk members. Finally, the current research uses a graph neural network (GNN) with different definitions for comparison of the performance of risk assessment. Besides, to deal with the imbalanced problems, it takes 16 different methods to process imbalence data and choose the best solution. The experment results show that the accuracy and F1-score of MTRA model rose more than 20 % after adding the feature of SNA factors. This research cooperates with the Coast Guard Agency in Taiwan, and the results could be a pototype to establish a vessel risk management system in the future.
誌謝………………………………………………………………………………………….i
摘要…………………………………………………………………………………………ii
Abstract……………………………………………………………………………………iii
目次………………………………………………………………………………………...iv
表目錄……………………………………………………………………………………...vi
圖目錄……………………………………………………………………………………..vii
第一章 前言 1
第一節 研究動機 1
第二節 研究目的 3
第三節 預期效益 5
第二章 相關文獻 6
第一節 相關犯罪理論 6
第二節 社會網絡分析 12
第三節 犯罪網絡執法策略 23
第四節 機器學習與犯罪預測 32
第三章 研究資料與背景 39
第一節 海上走私犯罪模式 39
第二節 海上走私風險管理 43
第三節 研究資料描述 46
第四節 資料處理流程 65
第四章 研究方法 67
第一節 資料清整與轉置 67
第二節 海上走私犯罪網絡 71
第三節 處理不平衡資料 79
第四節 梯度提升決策樹 81
第五節 圖神經網絡模型 85
第五章 研究結果 87
第一節 海上走私網絡分析 87
第二節 風險評估模型 101
第六章 討論與建議 117
參考文獻 120
附錄一 129
王思平,臺灣漁船走私菸品態樣演進-以海巡機關菸品查緝為例,國立高雄科技大學海事資訊科技研究所碩士論文,2020年。
莊雲雁,我國漁船走私探討及防制策略-以海洋委員會海巡署為中心探討(2008年至2017年),國立臺灣海洋大學海洋文化研究所碩士論文,2019年。
許春金,犯罪學 (七版),臺北市: 三民書局,2003年。
張淑淨,漁船監控系統,科學發展 488期 64-70頁,2013年8月。
嚴國維、羅可容,自動識別系統 (AIS) 在漁業活動監測的風潮及科學進展,水試專刊 2003年74期,26-29頁。
Aggarwal, C. C. (2011). An introduction to social network data analytics. In Social network data analytics (pp. 1-15). Springer, Boston, MA.
Ahmad, A. K., Jafar, A., & Aljoumaa, K. (2019). Customer churn prediction in telecom using machine learning in big data platform. Journal of Big Data, 6(1), 1-24.
Al Daoud, E. (2019). Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset. International Journal of Computer and Information Engineering, 13(1), 6-10.
Al-Kasassbeh, M., Abbadi, M. A., & Al-Bustanji, A. M. (2020). LightGBM algorithm for malware detection. In Intelligent Computing: Proceedings of the 2020 Computing Conference, Volume 3 (pp. 391-403). Springer International Publishing.
Alam, M. N., Podder, P., Bharati, S., & Mondal, M. R. H. (2021). Effective machine learning approaches for credit card fraud detection. In Innovations in Bio-Inspired Computing and Applications: Proceedings of the 11th International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA 2020) held during December 16-18, 2020 11 (pp. 154-163). Springer International Publishing.
Albert, R., Jeong, H., & Barabási, A. L. (2000). Error and attack tolerance of complex networks. nature, 406(6794), 378.
Alfaiz, N. S., & Fati, S. M. (2022). Enhanced credit card fraud detection model using machine learning. Electronics, 11(4), 662.
Almuhanna, A. A., Alrehili, M. M., Alsubhi, S. H., & Syed, L. (2021, April). Prediction of crime in neighbourhoods of New York City using spatial data analysis. In 2021 1st International conference on artificial intelligence and data analytics (CAIDA) (pp. 23-30). IEEE.
Alstott, J., Bullmore, E., & Plenz, D. (2014). powerlaw: a Python package for analysis of heavy-tailed distributions. PloS one, 9(1), e85777.
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439), 509-512.
Barua, S., Gavandi, D., Sangle, P., Shinde, L., & Ramteke, J. (2021, April). Swindle: Predicting the probability of loan defaults using catboost algorithm. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1710-1715). IEEE.
Basu, K., & Sen, A. (2021). Identifying individuals associated with organized criminal networks: a social network analysis. Social Networks, 64, 42-54.
Belhabib, D., Le Billon, P., & Wrathall, D. J. (2020). Narco‐Fish: Global fisheries and drug trafficking. Fish and Fisheries, 21(5), 992-1007.
Berlusconi, G., Calderoni, F., Parolini, N., Verani, M., & Piccardi, C. (2016). Link prediction in criminal networks: A tool for criminal intelligence analysis. PloS one, 11(4), e0154244.
Berlusconi, G. (2021). Come at the king, you best not miss: criminal network adaptation after law enforcement targeting of key players. Global Crime, 1-21.
Block, A. A. (1978). History and the study of organized crime. Urban life, 6(4), 455-472.
Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of mathematical sociology, 2(1), 113-120.
Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social networks, 29(4), 555-564.
Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for Windows: Software for social network analysis. Retrieve from https:// pages.uoregon.edu/ vburris/ hc431/ Ucinet_Guide. pdf
Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. science, 323(5916), 892-895.
Bright, D., & Whelan, C. (2018). On the relationship between goals, membership and network design in multi-agency “fusion” centres. Policing: An International Journal, 42(3), 441-454.
Bright, D., Brewer, R., & Morselli, C. (2022). Reprint of: Using social network analysis to study crime: Navigating the challenges of criminal justice records. Social Networks.
Bright, D., Koskinen, J., & Malm, A. (2019). Illicit network dynamics: The formation and evolution of a drug trafficking network. Journal of Quantitative Criminology, 35, 237-258.
Bright, D., Whelan, C., & Harris-Hogan, S. (2020). On the durability of terrorist networks: revealing the hidden connections between jihadist cells. Studies in Conflict & Terrorism, 43(7), 638-656.
Bright, D., Whelan, C., & Morselli, C. (2020, June). Understanding the structure and composition of co-offending networks in Australia. Trends and Issues in Crime and Criminal Justice [electronic resource], (597), 1-21
Bruwer, C. (2020). Smuggling and trafficking of illicit goods by sea. Global challenges in maritime security: an introduction, 49-73.
Budur, E., Lee, S., & Kong, V. S. (2015). Structural analysis of criminal network and predicting hidden links using machine learning. arXiv preprint arXiv:1507.05739.
Burt, R. S. (2003). The social structure of competition. Networks in the knowledge economy, 13, 57-91.
Burt, R. S. (2004). Structural holes and good ideas. American journal of sociology, 110(2), 349-399.
Burt, R. S. (2009). Structural holes: The social structure of competition. Harvard university press.
Cavallaro, L., Ficara, A., De Meo, P., Fiumara, G., Catanese, S., Bagdasar, O., ... & Liotta, A. (2020). Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia. Plos one, 15(8), e0236476.
Carley, K. M., Lee, J. S., & Krackhardt, D. (2002). Destabilizing networks. Connections, 24(3), 79-92.
Carrington, P. J. (2011). Crime and social network analysis. The SAGE handbook of social network analysis, 236-255.
Castro, U. R., Rodrigues, M. W., & Brandao, W. C. (2020). Predicting Crime by Exploiting Supervised Learning on Heterogeneous Data. In ICEIS (1) (pp. 524-531).
Chang, Y. C., Lai, K. T., Chou, S. C. T., & Chen, M. S. (2017, July). Mining the Networks of Telecommunication Fraud Groups using Social Network Analysis. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 (pp. 1128-1131). ACM.
Chang, Y. C., Lai, K. T., Chou, S. C. T., Chiang, W. C., & Lin, Y. C. (2021). Who is the boss? Identifying key roles in telecom fraud network via centrality-guided deep random walk. Data Technologies and Applications, 55(1), 1-18.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., ... & Zhou, T. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
Chen, Y., & Han, X. (2021, January). CatBoost for fraud detection in financial transactions. In 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE) (pp. 176-179). IEEE.
Chohlas and Levine, 2019, Retrieved from https://www.ibm.com/blogs/internet-of-things/big-data-crime-prevention
Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data. SIAM review, 51(4), 661-703
Cornish, D. B., & Clarke, R. V. (1987). Understanding crime displacement: An application of rational choice theory. Criminology, 25(4), 933-948.
Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363.
Duijn, P. A., Kashirin, V., & Sloot, P. M. (2014, February). The relative ineffectiveness of criminal network disruption. Scientific reports, 4(1), 1-15.
Duijn, P. A., & Klerks, P. P. (2014, January). Social network analysis applied to criminal networks: recent developments in Dutch law enforcement. Networks and network analysis for defence and security, 121-159.
Duman, E. (2022). Implementation Of Xgboost Method For Healthcare Fraud Detection. Scientific Journal Of Mehmet Akif Ersoy University, 5(2), 69-75.
Duxbury, S. W., & Haynie, D. L. (2019). Criminal network security: An agent‐based approach to evaluating network resilience. Criminology, 57(2), 314-342.
Everett, M. G., & Borgatti, S. P. (2013). The dual-projection approach for two-mode networks. Social Networks, 35(2), 204-210.
Everton, S. F. (2009). Network topography, key players and terrorist networks. In annual conference of the Association for the Study of Economics, Religion and Culture in Washington, DC.
Ficara, A., Cavallaro, L., Curreri, F., Fiumara, G., De Meo, P., Bagdasar, O., ... & Liotta, A. (2021). Criminal networks analysis in missing data scenarios through graph distances. PLoS one, 16(8), e0255067.
Finckenauer, J. O. (2005). Problems of definition: what is organized crime?. Trends in organized crime, 8(3), 63-83.
Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social networks, 1(3), 215-239.
Freeman, L. (2004). The development of social network analysis. A Study in the Sociology of Science, 1(687), 159-167.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
Fruchterman, T. M., & Reingold, E. M. (1991). Graph drawing by force‐directed placement. Software: Practice and experience, 21(11), 1129-1164.
Ge, D., Gu, J., Chang, S., & Cai, J. (2020, April). Credit card fraud detection using lightgbm model. In 2020 international conference on E-commerce and internet technology (ECIT) (pp. 232-236). IEEE.
Granovetter, M. S. (1973). The strength of weak ties. American journal of sociology, 78(6), 1360-1380.
Grassi, R., Calderoni, F., Bianchi, M., & Torriero, A. (2019). Betweenness to assess leaders in criminal networks: New evidence using the dual projection approach. Social Networks, 56, 23-32.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
Gutfraind, A., & Genkin, M. (2017). A graph database framework for covert network analysis: An application to the Islamic State network in Europe. Social Networks, 51, 178-188.
Hagan, F. E. (2006). “Organized crime” and “organized crime”: Indeterminate problems of definition. Trends in organized crime, 9(4), 127-137.
Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert systems with applications, 73, 220-239.
Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In International conference on intelligent computing (pp. 878-887). Springer, Berlin, Heidelberg.
Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods.
Hassan, S. U., Shabbir, M., Iqbal, S., Said, A., Kamiran, F., Nawaz, R., & Saif, U. (2021). Leveraging deep learning and SNA approaches for smart city policing in the developing world. International Journal of Information Management, 56, 102045.
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE.
Hu, J. (2021). A Hybrid GCN and LSTM Structure Based on Attention Mechanism for Crime Prediction. CONVERTER, 328-338.
Jones, N. P., Chindea, I. A., Argomedo, D. W., & Sullivan, J. P. (2022). A Social Network Analysis of Mexico’s Dark Network Alliance Structure. Journal of Strategic Security, 15(4), 76-105.
Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1), 1-54.
Jiang, J., Chen, J., Gu, T., Choo, K. K. R., Liu, C., Yu, M., ... & Mohapatra, P. (2019, November). Anomaly detection with graph convolutional networks for insider threat and fraud detection. In MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM) (pp. 109-114). IEEE.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
Kleemans, E. R., & Van de Bunt, H. G. (1999). The social embeddedness of organized crime.
Kleemans, E. R. (2007). Organized crime, transit crime, and racketeering. Crime and Justice, 35(1), 163-215.
Kleemans, E. R., & De Poot, C. J. (2008). Criminal careers in organized crime and social opportunity structure. European Journal of Criminology, 5(1), 69-98.
Krebs, V. E. (2002). Mapping networks of terrorist cells. Connections, 24(3), 43-52.
Klerks, N. P. (2004). The network paradigm applied to criminal organisations: theoretical nitpicking or a relevant doctrine for investigators? Recent developments in the: Theoretical nitpicking or a relevant doctrine for investigators? Recent. In Transnational Organised Crime (pp. 111-127). Routledge.
Kroodsma, D. A., Mayorga, J., Hochberg, T., Miller, N. A., Boerder, K., Ferretti, F., ... & Worm, B. (2018). Tracking the global footprint of fisheries. Science, 359(6378), 904-908.
Lindelauf, R., Borm, P., & Hamers, H. (2009). The influence of secrecy on the communication structure of covert networks. Social Networks, 31(2), 126-137.
Litvak, N., & Van Der Hofstad, R. (2013). Uncovering disassortativity in large scale-free networks. Physical Review E, 87(2), 022801.
Liu, J., Gao, Y., & Hu, F. (2021). A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. Computers & Security, 106, 102289.
Lü, L., Chen, D., Ren, X. L., Zhang, Q. M., Zhang, Y. C., & Zhou, T. (2016). Vital nodes identification in complex networks. Physics reports, 650, 1-63.
Lupsha, P. A. (1981). Individual choice, material culture, and organized crime. Criminology, 19(1), 3-24.
Marin, A., & Wellman, B. (2011). Social network analysis: An introduction. The SAGE handbook of social network analysis, 11, 25.
Matsueda, R. L. (2001). Differential association theory. Encyclopedia of criminology and deviant behavior, 1, 125-130.
McIllwain, J. S. (1999). Organized crime: A social network approach. Crime, law and social change, 32(4), 301-323.
Min, S., Gao, Z., Peng, J., Wang, L., Qin, K., & Fang, B. (2021). STGSN—A Spatial–Temporal Graph Neural Network framework for time-evolving social networks. Knowledge-Based Systems, 214, 106746.
Morselli, C., Giguère, C., & Petit, K. (2007). The efficiency/security trade-off in criminal networks. Social networks, 29(1), 143-153.
Morselli, C. (2009). Law-Enforcement Disruption of a Drug-Importation Network. In Inside Criminal Networks (pp. 1-17). Springer, New York, NY.
Newman, M. E. (2003, February). Mixing patterns in networks. Physical review E, 67(2), 026126.
Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2), 167-256.
Newman, M. E., and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113.
Nguyen, N., Duong, T., Chau, T., Nguyen, V. H., Trinh, T., Tran, D., & Ho, T. (2022). A Proposed Model for Card Fraud Detection Based on CatBoost and Deep Neural Network. IEEE Access, 10, 96852-96861.
Nti, I. K., & Somanathan, A. R. (2022). A Scalable RF-XGBoost Framework for Financial Fraud Mitigation. IEEE Transactions on Computational Social Systems.
O'Reilly, M. J. A., Hughes, C. E., Bright, D. A., & Ritter, A. (2020). Structural and functional changes in an Australian high-level drug trafficking network after exposure to supply changes. International Journal of Drug Policy, 84, 102797.
Otte, E., & Rousseau, R. (2002). Social network analysis: a powerful strategy, also for the information sciences. Journal of information Science, 28(6), 441-453.
Ozgul, F., & Erdem, Z. (2013, August). Which crime features are important for criminal network members?. In 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013) (pp. 1058-1060). IEEE.
Ozkan, T. (2017). Predicting recidivism through machine learning (Doctoral dissertation).
Patel, B., Patil, H., Hembram, J., & Jaswal, S. (2020, June). Loan default forecasting using data mining. In 2020 International Conference for Emerging Technology (INCET) (pp. 1-4). IEEE.
Pearsall, B. (2010). Predictive policing: The future of law enforcement. National Institute of Justice Journal, 266(1), 16-19.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin A.: CatBoost: unbiased boosting with categorical features. Neural Inf. Process. Syst. (2018)
Qi, Zhang. (2020, June). The text classification of theft crime based on TF-IDF and XGBoost model. In 2020 IEEE International conference on artificial intelligence and computer applications (ICAICA) (pp. 1241-1246). IEEE.
Scott, J. (2011). Social network analysis: developments, advances, and prospects. Social network analysis and mining, 1, 21-26.
Shamsudin, H., Yusof, U. K., Jayalakshmi, A., & Khalid, M. N. A. (2020, October). Combining oversampling and undersampling techniques for imbalanced classification: A comparative study using credit card fraudulent transaction dataset. In 2020 IEEE 16th International Conference on Control & Automation (ICCA) (pp. 803-808). IEEE.
Shi, X., Wong, Y. D., Li, M. Z. F., Palanisamy, C., & Chai, C. (2019). A feature learning approach based on XGBoost for driving assessment and risk prediction. Accident Analysis & Prevention, 129, 170-179.
Sokolov, M., & Herndon, N. (2021). Predicting Malware Attacks using Machine Learning and AutoAI. In ICPRAM (pp. 295-301).
Sparrow, M. K. (1991). The application of network analysis to criminal intelligence: An assessment of the prospects. Social networks, 13(3), 251-274.
Stephenson, K., & Zelen, M. (1989). Rethinking centrality: Methods and examples. Social networks, 11(1), 1-37.
Sutherland, E. H., Cressey, D. R., & Luckenbill, D. F. (1992). Principles of criminology. Altamira Press.
Tabassum, H., Ghosh, G., Atika, A., & Chakrabarty, A. (2021, August). Detecting online recruitment fraud using machine learning. In 2021 9th International Conference on Information and Communication Technology (ICoICT) (pp. 472-477). IEEE.
Tertychnyi, P., Slobozhan, I., Ollikainen, M., & Dumas, M. (2020). Scalable and imbalance-resistant machine learning models for anti-money laundering: A two-layered approach. In Enterprise Applications, Markets and Services in the Finance Industry: 10th International Workshop, FinanceCom 2020, Helsinki, Finland, August 18, 2020, Revised Selected Papers 10 (pp. 43-58). Springer International Publishing.
Thabtah, F., Hammoud, S., Kamalov, F., & Gonsalves, A. (2020). Data imbalance in classification: Experimental evaluation. Information Sciences, 513, 429-441.Tostado, S. D. L. M., Núñez-López, M., & Hernández-Vargas, E. A. (2022). Human Trafficking in Mexico: Data sources, Network Analysis and the Limits of Dismantling Strategies. arXiv preprint arXiv:2206.02971
Von Lampe, K. (2008). Organized crime in Europe: conceptions and realities. Policing: A journal of policy and practice, 2(1), 7-17.
Troncoso, F., & Weber, R. (2020). Integrating relations and criminal background to identifying key individuals in crime networks. Decision Support Systems, 139, 113405.
Travers, J., & Milgram, S. (1977). An experimental study of the small world problem. In Social Networks (pp. 179-197). Academic Press.
Van der Hulst, R. C. (2009). Introduction to Social Network Analysis (SNA) as an investigative tool. Trends in Organized Crime, 12, 101-121.
Van der Hofstad, R. (2009). Random graphs and complex networks. Retrieved from http://www. win. tue. nl/rhofstad/NotesRGCN. pdf, 11.
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
Wang, D. N., Li, L., & Zhao, D. (2022). Corporate finance risk prediction based on LightGBM. Information Sciences, 602, 259-268.
Wang, J., Wen, R., Wu, C., Huang, Y., & Xiong, J. (2019, May). Fdgars: Fraudster detection via graph convolutional networks in online app review system. In Companion proceedings of the 2019 World Wide Web conference (pp. 310-316).
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge university press.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature, 393(6684), 440.
Wiil, U. K., Gniadek, J., & Memon, N. (2010, August). Measuring link importance in terrorist networks. In 2010 International Conference on Advances in Social Networks Analysis and Mining (pp. 225-232). IEEE.
Williams, I. (2018). Machine learning algorithms for crime prevention and predictive policing (Doctoral dissertation, Cardiff University).
Won, H. R., Shim, J. S., & Ahn, H. (2019). A recidivism prediction model based on xgboost considering asymmetric error costs. Journal of Intelligence and Information Systems, 25(1), 127-137.
Wood, G. (2017). The structure and vulnerability of a drug trafficking collaboration network. Social Networks, 48, 1-9.
Xuan, D., Yu, H., & Wang, J. (2014, December). A novel method of centrality in terrorist network. In 2014 Seventh International Symposium on Computational Intelligence and Design (Vol. 2, pp. 144-149). IEEE.
Zanardo, E., Domiziani, G. P., Iosif, E., & Christodoulou, K. (2023). Identification of Illicit Blockchain Transactions Using Hyperparameters Auto-tuning. In Principles and Practice of Blockchains (pp. 27-38). Springer, Cham.
Zhang, Y., Tong, J., Wang, Z., & Gao, F. (2020, March). Customer transaction fraud detection using xgboost model. In 2020 International Conference on Computer Engineering and Application (ICCEA) (pp. 554-558). IEEE.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top