跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李嘉揚
研究生(外文):Chia-Yang Lee
論文名稱:以數值模型進行調整型防砂壩經營管理分析、操作矩陣應用與調整策略設計
論文名稱(外文):Sustainable Management Analysis, Operation Matrix Application and Adjustment Strategy Design for Adjustable Check Dam via Numerical Simulation
指導教授:廖國偉
指導教授(外文):Kuo-Wei Liao
口試委員:范正成李錦育
口試委員(外文):Jen-Chen FanChin-Yu Lee
口試日期:2023-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:209
中文關鍵詞:永續防砂壩調整型經營管理與操作HEC-RAS 2D數值模型
外文關鍵詞:SustainableCheck damManagement and OperationHEC-RAS 2DNumerical model
DOI:10.6342/NTU202303172
相關次數:
  • 被引用被引用:2
  • 點閱點閱:35
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統型防砂壩作為目前國內外常見之溪流、河川工法,主要目的在於降低土砂災害的風險及保護下游保全對象與居民生命財產的安全,但近年來氣候變遷使得極端降雨事件之發生頻率提高,也導致了傳統型防砂壩經常面臨壩體上游淤砂過量、壩體下游沖刷嚴重之問題。調整型防砂壩的出現,雖然有效地提供了解決之道,但是如何長期永續經營與使用調整型防砂壩這項有利的工具,是目前學界與業界最關心的研究議題。
有鑑於調整型防砂壩目前缺乏一套完整的經營管理與操作策略,因此本研究將使用HEC-RAS 2D水理輸砂數值模型作為工具,並以台中市廍仔溪為案例,研擬出完整的調整型防砂壩經營管理與操作矩陣之應用規則及防砂壩調整策略,冀望提供使用者可以針對不同溪流現地狀況以及上、下游土砂狀態選擇適合的防砂壩調整策略配合矩陣進行應用,在確保各式保全對象安全之前提下,同時解決上游淤積過量、下游沖刷嚴重之問題,使溪流恢復平衡穩定之狀態,並且延長防砂壩之使用年限。
本研究透過四階段的模擬試驗,最終提出兩套完整的調整型防砂壩經營管理與操作策略,分別為最終策略保守型與最終策略成效型。其中,最終策略保守型經過七步驟之壩體調整策略及洪水事件模擬,成功使防砂壩上游溪床坡度降低,由原先的5.4%改善至3.5%,且原先沖刷嚴重的保全對象5K+065固床工下游沖刷坑,其全斷面淤積總量共增加54.56平方公尺,該處河道平均沖刷深度由原始地形之2.85公尺降低至0.7公尺,本調整策略有效地延長了防砂壩之壽命,使其平均使用年限達195年。
此外,最終策略成效型經過五步驟之壩體調整策略及洪水事件模擬,最終成功使防砂壩上游溪床坡度由原先的5.4%改善至3.8%,保全對象5K+065固床工下游沖刷坑之全斷面淤積總量共增加50.74平方公尺,該處河道平均沖刷深度則同樣由原先之2.85公尺降低至0.7公尺,且經過本調整策略操作,有效地延長了防砂壩之壽命,使其平均使用年限達70年。
依據本研究模擬結果,結論如下:最終策略保守型適用於防砂壩下游有鄰近生命財產之保全對象時,此方案能夠最大化防砂壩攔阻土砂之功效,同時解決上游淤積過量、下游沖刷嚴重之問題,使溪流恢復平衡穩定之狀態。最終策略成效型適用於防砂壩下游鄰近區段僅存在構造物保全對象,並無生命財產保全對象,且須盡快處理壩體上游淤積嚴重、下游沖刷劇烈之問題時,此方案能夠使防砂壩在確保一定的安全前提下,有效率地解決土砂沖淤不平衡之問題,使溪流快速恢復穩定狀態。
Traditional check dams, as a common stream engineering method, are mainly designed to reduce the risk of soil and sand disasters and to protect downstream protection targets. However, in recent years, climate change has led to an increase in the frequency of extreme rainfall events, which has resulted in the traditional check dams often facing excessive sediment accumulation in upstream and severe scouring in downstream of the dams. Although the invention of the adjustable check dam is an effective solution to the problem, how to long-term sustainable management and use adjustable check dams as a beneficial tool is currently the most concerned research topic.
Due to the lack of a complete sustainable management and operation strategy for adjustable dams, this study will use the HEC-RAS 2D numerical model as a tool, and the Buzi Stream in Taichung as the study area, to develop complete rules for the application of the " Adjustable check dam management and operation matrix" and dam adjustment strategies. It’s expected to provide users to select the suitable dam adjustment strategies for different streams and sand conditions in conjunction with the application of the matrix. Through the dam adjustment strategy, the problem of excessive sediment accumulation in upstream and severe scouring in downstream can be solved under the premise of ensuring the safety of the protection targets, restoring the balance and stability of the stream, and extending the service life of the dams.
Through the four-stage simulation test, this study finally proposed two complete sets of management and operation strategies for adjustable check dams, namely, the conservative final strategy and the effective final strategy. After seven steps of dam adjustment and flood event simulation, the conservative final strategy successfully reduced the upstream slope from 5.4% to 3.5%, increased the cross-section siltation of the protection target, 5K+065 scouring pit, by 54.56 m2, and lowered the average scouring depth of the river from 2.85 m to 0.7 m. It also extended the average service life of the check dam to 195 years. In addition, after five steps of dam adjustment and flood event simulation, the effective final strategy successfully improved the upstream slope from 5.4% to 3.8%, increased the cross-section siltation of the 5K+065 scouring pit by 50.74 m2. The average scouring depth of the river was also reduced from 2.85 meters to 0.7 meters and the average service life of the dam was extended to 70 years.
Based on the results of this study, the conservative final strategy is recommended to be used when there are life and property protection targets in the downstream of the river, which can effectively reduce the risk of sediment disasters while solving the problem of sediment imbalance, and restoring the stream to a balanced and stable condition. On the other hand, the effective final strategy is recommended to be used when there are only structural preservation targets in the downstream of the river, and at the same time, there are problems of excessive sediment accumulation in upstream and severe scouring in downstream of the dams, which can efficiently solve the problem of sediment imbalance under the premise of ensuring the safety and quickly restoring the stream to a stable condition.
誌謝 II
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XVI
符號說明表 XVIII
第一章、緒論 1
1.1研究動機與目的 1
1.2研究流程 3
1.3論文架構 5
第二章、文獻回顧 6
2.1國內外調整型防砂壩研究 6
2.2水理數值模型模擬防砂壩土砂沖淤相關研究 8
2.3小結 9
第三章、研究方法 10
3.1研究區域與資料 10
3.2 HEC-RAS 2D水理數值模型 15
3.3調整型防砂壩經營管理與操作矩陣 38
3.4小結 49
第四章、結果與討論 50
4.1第一階段模擬 50
4.2第二階段模擬 68
4.3最終階段模擬(保守型) 113
4.4最終階段模擬(成效型) 161
4.5最終策略之保守型與成效型比較 200
第五章、結論與建議 204
5.1結論 204
5.2建議 206
參考文獻 207
1.王楨智(2022),「氣泡與水泡工法對於減緩壩體下游沖刷之探討」,國立臺灣大學碩士論文。
2行政院農業委員會水土保持局(2017),「水土保持手冊」。
3行政院農業委員會水土保持局(2019),「水土保持單元叢書-非透過性防砂壩」。
4行政院農業委員會水土保持局(2019),「水土保持單元叢書-透過性防砂壩」。
5行政院農業委員會水土保持局(2021),「110年臺中分局轄區重要治理區土砂高變動性調查評估及治理策略研擬」。
6行政院農業委員會水土保持局臺中分局(2020),「廍仔溪中上游集水區(廍仔坑橋以上)整體治理調查規劃」。
7吳瑞鵬、黃爾強、陳柏宏、藍尹圻(2023),「防砂壩改善調適策略對流域環境影響評估-以眉溪集水區為例」,中華水土保持學報,53(1),p.3135-3154。
8林彥慈(2020),「拱型固床工之沖刷機制探討」,國立臺灣大學碩士論文。
9林家興、吳振佑、蔡元融、陳振宇 (2019),「HEC-RAS 2D 於天然壩潰決模擬評估」,中華防災學刊,11(2),p.137-150。
10夏佳宏(2023),「透過式調整型防砂壩經營管理及土砂密實度之縮尺試驗研究」,國立臺灣大學碩士論文。
11陳思廷(2008),「不同輸砂公式對河道沖淤影響之研究」,國立交通大學碩士論文。
12陳瑞宗(2003),「結合 HEC-RAS 模式與 GIS 模擬洪災之研究-以筏子溪為例」,國立中興大學碩士論文。
13陳樹群、安軒霈、國領ひろし、林永欣(2016),「野溪高土砂災害之模組化防砂壩管理」,中華水土保持學報,47(3),p.111-121。
14經濟部水利署第三河川局(2020),「烏溪水系逕流分擔評估規劃(1/2)」。
15葉克家 (2011),「流域水情模擬與預報模式精度與效能提升之研究-總計畫暨子計畫:河道動床沖淤對防洪水位之影響(I) 」。
16詹勳全、邱亮鈞、彭振捷、張承遠、郭炳榮(2017),「應用二維水理輸砂模式評估野溪清疏成效之研究」,中華水土保持學報,48(3),p.113-126。
17劉宜君、許詠晴、邱渝方、李正鈞、廖雯慧、陳樹群(2019),「東門溪防砂壩調降對河床沖淤變化之影響」,中華水土保持學報,50(2),p.63-72。
18鄭雅臨(2022),「可調式防砂壩縱材間距對土石流及漂流木之攔阻效率」,國立中興大學碩士論文。
19賴桂文(2016),「HEC-RAS水理模式2D模組介紹及應用」。
20闕帝旺(2013),「野溪淤積土砂清疏之數值模擬-以來社溪為例」,逢甲大學碩士論文。
21蘇語乾(2021),「應用UAV空拍技術及HEC-RAS 2D水理模式於河川高灘地植生管理」,國立臺灣大學碩士論文。
22中谷加奈, 井元大希, 里深好文, & 水山高久. (2011). 数値シミュレーションを用いたシャッター付砂防堰堤の土砂調節効果の検討. 砂防学会誌, 63(6), 43-51.
23井元大希, 中谷加奈, 水山高久, & 里深好文. (2009). シャッター付砂防えん堤による土砂調節効果の検討. 平成 21 年度砂防学会研究発表会概要集, 300-301.
24梅津健一, & 戸松修. (2007). 改修後の多自然型渓流保全工における河床礫の評価. 砂防学会誌, 60(3), 3-10.
25奥山悠木, & 水山高久. (2011). シャッター砂防堰堤の適用条件に関する考察. 砂防学会誌, 64(2), 24-26.
26Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics. US government printing office.
27Brunner, G. W. (2016). HEC-RAS river analysis system 2D modeling user’s manual. US Army Corps of Engineers—Hydrologic Engineering Center, 1-171.
28Brunner, G. W. (2016). HEC-RAS River Analysis System: Hydraulic Reference Manual, Version 5.0. US Army Corps of Engineers–Hydrologic Engineering Center, 547.
29Das, B., & Senthil Vadivel, T. (2022). Sediment Transport Modelling in Stream Flow by HEC-RAS Model—A State-of-the-Art. In Recent Advances in Civil Engineering: Proceedings of the 2nd International Conference on Sustainable Construction Technologies and Advancements in Civil Engineering (ScTACE 2021) (pp. 481-491). Singapore: Springer Nature Singapore.
30Engelund, F., & Fredsøe, J. (1976). A sediment transport model for straight alluvial channels. Hydrology Research, 7(5), 293-306.
31Hussain, K., & Shahab, M. (2020). Sustainable sediment management in a reservoir through flushing using HEC-RAS model: case study of Thakot Hydropower Project (D-3) on the Indus river. Water Supply, 20(2), 448-458.
32Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. In IAHSR 2nd meeting, Stockholm, appendix 2. IAHR.
33Mikami, K., Koshino, M., Okui, J., Nagayama, T., Tagata, S., Miyamoto, K., ... & Mizuyama, T. (2014). Install of a movable shutter in Myo-Jyu sabo dam and longitudinal bedload monitoring in Jyo-Gan-Ji River. In Proceedings of the Interpraevent (pp. 25-28).
34Mohammad, M. E., Al‐Ansari, N., Issa, I. E., & Knutsson, S. (2016). Sediment in Mosul Dam reservoir using the HEC‐RAS model. Lakes & Reservoirs: Research & Management, 21(3), 235-244.
35Ulfiana, D., Wulandari, D. A., & Parmantoro, P. N. (2020, March). Effect of change of channel width in the downstream of the check dam on controlling sedimentation in Mrica Reservoir. In IOP Conference Series: Materials Science and Engineering (Vol. 771, No. 1, p. 012047). IOP Publishing.
36Van Rijn, L. C. (1984). Sediment transport, part I: bed load transport. Journal of hydraulic engineering, 110(10), 1431-1456.
37Van Rijn, L. C. (1984). Sediment transport, part II: suspended load transport. Journal of hydraulic engineering, 110(11), 1613-1641.
38Van Rijn, L. C., & Kroon, A. (1993). Sediment transport by currents and waves. In Coastal Engineering 1992 (pp. 2613-2628).
39Wu, W., & Wang, S. S. (2007). One-dimensional modeling of dam-break flow over movable beds. Journal of hydraulic engineering, 133(1), 48-58.
40Wu, W., Wang, S. S., & Jia, Y. (2000). Nonuniform sediment transport in alluvial rivers. Journal of hydraulic research, 38(6), 427-434.
電子全文 電子全文(網際網路公開日期:20250807)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top