|
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data, 8, 1-74. Amy Xia, H., Ma, H., & Carlin, B. P. (2011). Bayesian hierarchical modeling for detecting safety signals in clinical trials. Journal of Biopharmaceutical Statistics, 21(5), 1006-1029. Balduzzi, M., Binder, B. M., Bucksch, A., Chang, C., Hong, L., Iyer-Pascuzzi, A. S., Pradal, C., & Sparks, E. E. (2017). Reshaping plant biology: qualitative and quantitative descriptors for plant morphology. Frontiers in Plant Science, 8, 117. Bhandari, A. K., Maurya, S., & Meena, A. K. (2018). Social spider optimization based optimally weighted Otsu thresholding for image enhancement. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Bosker, R., & Snijders, T. A. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Multilevel analysis, 1-368. Bouguettaya, A., Zarzour, H., Kechida, A., & Taberkit, A. M. (2022). Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Computing and Applications, 34(12), 9511-9536. Broët, P., Richardson, S., & Radvanyi, F. (2002). Bayesian hierarchical model for identifying changes in gene expression from microarray experiments. Journal of Computational Biology, 9(4), 671-683. Chipman, H., & Tibshirani, R. (2006). Hybrid hierarchical clustering with applications to microarray data. Biostatistics, 7(2), 286-301. Cho, J., Choi, J., Qiao, M., Ji, C., Kim, H., Uhm, K., & Chon, T. (2007). Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis. Red, 346(246), 244. Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V., & Wikle, C. K. (2009). Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecological Applications, 19(3), 553-570. Fahlgren, N., Feldman, M., Gehan, M. A., Wilson, M. S., Shyu, C., Bryant, D. W., Hill, S. T., McEntee, C. J., Warnasooriya, S. N., & Kumar, I. (2015). A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Molecular plant, 8(10), 1520-1535. Fan, H., Xie, F., Li, Y., Jiang, Z., & Liu, J. (2017). Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold. Computers in biology and medicine, 85, 75-85. Feldman, M. J., Paul, R. E., Banan, D., Barrett, J. F., Sebastian, J., Yee, M.-C., Jiang, H., Lipka, A. E., Brutnell, T. P., & Dinneny, J. R. (2017). Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS genetics, 13(6), e1006841. Fomalont, E. B. (1999). Image analysis. In Synthesis Imaging in Radio Astronomy II (Vol. 180, p. 301). Fu, K.-S., & Mui, J. (1981). A survey on image segmentation. Pattern recognition, 13(1), 3-16. Ghaderi-Zefrehei, M., Memari, H. R., & Kadkhodaei, S. (2010). Multilevel modeling in human microarray time course gene expression data. In 2010 17th Iranian Conference of Biomedical Engineering (ICBME) (pp. 1-5). IEEE. Goh, T. Y., Basah, S. N., Yazid, H., Safar, M. J. A., & Saad, F. S. A. (2018). Performance analysis of image thresholding: Otsu technique. Measurement, 114, 298-307. Haralick, R. M., & Shapiro, L. G. (1985). Image segmentation techniques. Computer vision, graphics, and image processing, 29(1), 100-132. Jain, A. K. (1989). Fundamentals of digital image processing. Prentice-Hall, Inc. Kan, A. (2017). Machine learning applications in cell image analysis. Immunology and cell biology, 95(6), 525-530. Kaplan, D. R. (2001). The science of plant morphology: definition, history, and role in modern biology. American Journal of Botany, 88(10), 1711-1741. Karakos, D. G., & Trahanias, P. E. (1997). Generalized multichannel image-filtering structures. IEEE Transactions on image processing, 6(7), 1038-1045. Kimchi, R. (1992). Primacy of wholistic processing and global/local paradigm: a critical review. Psychological bulletin, 112(1), 24. King, G., Rosen, O., & Tanner, M. A. (1999). Binomial-beta hierarchical models for ecological inference. Sociological Methods & Research, 28(1), 61-90. Kumah, C., Zhang, N., Raji, R. K., & Pan, R. (2019). Color measurement of segmented printed fabric patterns in lab color space from RGB digital images. Journal of Textile Science and Technology, 5(1), 1-18. Kumar, P., & Miklavcic, S. J. (2018). Analytical study of colour spaces for plant pixel detection. Journal of Imaging, 4(2), 42. Lavania, S., & Matey, P. S. (2015). Novel method for weed classification in maize field using Otsu and PCA implementation. In 2015 IEEE International Conference on Computational Intelligence & Communication Technology (pp. 534-537). IEEE. Malarvel, M., Sethumadhavan, G., Bhagi, P. C. R., Kar, S., & Thangavel, S. (2017). An improved version of Otsu's method for segmentation of weld defects on X-radiography images. Optik, 142, 109-118. Mao, K., & Sun, C. (1991). A refined global‐local finite element analysis method. International Journal for Numerical Methods in Engineering, 32(1), 29-43. McGavin, D., Stukenborg, B., & Witkowski, M. (2005). Color figures in BJ: RGB versus CMYK. Biophysical journal, 88(2), 761-762. Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive psychology, 9(3), 353-383. Oberholzer, M., Östreicher, M., Christen, H., & Brühlmann, M. (1996). Methods in quantitative image analysis. Histochemistry and cell biology, 105, 333-355. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66. Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern recognition, 26(9), 1277-1294. Pourdarbani, R., & Rezaei, B. (2011). Automatic detection of greenhouse plants pests by image analysis. Tarım Makinaları Bilimi Dergisi, 7(2), 171-174. Pratikakis, I., Gatos, B., & Ntirogiannis, K. (2013). ICDAR 2013 document image binarization contest (DIBCO 2013). In 2013 12th International Conference on Document Analysis and Recognition (pp. 1471-1476). IEEE. Raudenbush, S., & Bryk, A. S. (1986). A hierarchical model for studying school effects. Sociology of education, 1-17. Sahoo, P. K., Soltani, S., & Wong, A. K. (1988). A survey of thresholding techniques. Computer vision, graphics, and image processing, 41(2), 233-260. Saikumar, K., & Rajesh, V. (2020). A novel implementation heart diagnosis system based on random forest machine learning technique. International Journal of Pharmaceutical Research (09752366). Service, P. (2013). Defining and Communicating Color: The CIELAB System. In: Sappi Fine Paper North America. Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons. Tian, H., Wang, T., Liu, Y., Qiao, X., & Li, Y. (2020). Computer vision technology in agricultural automation—A review. Information Processing in Agriculture, 7(1), 1-19. Wang, S., & Haralick, R. M. (1984). Automatic multithreshold selection. Computer vision, graphics, and image processing, 25(1), 46-67. Yu, Y., Bao, Y., Wang, J., Chu, H., Zhao, N., He, Y., & Liu, Y. (2021). Crop row segmentation and detection in paddy fields based on treble-classification otsu and double-dimensional clustering method. Remote Sensing, 13(5), 901. Zaborowicz, M., Boniecki, P., Koszela, K., Przybylak, A., & Przybył, J. (2017). Application of neural image analysis in evaluating the quality of greenhouse tomatoes. Scientia Horticulturae, 218, 222-229. Zaborowicz, M., Przybył, J., Koszela, K., Boniecki, P., Mueller, W., Raba, B., Lewicki, A., & Przybył, K. (2014). Computer image analysis in obtaining characteristics of images: greenhouse tomatoes in the process of generating learning sets of artificial neural networks. In Sixth International Conference on Digital Image Processing (ICDIP 2014) (Vol. 9159, pp. 63-68). SPIE. Zhan, Y., & Zhang, G. (2019). An improved OTSU algorithm using histogram accumulation moment for ore segmentation. Symmetry, 11(3), 431. Zhu, L., & Yang, Y. (2020). Actbert: Learning global-local video-text representations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8746-8755).
|