跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱靖文
研究生(外文):Ching-Wen CHIU
論文名稱:應用空間統計探討臺灣COVID-19 確診數和環境因素之關係
論文名稱(外文):Spatio-temporal analysis of Environmental Factors and their relationship with COVID-19 in Taiwan
指導教授:蔡政安蔡政安引用關係
指導教授(外文):Chen-An Tsai
口試委員:薛慧敏陳錦華
口試委員(外文):Huey-Miin HsuehJin-Hua Chen
口試日期:2023-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:44
中文關鍵詞:空間統計COVID-19空氣汙染克利金法INLA
外文關鍵詞:spatial modelCOVID-19air pollutantskrigingINLA
DOI:10.6342/NTU202301971
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著疫情升溫,病毒在傳播力方面的重要性日益顯現,也引起各 界關注,然而臺灣因為和他國的文化差異以及公衛政策的不同,使得 疫情爆發時間軸截然不同,因此,研究疫情潛在風險因子和區域才能 有效進行防疫工作。本文研究目的是評估環境因子對臺灣COVID-19 感染風險的影響,使用克利金法對缺乏測站區域之空氣汙染物進行 補值,運用貝氏階層模型分析,為避免共線性問題將PM2.5 和PM10 分開建模,在確診數階層分別採用卜瓦松分布、負二項分布以及零 膨脹卜瓦松分布,空間效應則以Besag York-and-Molliè 模型(BYM) 和 Leroux 模型作為比較,WAIC 作為選模標準,在此六種模型中,以 負二項分布結合BYM 模型的效果最佳。結果顯示,不論是以PM2.5 或PM10 建模的模型,SO2、O3 和人口密度皆為顯著正相關,另外在 PM10 的模型中,PM10 亦為顯著正相關,而在PM2.5 模型中,當分別提 高1ppb SO2、1ppb O3 和1 單位標準化後人口密度,將會提升22.6%、 2.05% 和7.14% 的感染率,在PM10 模型中則為提升27.07%、2.24% 和 6.53% 的感染率。本文表明部分空氣汙染因子與新冠肺炎確診數具顯 著相關,以及不同時間點的熱點區域,在未來的空氣監管和醫療資源 分配政策具有參考價值。
As the COVID-19 spreads rapidly, studying virus transmission plays a crucial role in epidemiology. However, there is a very different COVID-19 pandemic timeline from other countries because of Taiwan's unique cultural differences and public health policies. Consequently, there is a need for understanding potential risk factors and the spatio-temporal trend of COVID-19 incidence. This study aims to investigate the impact of environmental factors on the risk of COVID-19 infection in Taiwan. The missing values of air pollutants in areas without monitoring stations are imputed using the kriging method. Hierarchical Bayesian spatio-temporal models are implemented to investigate the association between covariates and the number of cases by assuming different distributions for the confirmed case data, such as Poisson distribution, negative binomial distribution, and zero-inflated Poisson distribution. Spatial effects are considered using the BYM and Leroux models. The model selection criterion based on WAIC reveals that the combination of negative binomial distribution and BYM model best explains COVID-19 incidence rate. In addition, the results show that SO2, O3, and population density have significantly positive association with COVID-19 incidence in both PM2.5 and PM10 models. Additionally, the PM10 model shows a significant positive correlation between PM10 and the incidence rate. In the PM2.5 model, an increase of 1 ppb in SO2, 1 ppb in O3, and the standardized population density increases by 1 unit corresponds to a 22.6%, 2.05%, and 7.14% increase in incidence rates, respectively, while in the PM10 model, the corresponding increases are 27.07%, 2.24%, and 6.53%. This study reveals the significant associations between certain air pollutants and COVID-19 incidence, as well as the identification of hotspots at different time periods. These findings provide valuable insights for future air pollution regulations and resource allocation in healthcare.
口試委員會審定書 ii
誌謝 iii
摘要 iv
Abstract v
1 研究動機 1
2 研究方法 3
2.1 研究流程 3
2.2 克利金法 (Kriging) 4
2.2.1 原理 4
2.2.2 半變異函數 (Semi-variogram) 6
2.3 全域型空間自相關檢定 8
2.4 廣義時空線性混合模型 10
2.4.1 模型架構 10
2.4.2 空間模型 12
2.4.3 自迴歸模型 (Autoregressive model) 13
2.5 模型選擇準則 14
3 資料介紹 16
3.1 資料來源 16
3.2 確診情形 16
3.3 空氣汙染物和溫度 18
4 研究結果 23
4.1 使用空間模型的適當性 23
4.2 模型結果 24
4.3 高相對風險區域 26
4.4 熱點區域 29
5 討論 32
5.1 顯著相關之環境汙染因子 32
5.2 熱點區域特徵探討 32
6 結論與展望 34
參考文獻 35
附錄 39
政府資料開放平台 (2021). 鄉鎮市區界線 (TWD97 經緯度) 各鄉 (鎮、市、區) 行政區域界線圖資. https://data.gov.tw/dataset/7441.
政 府 資 料 開 放 平 台 (2022). 村 里 戶 數、 單 一 年 齡 人 口 (新 增 區 域 代 碼).https://data.gov.tw/dataset/77132.
行 政 院 環 境 環 保 署 (2022). 空 氣 品 質 監 測 網 污 染 物 測 值 月 報 表.https://airtw.epa.gov.tw/CHT/Query/Month_Value.aspx.
中央氣象局 (2022). 觀測資料查詢 (CWB Observation Data Inquire System). https://eservice.cwb.gov.tw/HistoryDataQuery/index.jsp.
Adhikari, A. and Yin, J. (2020). Short-term effects of ambient ozone, pm2. 5, and meteorological factors on covid-19 confirmed cases and deaths in queens, new york. International journal of environmental research and public health, 17(11):4047.
Amoatey, P., Omidvarborna, H., Baawain, M. S., and Al-Mamun, A. (2020). Impact of building ventilation systems and habitual indoor incense burning on sars-cov-2 virus transmissions in middle eastern countries. Science of the Total Environment,733:139356.
Azimi, P., Keshavarz, Z., Cedeno Laurent, J. G., Stephens, B., and Allen, J. G. (2021).Mechanistic transmission modeling of covid-19 on the diamond princess cruise ship demonstrates the importance of aerosol transmission. Proceedings of the National Academy of Sciences, 118(8):e2015482118.
Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics. Annals of the institute of statistical mathematics, 43:1–20.
Fattorini, D. and Regoli, F. (2020). Role of the chronic air pollution levels in the covid-19outbreak risk in italy. Environmental pollution, 264:114732.
Gross, B., Zheng, Z., Liu, S., Chen, X., Sela, A., Li, J., Li, D., and Havlin, S.(2020). Spatio-temporal propagation of covid-19 pandemics. Europhysics Letters,131(5):58003.
Ho, C.-C., Hung, S.-C., and Ho, W.-C. (2021). Effects of short-and long-term exposure to atmospheric pollution on covid-19 risk and fatality: analysis of the first epidemic wave in northern italy. Environmental research, 199:111293.
Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., and Kaufman, J. D. (2013). Long-term air pollution exposure and cardio-respiratory mortality:a review. Environmental health, 12(1):1–16.
Huang, G. and Brown, P. E. (2021). Population-weighted exposure to air pollution and covid-19 incidence in germany. Spatial statistics, 41:100480.
Jaya, I. G. N. M. and Folmer, H. (2021). Bayesian spatiotemporal forecasting and mapping of covid-19 risk with application to west java province, indonesia. Journal of Regional Science, 61(4):849–881.
Lechien, J. R., Chiesa-Estomba, C. M., Place, S., Van Laethem, Y., Cabaraux, P., Mat,Q., Huet, K., Plzak, J., Horoi, M., Hans, S., et al. (2020). Clinical and epidemiological characteristics of 1420 european patients with mild-to-moderate coronavirus disease 2019. Journal of internal medicine, 288(3):335–344.
Leroux, B. G., Lei, X., and Breslow, N. (2000). Estimation of disease rates in small areas:a new mixed model for spatial dependence. In Statistical models in epidemiology, the environment, and clinical trials, pages 179–191. Springer.
Li, H.-H., Liu, C.-C., Hsu, T.-W., Lin, J.-H., Hsu, J.-W., Li, A. F.-Y., Yeh, Y.-C., Hung,S.-C., and Hsu, H.-S. (2021). Upregulation of ace2 and tmprss2 by particulate matter and idiopathic pulmonary fibrosis: a potential role in severe covid-19. Particle and Fibre Toxicology, 18(1):1–13.
Marquès, M., Rovira, J., Nadal, M., and Domingo, J. L. (2021). Effects of air pollution on the potential transmission and mortality of covid-19: a preliminary case-study in tarragona province (catalonia, spain). Environmental Research, 192:110315.
Matheron, G. (1963). Principles of geostatistics. Economic geology, 58(8):1246–1266.
Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2):17–23.
Ogen, Y. (2020). Assessing nitrogen dioxide (no2) levels as a contributing factor to coronavirus (covid-19) fatality. Science of the Total Environment, 726:138605.
Park, S.-k., Lee, C.-W., Park, D.-I., Woo, H.-Y., Cheong, H. S., Shin, H. C., Ahn, K.,Kwon, M.-J., and Joo, E.-J. (2021). Detection of sars-cov-2 in fecal samples from patients with asymptomatic and mild covid-19 in korea. Clinical Gastroenterology and Hepatology, 19(7):1387–1394.
Richardson, S., Thomson, A., Best, N., and Elliott, P. (2004). Interpreting posterior relative risk estimates in disease-mapping studies. Environmental health perspectives,112(9):1016–1025.
Rue, H., Martino, S., and Chopin, N. (2009). Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations. Journal of the royal statistical society: Series b (statistical methodology), 71(2):319–392.
Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M. G., Piazzalunga, A.,Borelli, M., Palmisani, J., Di Gilio, A., Piscitelli, P., et al. (2020). The potential role of particulate matter in the spreading of covid-19 in northern italy: first evidence-based research hypotheses. MedRxiv, pages 2020–04.
Shahzad, F., Shahzad, U., Fareed, Z., Iqbal, N., Hashmi, S. H., and Ahmad, F. (2020).Asymmetric nexus between temperature and covid-19 in the top ten affected provinces of china: a current application of quantile-on-quantile approach. Science of the Total Environment, 736:139115.
Sobral, M. F. F., Duarte, G. B., da Penha Sobral, A. I. G., Marinho, M. L. M., and de Souza Melo, A. (2020). Association between climate variables and global transmission of sars-cov-2. Science of The Total Environment, 729:138997.
Srivastava, A. (2021). Covid-19 and air pollution and meteorology-an intricate relationship: A review. Chemosphere, 263:128297.
Sunkari, E. D., Korboe, H. M., Abu, M., and Kizildeniz, T. (2021). Sources and routes of sars-cov-2 transmission in water systems in africa: Are there any sustainable remedies?Science of the Total Environment, 753:142298.
Sy, K. T. L., White, L. F., and Nichols, B. E. (2021). Population density and basic reproductive number of covid-19 across united states counties. PloSone,16(4):e0249271.
Tabatabaeizadeh, S.-A. (2021). Airborne transmission of covid-19 and the role of face mask to prevent it: a systematic review and meta-analysis. European journal of medical research, 26(1):1–6.
Travaglio, M., Yu, Y., Popovic, R., Selley, L., Leal, N. S., and Martins, L. M. (2021). Links between air pollution and covid-19 in england. Environmental pollution, 268:115859.
Watanabe, S. and Opper, M. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of machine learning research, 11(12).
World Health Organization (2023). Who coronavirus covid-19 dashboard. https://covid19.who.int/.
Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., and Dominici, F. (2020). Exposure to air pollution and covid-19 mortality in the united states: A nationwide cross-sectional study. MedRxiv, pages 2020–04.
Zhu, Y., Xie, J., Huang, F., and Cao, L. (2020). Association between short-term exposure to air pollution and covid-19 infection: Evidence from china. Science of the total environment, 727:138704.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top