跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳人豪
研究生(外文):Ren-Hao Chen
論文名稱:圖案化4H碳化矽基板上氮化鎵磊晶層之研究
論文名稱(外文):Investigation of GaN Epitaxial Layers on Patterned 4H-SiC Substrates
指導教授:管傑雄管傑雄引用關係蘇文生蘇文生引用關係林致廷林致廷引用關係
指導教授(外文):Chieh-Hsiung KuanVin-Cent SuChih-Ting Lin
口試委員:孫允武孫建文朱富權
口試委員(外文):Yuen-Wuu SuenKien-Wen SunFu-Chiuan Chu
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:97
中文關鍵詞:圖案化4H-SiC基板ELOG氮化鎵碳化矽乾式蝕刻RIE電子束微影陰極射線發光XRDHEMT
外文關鍵詞:Patterned 4H-SiC substrateELOGGaNSiCDry etchingRIEE-Beam lithographyCLXRDHEMT
DOI:10.6342/NTU202303532
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
隨著現今電子設備和通信系統的進步,對於高頻、高功率和高電壓的要求也提高,而第一代半導體(Si、Ge)和第二代半導體(GaAs、InP)的溫度、頻率和功率也已經達到極限,這時第三代半導體(GaN、SiC)的出現,也使這些瓶頸有了突破,尤以GaN磊晶層搭配SiC基板最令人注目,因此材料系統具備寬能隙、SiC高導熱係數等材料優勢。
本論文致力於圖案化SiC基板之開發,用以減低GaN磊晶層內之缺陷密度。首先,為了探討陰極射線發光技術是否可以作為量測差排的方法,將使用XRD量測技術去探討一般基板之磊晶結構的缺陷密度大小,並說明CL的量測結果是否可以分析差排密度。針對圖案化SiC基板之開發,本論文研發磊晶側向生長法(ELOG)與圖案化4H-SiC基板。透過一系列的製程製造出圖案化的二氧化矽柱,並且使用陰極射線發光技術來量測ELOG法做出來的氮化鎵磊晶層的缺陷密度,以及探討圖案尺寸與差排密度之間的關係。
在使用圖案化4H-SiC基板方法前,本文會先介紹反應式離子蝕刻(RIE)蝕刻4H-SiC的方法,並調整RIE的氣體流量、壓力、功率和時間,以實現事先設計好的圖案和蝕刻深度,隨後進行微縮尺寸的處理。最終,透過本文的探討與研究希望能製造出低缺陷的氮化鎵磊晶層,並期望未來可以應用於高電子遷移率電晶體(HEMT)的製作。
With the advancement of electronic devices and communication systems, the requirements for high frequency, high power, and high voltage have increased. The temperature, frequency, and power limits of the first-generation semiconductors (Si, Ge) and second-generation semiconductors (GaAs, InP) have already been pushed to their limitations. The emergence of third-generation semiconductors has provided breakthroughs in these limitations, especially the combination of GaN epitaxial layers with SiC substrates, which is particularly noteworthy due to the material system's advantages such as wide bandgap and high thermal conductivity of SiC.
This work is dedicated to the development of patterned SiC substrates to reduce defect density within GaN epitaxial layers. First, in order to explore whether cathodoluminescence (CL) can serve as a method for measuring dislocation density, X-ray diffraction (XRD) measurement techniques will be used to investigate the defect density of the epitaxial structures, and the CL measurement results will be analyzed to assess dislocation density. For the development of patterned SiC substrates, this study investigates epitaxial lateral overgrowth (ELOG) and patterned 4H-SiC substrates. A series of processes are employed to create patterned silicon dioxide (SiO2) pillars, and the CL technology is utilized to measure the defect density of the GaN epitaxial layers produced by the ELOG method, as well as to explore the relationship between pattern dimensions and dislocation density.
Before utilizing the method of patterned 4H-SiC substrates, this work introduces the reactive ion etching (RIE) technique for etching 4H-SiC, adjusting RIE gas flow, pressure, power, and time to achieve pre-designed patterns and etching depths, followed by fine-scale treatment. Ultimately, through the exploration and research presented in this study, the aim is to manufacture low-defect GaN epitaxial layers, with the future expectation of their application in the production of high electron mobility transistors (HEMTs).
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xv
Chapter 1 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 5
Chapter 2 理論基礎與材料分析 7
2.1 碳化矽基板(SiC Substrate) 7
2.1.1 晶體結構(Crystal Structure) 8
2.1.2 碳化矽基板的生長方法(Substrate Growth Method of SiC) 10
2.1.3 微導管密度(micropipe density) 13
2.2 蝕刻原理 15
2.2.1 蝕刻種類 15
2.2.2 乾式蝕刻原理 16
2.3 氮化鎵薄膜 (Gallium Nitride, GaN) 17
2.3.1 晶體結構(Crystal Structure) 17
2.3.2 應力 (Strain) 18
2.3.3 差排 (Dislocation) 20
2.3.4 晶體成長 21
Chapter 3 實驗設備與製程流程 24
3.1 實驗儀器 24
3.1.1 電漿輔助化學氣相沉積 (Plasma Enhanced Chemical Vapor Deposition, PECVD) 24
3.1.2 有機金屬化學氣相沉積 (Metal-organic Chemical Vapor Deposition, MOCVD) 25
3.1.3 電子束蒸鍍 (Electron Beam Evaporation, E-gun) 26
3.1.4 電子束微影 (Electron Beam Lithography) 27
3.1.5 反應式離子蝕刻 (Reactive Ion etching, RIE) 29
3.1.6 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 29
3.1.7 陰極射線發光 (Cathodoluminescence, CL) 31
3.1.8 X射線繞射儀 (X-ray Diffractometer, XRD) 31
3.2 製程流程 32
3.2.1 圖案化4H-SiC基板製作 32
3.2.2 磊晶側向成長法製作 39
3.2.3 氮化鎵(GaN)磊晶 45
Chapter 4 X-Ray繞射儀(XRD)和陰極射線發光(CL)量測原理及儀器介紹 46
4.1 X-Ray繞射儀(XRD) 46
4.1.1 XRD量測原理 46
4.1.2 XRD儀器介紹 48
4.2 陰極射線發光 (CL) 50
4.2.1 CL量測原理 50
4.2.2 CL成像 (CL mapping) 51
4.2.3 CL mapping分析差排 52
4.2.4 CL儀器介紹 55
Chapter 5 實驗結果與分析 59
5.1 基板之磊晶結構研究 59
5.1.1 磊晶結構 59
5.1.2 Sample A量測結果分析 60
5.1.3 Sample B量測結果分析 61
5.1.4 Sample C量測結果分析 61
5.1.5 Sample A、Sample B、Sample C量測結果比較 70
5.2 磊晶側向成長法研究 71
5.2.1 磊晶結構 71
5.2.2 Sample D二氧化矽層圖案設計 71
5.2.3 Sample D圖案化二氧化矽柱量測結果與分析 73
5.3 圖案化4H-SiC基板研究 75
5.3.1 蝕刻碳化矽基板 75
5.3.2 圖案化4H-SiC基板圖案設計 87
Chapter 6 結論及未來展望 91
參考資料 92
X. She, A. Q. Huang, O. Lucia, and B. Ozpineci, "Review of silicon carbide power devices and their applications," IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8193-8205, 2017.
Y. Sun et al., "Review of the recent progress on GaN-based vertical power Schottky barrier diodes (SBDs)," Electronics, vol. 8, no. 5, p. 575, 2019.
T. Ueda, "Reliability issues in GaN and SiC power devices," in 2014 IEEE international reliability physics symposium, 2014: IEEE, pp. 3D. 4.1-3D. 4.6.
UTMEL. "Silicon carbide (SiC) and gallium nitride (GaN), who is the future of wide bandgap (WBG) materials?" https://www.utmel.com/blog/categories/semiconductor/silicon-carbide-sic-and-gallium-nitride-gan-who-is-the-future-of-wide-bandgap-wbg-materials (accessed October 7, 2021).
A. O. Adan, D. Tanaka, L. Burgyan, and Y. Kakizaki, "The current status and trends of 1,200-V commercial silicon-carbide MOSFETs: Deep physical analysis of power transistors from a designer’s perspective," IEEE Power Electronics Magazine, vol. 6, no. 2, pp. 36-47, 2019.
M. Östling, R. Ghandi, and C.-M. Zetterling, "SiC power devices—Present status, applications and future perspective," in 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, 2011: IEEE, pp. 10-15.
S. W. Kaun, M. H. Wong, U. K. Mishra, and J. S. Speck, "Molecular beam epitaxy for high-performance Ga-face GaN electron devices," Semiconductor science and technology, vol. 28, no. 7, p. 074001, 2013.
A. Jarndal, L. Arivazhagan, and D. Nirmal, "On the performance of GaN‐on‐silicon, silicon‐carbide, and diamond substrates," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 30, no. 6, p. e22196, 2020.
Y.-J. Lai, Y.-C. Liu, Y.-F. Hsu, and M.-C. Wu, "Characteristics Comparison of Nanochannel GaN-on-Si and GaN-on-SiC HEMTs," ECS Journal of Solid State Science and Technology, 2023.
T. Kimoto and J. A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications. John Wiley & Sons, 2014.
張煒旭, 黃宇中, and 林稔杰, "單晶碳化矽在微電子及微感測元件之應用," 科儀新知, vol. 24, no. 132, pp. 4-14, 2003.
H. Rashid, A. Koel, T. Rang, R. GÄHWILER, M. Grosberg, and R. JÕEMAA, "Nanoscale and microscale simulations of nn junction heterostructures of 3c-4h silicon carbide," WIT Transactions on Engineering Sciences, vol. 116, pp. 235-248, 2017.
Y. M. Tairov and V. Tsvetkov, "Investigation of growth processes of ingots of silicon carbide single crystals," Journal of crystal growth, vol. 43, no. 2, pp. 209-212, 1978.
A. A. Lebedeva, A. S. Tregubova, V. E. Chelnokova, M. P. Scheglov, and A. G. Al'fred, "Growth and investigation of the big area Lely-grown substrates," Materials Science and Engineering: B, vol. 46, no. 1-3, pp. 291-295, 1997.
S. Y. Karpov, Y. N. Makarov, and M. Ramm, "Simulation of sublimation growth of SiC single crystals," physica status solidi (b), vol. 202, no. 1, pp. 201-220, 1997.
S. Zhang, G. Fan, T. Li, and L. Zhao, "Optimization of thermal field of 150 mm SiC crystal growth by PVT method," RSC advances, vol. 12, no. 31, pp. 19936-19945, 2022.
O. Kordina et al., "High temperature chemical vapor deposition of SiC," Applied physics letters, vol. 69, no. 10, pp. 1456-1458, 1996.
C. Jacquier, G. Ferro, F. Cauwet, J. C. Viala, G. Younes, and Y. Monteil, "On the growth of 4H–SiC by low-temperature liquid phase epitaxy in Al rich Al–Si melts," Journal of crystal growth, vol. 254, no. 1-2, pp. 123-130, 2003.
P. J. Wellmann, "Review of SiC crystal growth technology," Semiconductor Science and Technology, vol. 33, no. 10, p. 103001, 2018.
J. Heindl et al., "Dislocation content of micropipes in SiC," Physical review letters, vol. 80, no. 4, p. 740, 1998.
W. Vetter and M. Dudley, "X-ray topographic dislocation contrast visible in reflections orthogonal to the Burgers vectors of axial screw dislocations in hexagonal silicon carbide," Journal of applied crystallography, vol. 34, no. 1, pp. 20-26, 2001.
D. Li, Encyclopedia of microfluidics and nanofluidics. Springer Science & Business Media, 2008.
A. Hill, "Growth, characterization, and thermodynamics of III-nitride semiconductors," arXiv preprint arXiv:2206.01307, 2022.
S. C. Bera, Microwave High Power High Efficiency GaN Amplifiers for Communication. Springer Nature, 2022.
D. Quirion, M. Manna, S. Hidalgo, and G. Pellegrini, "Manufacturability and stress issues in 3D silicon detector technology at IMB-CNM," Micromachines, vol. 11, no. 12, p. 1126, 2020.
K. Barghout and J. Chaudhuri, "Calculation of residual thermal stress in GaN epitaxial layers grown on technologically important substrates," Journal of materials science, vol. 39, pp. 5817-5823, 2004.
G. Marius, "The Physics of Semiconductors: An Introduction Including Nanophysics and Applications," ed: Spinger, 2016.
Y. Le Vaillant et al., "Caracterization of AIN buffer layers on (0001)-sapphire substrates," Materials Science and Engineering: B, vol. 50, no. 1-3, pp. 32-37, 1997.
W.-C. Huang et al., "Investigations of GaN growth on the sapphire substrate by MOCVD method with different AlN buffer deposition temperatures," Materials Science in Semiconductor Processing, vol. 45, pp. 1-8, 2016.
K. Hiramatsu et al., "Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE," Journal of Crystal Growth, vol. 115, no. 1-4, pp. 628-633, 1991.
謝承佑, "利用奈米圖案化藍寶石基板改善氮化鎵品質以及成長半極性氮化鎵於a面圖案化藍寶石基板," 博士, 材料科學與工程學系, 國立交通大學, 新竹市, 2012. [Online]. Available: https://hdl.handle.net/11296/7dj83q
D. Wuu et al., "Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template," Applied Physics Letters, vol. 89, no. 16, 2006.
B. Chen, F. E. Tay, and C. Iliescu, "Development of thick film PECVD amorphous silicon with low stress for MEMS applications," in Micro-and Nanotechnology: Materials, Processes, Packaging, and Systems IV, 2008, vol. 7269: SPIE, pp. 130-140.
P. V. Pham, "Atmospheric Pressure Chemical Vapor Deposition of Graphene," Chem. Vap. Depos. Nanotechnol, vol. 6, pp. 115-134, 2018.
T. I. Awan, A. Bashir, and A. Tehseen, Chemistry of nanomaterials: fundamentals and applications. Elsevier, 2020.
S. Bradbury, D. C. Joy, and B. J. Ford. "scanning electron microscope." Encyclopedia Britannica. https://www.britannica.com/technology/scanning-electron-microscope (accessed July 4, 2023).
T. F. S. P.-W. BV. "How to Mix Backscattered and Secondary Electron Images." AZoM. https://www.azom.com/article.aspx?ArticleID=16390 (accessed July 4, 2023).
B. Stefanov, "Photocatalytic TiO2 thin films for air cleaning: Effect of facet orientation, chemical functionalization, and reaction conditions," Acta Universitatis Upsaliensis, 2015.
國科會基礎研究核心設施儀器. "高效能可變溫多功能X光繞射儀." https://irc.ord.nycu.edu.tw/nstc_instrument/physics/low-temp-xrd/ (accessed July 26, 2023).
V. Montedoro et al., "Cathodoluminescence of undoped and Si-doped ɛ-Ga2O3 films," Materials Science and Engineering: B, vol. 264, p. 114918, 2021.
G. Nichols, "Applications of cathodoluminescence spectroscopy and imaging in the characterisation of pharmaceutical materials," European journal of pharmaceutical sciences, vol. 45, no. 1-2, pp. 19-42, 2012.
Attolight. "Attolight Allalin." https://attolight.com/allalin/#tab-1626782756-1-47 (accessed July 7, 2023).
N. Yamamoto et al., "Cathodoluminescence characterization of dislocations in gallium nitride using a transmission electron microscope," Journal of applied physics, vol. 94, no. 7, pp. 4315-4319, 2003.
M. Albrecht, J. Weyher, B. Lucznik, I. Grzegory, and S. Porowski, "Nonradiative recombination at threading dislocations in n-type GaN: Studied by cathodoluminescence and defect selective etching," Applied Physics Letters, vol. 92, no. 23, 2008.
S. Rosner, E. Carr, M. Ludowise, G. Girolami, and H. Erikson, "Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition," Applied Physics Letters, vol. 70, no. 4, pp. 420-422, 1997.
J. Speck and S. Rosner, "The role of threading dislocations in the physical properties of GaN and its alloys," Physica B: Condensed Matter, vol. 273, pp. 24-32, 1999.
J. Lähnemann et al., "Carrier Diffusion in Ga N: A Cathodoluminescence Study. III. Nature of Nonradiative Recombination at Threading Dislocations," Physical Review Applied, vol. 17, no. 2, p. 024019, 2022.
T. Sugahara et al., "Direct evidence that dislocations are non-radiative recombination centers in GaN," Japanese journal of applied physics, vol. 37, no. 4A, p. L398, 1998.
S. Usami et al., "Correlation between dislocations and leakage current of pn diodes on a free-standing GaN substrate," Applied Physics Letters, vol. 112, no. 18, 2018.
國科會基礎研究核心設施儀器. "低溫陰極螢光分析系統." https://irc.ord.nycu.edu.tw/nstc_instrument/physics/crygenic-cathodoluminescence/ (accessed July 26, 2023).
Y.-h. Liu, Y.-j. Sun, G.-j. Zhao, L.-m. Liao, T. Wang, and Z.-z. Chen, "Crystal structure induced residue formation on 4H-SiC by reactive ion etching," AIP Advances, vol. 6, no. 6, 2016.
M. Lazar et al., "Deep SiC etching with RIE," Superlattices and microstructures, vol. 40, no. 4-6, pp. 388-392, 2006.
W. Reichert, D. Stefan, E. Obermeier, and W. Wondrak, "Fabrication of smooth β-SiC surfaces by reactive ion etching using a graphite electrode," Materials Science and Engineering: B, vol. 46, no. 1-3, pp. 190-194, 1997.
S. Tanaka, K. Rajanna, T. Abe, and M. Esashi, "Deep reactive ion etching of silicon carbide," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 19, no. 6, pp. 2173-2176, 2001.
L. Jiang, R. Cheung, R. Brown, and A. Mount, "Inductively coupled plasma etching of SiC in SF 6/O 2 and etch-induced surface chemical bonding modifications," Journal of applied physics, vol. 93, no. 3, pp. 1376-1383, 2003.
L. E. Luna, M. J. Tadjer, T. J. Anderson, E. A. Imhoff, K. D. Hobart, and F. J. Kub, "Deep reactive ion etching of 4H-SiC via cyclic SF6/O2 segments," Journal of Micromechanics and Microengineering, vol. 27, no. 9, p. 095004, 2017.
H.-K. Sung et al., "Vertical and bevel-structured SiC etching techniques incorporating different gas mixture plasmas for various microelectronic applications," Scientific reports, vol. 7, no. 1, p. 3915, 2017.
R. J. Hoekstra, M. J. Kushner, V. Sukharev, and P. Schoenborn, "Microtrenching resulting from specular reflection during chlorine etching of silicon," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 16, no. 4, pp. 2102-2104, 1998.
O. Seok, Y.-J. Kim, and W. Bahng, "Micro-trench free 4H-SiC etching with improved SiC/SiO2 selectivity using inductively coupled SF6/O2/Ar plasma," Physica Scripta, vol. 95, no. 4, p. 045606, 2020.
K. M. Dowling, E. H. Ransom, and D. G. Senesky, "Profile evolution of high aspect ratio silicon carbide trenches by inductive coupled plasma etching," Journal of Microelectromechanical Systems, vol. 26, no. 1, pp. 135-142, 2016.
N. Okamoto, "Elimination of pillar associated with micropipe of SiC in high-rate inductively coupled plasma etching," Journal of Vacuum Science & Technology A, vol. 27, no. 2, pp. 295-300, 2009.
L. Voss et al., "SiC via fabrication for wide-band-gap high electron mobility transistor/microwave monolithic integrated circuit devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 26, no. 2, pp. 487-494, 2008.
L. Hiller, T. Stauden, R. M. Kemper, J. K. Lindner, D. J. As, and J. Pezoldt, "ECR-Ectching of Submicron and Nanometer Sized 3C-SiC (100) Mesa Structures," in Materials Science Forum, 2012, vol. 717: Trans Tech Publ, pp. 901-904.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊