|
[1]A. R. Adams, I. P. Marko, J. Mukherjee, V. Stolojan, S. J. Sweeney, A. Gocalinska, E. Pelucchi, K. Thomas, and B. Corbett. Semiconductor quantum well lasers with a temperature-insensitive threshold current. IEEE Journal of Selected Topics in Quantum Electronics, 21(6):177–182, 2015. [2]M. A. Afromowitz. Thermal conductivity of Ga1-xAlxAs alloys. Journal of Applied Physics, 44(3):1292–1294, 1973. [3]T. Aggerstam, R. M. von Wurtemberg, C. Runnstrom, and E. Choumas. Large aperture 850nm oxide-confined VCSELs for 10Gb/s data communication. In Proc. SPIE, volume 4649, pages 19 – 24. SPIE, 2002. [4]Y. Akulova, B. Thibeault, J. Ko, and L. Coldren. Low-temperature optimized vertical-cavity lasers with submilliamp threshold currents over the 77-370 K temperature range. IEEE Photonics Technology Letters, 9(3):277–279, 1997. [5]A. Al-Omari and K. Lear. Dielectric characteristics of spin-coated dielectric films using on-wafer parallel-plate capacitors at microwave frequencies. IEEE Transactions on Dielectrics and Electrical Insulation, 12(6):1151–1161, 2005. [6]A. Al-Omari and K. Lear. VCSELs with a self-aligned contact and copper-plated heatsink. IEEE Photonics Technology Letters, 17(9):1767–1769, 2005. [7]A. N. AL-Omari, I. K. AL-Kofahi, and K. L. Lear. Fabrication, performance and parasitic parameter extraction of 850 nm high-speed vertical-cavity lasers. Semiconductor Science and Technology, 24(9):095024, Aug. 2009. [8]A. N. AL-Omari and K. L. Lear. Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth. IEEE Photonics Technology Letters, 16(4):969–971, 2004. [9]T. Aoki, H. Hiiro, R. Tanaka, Y. Koyama, S. Yoshimoto, and M. Yanagisawa. Performance of PAM-4 VCSEL for short-reach 100 Gb/s per lane applications up to 85◦C. In Proc. SPIE, volume 12020, page 120200C. SPIE, 2022. [10]Y. Arakawa and H. Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Applied Physics Letters, 40(11):939–941, 06 1982. [11]L. V. Asryan and S. Luryi. Temperature-insensitive semiconductor quantum dot laser. Solid-State Electronics, 47(2):205–212, 2003. [12]M. Azuchi, N. Jikutani, M. Arai, T. Kondo, and F. Koyama. Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth. CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671), pages W26–(2)–6, 2003. [13]N. Batra, J. Gope, Vandana, J. Panigrahi, R. Singh, and P. K. Singh. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation. AIP Advances, 5(6):067113, 2015. [14]P. P. Baveja, B. Kögel, P. Westbergh, J. S. Gustavsson, Å. Haglund, D. N. Maywar, G. P. Agrawal, and A. Larsson. Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling. Opt. Express, 19(16):15490– 15505, August 2011. [15]G. Belfiore, M. Khafaji, R. Henker, and F. Ellinger. A compact electro-optical VCSEL model for high-speed IC design. In 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pages 1–4, 2016. [16]Beneq. Manufacturing VCSELs with ALD, Mar 2023. https://beneq.com/en/markets/led-and-photonics/vcsel-manufacturing-process/. [17]A. Bond, P. Dapkus, and J. O’brien. Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters, 10(10):1362–1364, 1998. [18]M. Bou Sanayeh, W. Hamad, and W. Hofmann. Equivalent circuit model of high-performance VCSELs. Photonics, 7(1), 2020. [19]Broadcom Inc. 112-Gb/s (56-GBd) 850-nm 1 × 4 array oxide VCSEL. [20]M. R. Bruce and V. J. Bruce.ABCs of photon emission microscopy.EDFA Technical Articles, 5(3):13–20, 08 2003. [21]R. D. Burnham, D. R. Scifres, and W. Streifer. Transverse light emitting electroluminescent devices, 1982. US Patent 4,309,670. [22]F. Caspers. RF engineering basic concepts: the Smith chart, 2012. [23]J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson. 50 Gb/s 4-PAM over 200 m of high bandwidth MMF using a 850 nm VCSEL. In Optical Fiber Communication Conference, page W1D.1. Optical Society of America, 2015. [24]H. Cha, J. Lee, L. R. Jordan, S. H. Lee, S.-H. Oh, H. J. Kim, J. Park, S. Hong, and H. Jeon. Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing. Nanoscale, 7(8):3565–3571, 2015. [25]Y. Chang, C. Wang, L. Johansson, and L. Coldren. High-efficiency, high-speed VCSELs with deep oxidation layers. Electronics Letters, 42:1281–1283(2), Oct. 2006. [26]Y.-C. Chang and L. A. Coldren. Optimization of VCSEL structure for high-speed operation. In 2008 IEEE 21st International Semiconductor Laser Conference, page ThA1, 2008. [27]Y.-C. Chang and L. A. Coldren. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers. IEEE Journal of Selected Topics in Quantum Electronics, 15(3):704–715, 2009. [28]F. A. I. Chaqmaqchee and J. A. Lott. Impact of oxide aperture diameter on optical output power, spectral emission, and bandwidth for 980 nm VCSELs. OSA Continuum, 3(9):2602–2613, Sept. 2020. [29]S.-W. H. Chen, C.-C. Shen, T. Wu, Z.-Y. Liao, L.-F. Chen, J.-R. Zhou, C.-F. Lee, C.H. Lin, C.-C. Lin, C.-W. Sher, P.-T. Lee, A.-J. Tzou, Z. Chen, and H.-C. Kuo. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photon. Res., 7(4):416–422, Apr 2019. [30]C.-H. Cheng, W.-C. Lo, B. Su, C.-H. Wu, and G.-R. Lin. Review of VCSELs for complex data-format transmission beyond 100-Gbit/s. IEEE Photonics Journal, 13(5):7900213, 2021. [31]C.-L. Cheng, N. Ledentsov, M. Agustin, J.-R. Kropp, N. N. Ledentsov, Z. Khan, and J.-W. Shi. Ultra-fast Zn-diffusion/oxide-relief 940 nm VCSELs. In Optical Fiber Communication Conference (OFC) 2019, page W3A.2. Optical Society of America, 2019. [32]H.-T. Cheng, S.-Y. Min, Y.-C. Yang, H.-Y. Lin, J.-S. Pan, and C.-H. Wu. Single-mode-vcsel with a ring-shaped self-aligned recessed metal mode filter. IEEE Electron Device Letters, 35(12):1314–1316, 2023. [33]H.-T. Cheng, J. Qiu, C.-Y. Peng, H.-C. Kuo, M. Feng, and C.-H. Wu. 29 GHz single-mode vertical-cavity surface-emitting lasers passivated by atomic layer deposition. Opt. Express, 30(26):47553–47566, Dec 2022. [34]H.-T. Cheng, C.-H. Wu, M. Feng, and C.-H. Wu. 40.1-GHz sub-freezing 850nm VCSEL: microwave extraction of cavity lifetimes and small-signal equivalent circuit modeling. Opt. Express, 31(7):11408–11422, Mar 2023. [35]H.-T. Cheng, C.-H. Wu, W. Fu, H.-L. Wang, M. Feng, and C.-H. Wu. Cryogenic operation of a high speed 850 nm VCSEL with 40.1 GHz modulation bandwidth at 223 K. In Proc. of the 2020 Opto-Electronics and Communications Conference (OECC), pages T4–1.5, Oct. 2020. [36]H.-T. Cheng, Y.-C. Yang, T.-H. Liu, and C.-H. Wu. Recent advances in 850 nm VCSELs for high-speed interconnects. Photonics, 9(2):107, 2022. [37]H.-T. Cheng, Y.-C. Yang, and C.-H. Wu. High thermal stability of 850 nm VCSELs with enhanced mask margin up to 85 ◦C for 100G-SR4 operation. In 2021 30th Wireless and Optical Communications Conference (WOCC), pages 49–53, 2021. [38]H.-T. Cheng, Y.-C. Yang, and C.-H. Wu. Temperature-insensitive 850-nm dual-mode-VCSEL with 25.1-GHz bandwidth at 85 ◦C. Journal of Lightwave Technology, Early Access:1–13, 2023. [39]J. Cheng and N. K. Dutta. Vertical-cavity surface-emitting lasers: technology and applications, volume 10. CRC Press, 2000. [40]A. Chernyakov, M. Sobolev, V. Ratnikov, N. Shmidt, and E. Yakimov. Nonradiative recombination dynamics in InGaN/GaN LED defect system. Superlattices and Microstructures, 45(4-5):301–307, 2009. [41]K. Chi, J. Yen, J. Wun, J. Jiang, I. Lu, J. Chen, Y. Yang, and J. Shi. Strong wavelength detuning of 850 nm Vertical-Cavity Surface-Emitting Lasers for high-speed (>40 Gbit/s) and low-energy consumption operation. IEEE Journal of Selected Topics in Quantum Electronics, 21(6):470–479, 2015. [42]K.-L. Chi, Z.-T. Xie, M. Agustin, J.-R. Kropp, N. N. Ledentsov, K.-F. Tseng, L.G. Yang, and J.-W. Shi. Zn-diffusion/oxide-relief 940 nm VCSELs with excellent high-temperature performance for 50 Gbit/sec transmission. In Optical Fiber Communication Conference, page W1I.5. Optica Publishing Group, 2018. [43]K. D. Choquette. Selectively oxidized VCSELs go single mode, Aug 2000. https:// www.lightwaveonline.com/optical-tech/components/article/16648777/selectivelyoxidized-vcsels-go-singlemode. [44]L. Chorchos, N. Ledentsov, J. R. Kropp, V. A. Shchukin, V. P. Kalosha, A.Lewandowski, J. P. Turkiewicz, and N. N. Ledentsov. Energy efficient 850 nmVCSEL based optical transmitter and receiver link capable of 80 Gbit/s NRZ multimode fiber data transmission. Journal of Lightwave Technology, 38(7):1747–1752, 2020. [45]Coherent Corp. 25G VCSEL Array–Dual Top Contact, 2022. [46]L. Coldren and S. Corzine. Diode Lasers and Photonic Integrated Circuits. John Wiley & Son, 1995. [47]CommScope. Solutions for multi tenant data centers: HD fiber. [48]Component Technical Committee. AEC-Q102-Rev A: Failure mechanism based stress test qualification for optoelectronic semiconductors in automotive applications. Standard, Automotive Electronics Council, US, Apr 2022. [49]S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure. IEEE Journal of Quantum Electronics, 25(6):1513–1524, 1989. [50]S. W. Corzine, R. H. Yan, and L. A. Coldren. Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence‐band mixing effects. Applied Physics Letters, 57(26):2835–2837, 1990. [51]J. M. Dallesasse and D. G. Deppe. III–V oxidation: Discoveries and applications in Vertical-Cavity Surface-Emitting Lasers. Proceedings of the IEEE, 101(10):2234– 2242, 2013. [52]J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham. Stability of AlAs in AlxGa1-xAs‐AlAs‐GaAs quantum well heterostructures. Applied Physics Letters, 56(24):2436–2438, 1990. [53]J. M. Dallesasse, J. Holonyak, N., A. R. Sugg, T. A. Richard, and N. El‐Zein. Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices. Applied Physics Letters, 57(26):2844–2846, 12 1990. [54]J. M. Dallesasse and N. Holonyak. Oxidation of Al-bearing III-V materials: A review of key progress. Journal of Applied Physics, 113(5):051101, 2013. [55]J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, and N. El‐Zein. Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices. Applied Physics Letters, 57(26):2844–2846, 1990. [56]J. M. Dallesasse, P. Su, K. P. Pikul, L. Espenhahn, and M. Kraman. (Invited) Achieving high-power single-mode operation in vertical-cavity surface-emitting lasers via scalable, higher-order mode suppression techniques. ECS Transactions, 109(5):15–26, Sept. 2022. [57]A. Danner, T. Kim, and K. Choquette. Single fundamental mode photonic crystal vertical cavity laser with improved output power. Electronics Letters, 41:325– 326(1), Mar. 2005. [58]B. Demeulenaere, P. Bienstman, B. Dhoedt, and R. Baets. Detailed study of AlAsoxidized apertures in VCSEL cavities for optimized modal performance. IEEE Journal of Quantum Electronics, 35(3):358–367, 1999. [59]D. Deppe. High-speed cryogenic optical connector for focal plane array read-out. Technical report, SDPHOTONICS LLC Orlando United States, 2018. [60]D. Deppe, A. Srinivasa, C. Kuznia, J. Ahadian, M. Feng, and J. Qiu. Cryogenic oxide-free VCSEL-based data link for focal plane array camera. Technical report, Defense Technical Information Center, 2019. [61]D. G. Deppe, M. Li, X. Yang, and M. Bayat. Advanced VCSEL technology: Selfheating and intrinsic modulation response. IEEE Journal of Quantum Electronics, 54(3):2400209, 2018. [62]R. J. Dorn, S. Eschbaumer, D. N. B. Hall, G. Finger, L. Mehrgan, M. Meyer, and J. Stegmeier. Evaluation of the Teledyne SIDECAR ASIC at cryogenic temperature using a visible hybrid H2RG focal plane array in 32 channel readout mode. In Proc. SPIE, volume 7021, page 70210Q. SPIE, 2008. [63]M. Dummer, K. Johnson, S. Rothwell, K. Tatah, and M. Hibbs-Brenner. The role of VCSELs in 3D sensing and LiDAR. In Proc. SPIE, volume 11692, page 116920C. SPIE, 2021. [64]Ethernet Alliance. The 2020 ethernet roadmap, Feb. 2020. [65]Ethernet Alliance. The 2020 Ethernet roadmap. https://ethernetalliance.org/technology/2020-roadmap/, Feb 2020. [66]M. Feng, C.-H. Wu, and N. Holonyak. Oxide-confined VCSELs for high-speed optical interconnects. IEEE Journal of Quantum Electronics, 54(3):2400115, 2018. [67]M. Feng and X. Yu. Single mode VCSELs with low threshold and high-speed operation, Apr. 16 2020. US Patent App. 16/600,030. [68]T. Flick, K. H. Becks, J. Dopke, P. Måttig, and P. Tepel. Measurement of the thermal resistance of VCSEL devices. Journal of Instrumentation, 6(01):C01021, jan 2011. [69]W. Fu, H.-L. Wang, H. Wu, A. Srinivasa, S. Srinivasa, M. Feng, and D. Deppe. Cryogenic 50 GHz VCSEL for sub-100 fj/bit optical link. In 2020 IEEE Photonics Conference (IPC), page TuH2.3, 2020. [70]W. Fu, H. Wu, and M. Feng. Superconducting processor modulated VCSELs for 4K high-speed optical data link. IEEE Journal of Quantum Electronics, 58(2):8000208, 2022. [71]W. Fu, H. Wu, D. Wu, M. Feng, and D. Deppe. Cryogenic oxide-VCSEL for PAM-4 optical data transmission over 50 Gb/s at 77 K. IEEE Photonics Technology Letters, 33(16):816–819, 2021. [72]W. Fu, H. Wu, D. Wu, M. Feng, and D. Deppe. Cryogenic oxide-VCSELs with bandwidthover50GHzat82Kfornext-genhigh-speedcomputing. In 2021 Optical Fiber Communications Conference and Exhibition (OFC), page Tu5C.4, 2021. [73]S. M. George.Atomic layer deposition: An overview.Chemical Reviews, 110(1):111–131, 2010. [74]L. M. Giovane, J. Wang, M. R. Murty, A. L. Harren, H.-H. Chang, C. Wang, D. Hui, Z.-W. Feng, T. R. Fanning, A. Sridhara, S.-J. Taslim, and J. Chu. Volume manufacturable high speed 850nm VCSEL for 100G ethernet and beyond. In 2016 Optical Fiber Communications Conference and Exhibition (OFC), page Tu3D.5, 2016. [75]M. Gębski, P. S. Wong, M. Riaziat, and J. A. Lott. 30 GHz bandwidth temperature stable 980 nm vertical-cavity surface-emitting lasers with AlAs/GaAs bottom distributed Bragg reflectors for optical data communication. Journal of Physics: Photonics, 2(3):035008, July 2020. [76]E. Goobar, C. Mahon, F. H. Peters, M. G. Peters, and L. A. Coldren.Low-temperature operation of vertical cavity surface-emitting lasers. IEEE Photonics Technology Letters, 7(1):7–9, 1995. [77]A. Grabowski, J. Gustavsson, Z. S. He, and A. Larsson. Large-signal equivalent circuit for datacom VCSELs. Journal of Lightwave Technology, 39(10):3225–3236, 2021. [78]Q. Gu and Y. Fainman. Temperature-dependent Material Gain, page 275–282. Cambridge University Press, 2017. [79]J. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson. Dynamic behavior of fundamental-mode stabilized vcsels using a shallow surface relief. IEEE Journal of Quantum Electronics, 40(6):607–619, 2004. [80]E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson. Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter. In Proc. SPIE, volume 8276, page 82760L. SPIE, 2012. [81]E. Haglund, Å. Haglund, P. Westbergh, J. S. Gustavsson, B. Kögel, and A. Larsson. Mode-filtered semiconductor lasers enable longer-reach optical interconnects, Oct 2012. https://spie.org/news/4480-mode-filtered-semiconductor-lasers-enablelonger-reach-optical-interconnects. [82]E. Haglund, P. Westbergh, J. Gustavsson, E. Haglund, A. Larsson, M. Geen, and A. Joel. 30 GHz bandwidth 850 nm VCSEL with sub‐100 fj/bit energy dissipation at 25–50 Gbit/s. Electronics Letters, 51(14):1096–1098, 2015. [83]E. P. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson. Impact of damping on high-speed large signal VCSEL dynamics. Journal of Lightwave Technology, 33(4):795–801, 2015. [84]V. Haisler, A. Toropov, A. Bakarov, O. Bajutova, I. Derebezov, A. Kalagin, M. Kachanova, N. Kuzmin, A. Medvedev, and A. Suranov. Ultralow-threshold cryogenic vertical-cavity surface-emitting laser with AlAs oxide–GaAs distributed Bragg reflectors. Journal of Applied Physics, 96(3):1289–1292, 2004. [85]S. Hall, W. Walters, L. Mattson, G. Fokken, and B. Gilbert. VCSEL electrical packaging analysis and design guidelines for multi-GHz applications. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, 20(3):191–201, 1997. [86]W. Hamad, M. Bou Sanayeh, M. M. Hamad, and W. H. E. Hofmann. Impedance characteristics and chip-parasitics extraction of high-performance VCSELs. IEEE Journal of Quantum Electronics, 56(1):1–11, 2020. [87]W. Hamad, S. Wanckel, and W. H. E. Hofmann. Small-signal analysis of ultra-high-speed multi-mode VCSELs. IEEE Journal of Quantum Electronics, 52(7):1– 11, 2016. [88]B. Hawkins, R. Hawthorne, J. Guenter, J. Tatum, and J. Biard. Reliability of various size oxide aperture VCSELs. In 52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345), pages 540–550. IEEE, 2002. [89]S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, å. Haglund, A. Larsson, and A. Joel. Active region design for high-speed 850-nm VCSELs. IEEE Journal of Quantum Electronics, 46(4):506–512, 2010. [90]U. Hecht, N. Ledentsov, L. Chorchos, P. Scholz, P. Schulz, J. P. Turkiewicz, N. N. Ledentsov, and F. Gerfers. 120Gbit/s multi-mode fiber transmission realized with feed forward equalization using 28GHz 850nm VCSELs. In 45th European Conference on Optical Communication (ECOC 2019), pages 1–4, 2019. [91]E. R. Hegblom. Engineering oxide apertures in vertical-cavity lasers. Ph.D. dissertation, University of California, Santa Barbara, Jan. 1999. [92]R.W.Herrick.ReliabilityandDegradationof Vertical-Cavity Surface-Emitting Lasers, pages 147–205. Springer New York, New York, NY, 2013. [93]K.-B. Hong, T.-C. Chang, F. Hjort, N. Lindvall, W.-H. Hsieh, W.-H. Huang, P.-H. Tsai, T. Czyszanowski, Å. Haglund, and T.-C. Lu. Monolithic high-index contrast grating mirror for a GaN-based vertical-cavity surface-emitting laser. Photon. Res., 9(11):2214–2221, Nov. 2021. [94]M.-Y. Hsu and G. Lin. Quantum-dot photonic-crystal surface-emitting lasers with bottom distributed bragg reflector. Photonics, 5(3):27, 2018. [95]C.-Y. Huang, C.-T. Tsai, J.-H. Weng, C.-H. Cheng, H.-Y. Wang, C.-H. Wu, M. Feng, and G.-R. Lin. Temperature and noise dependence of tri-mode VCSEL carried 120-Gbit/s QAM-OFDM data in back-to-back and OM5-MMF links. Journal of Lightwave Technology, 38(24):6746–6758, 2020. [96]C.-Y. Huang, H.-Y. Wang, C.-Y. Peng, C.-T. Tsai, C.-H. Wu, and G.-R. Lin. Multimode VCSEL enables 42-GBaud PAM-4 and 35-GBaud 16-QAM OFDM for 100m OM5 MMF data link. IEEE Access, 8:36963–36973, 2020. [97]M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong. Surface passivation of III-V compound semiconductors using atomic layer-deposition-grown Al2O3. Applied Physics Letters, 87(25):252104, 2005. [98]T.-Y. Huang, J. Qiu, C.-H. Wu, H.-T. Cheng, M. Feng, H.-C. Kuo, and C.-H. Wu. A NRZ-OOK modulated 850-nm VCSEL with 54 Gb/s error-free data transmission. In 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, page cb_p_22. Optica Publishing Group, 2019. [99]Y. Huang, Z. Pan, and R. Wu. Analysis of the optical confinement factor in semiconductor lasers. Journal of Applied Physics, 79(8):3827–3830, 1996. [100]Y.-M. Huang, K. J. Singh, C.-C. Lin, and H.-C. Kuo. (Invited) The application of ALD and ALE passivated MicroLED display. ECS Meeting Abstracts, MA202102(29):862, oct 2021. [101]D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers. Native‐oxide defined ring contact for low threshold vertical‐cavity lasers. Applied Physics Letters, 65(1):97– 99, 07 1994. [102]D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers. Native‐oxide defined ring contact for low threshold vertical‐cavity lasers. Applied Physics Letters, 65(1):97– 99, 1994. [103]B. Hurley. Answering your questions: Which vehicle applications will require high-speed data rates (of 20 gigabits per second?), Sep 2019. [104]IEEE. IEEE standard for information technology - local and metropolitan area networks - part 3: CSMA/CD access method and physical layer specifications – media access control (MAC) parameters, physical layer, and management parameters for 10 Gb/s operation. IEEE Std 802.3ae-2002 (Amendment to IEEE Std 802.3-2002), pages 1–544, 2002. [105]IEEE. IEEE standard for ethernet - amendment 3: Physical layer specifications and management parameters for 40 Gb/s and 100 Gb/s operation over fiber optic cables. IEEE Std 802.3bm-2015 (Amendment to IEEE Std 802.3-2012 as amended by IEEE Std 802.3bk-2013 and IEEE Std 802.3bj-2014), pages 1–172, 2015. [106]IEEE. IEEE standard for ethernet – amendment 7: Physical layer and management parameters for 400 Gb/s over multimode fiber. IEEE Std 802.3cm-2020 (Amendment to IEEE Std 802.3-2018 as amended by IEEE Std 802.3cb-2018, IEEE Std 802.3bt-2018, IEEE Std 802.3cd-2018, IEEE Std 802.3cn-2019, IEEE Std 802.3cg-2019, and IEEE Std 802.3cq-2020), pages 1–72, 2020. [107]K. Iga. Vertical-Cavity Surface-Emitting Laser (VCSEL). Proceedings of the IEEE, 101(10):2229–2233, 2013. [108]K. Iga, T. Kambayashi, and C. Kitahara. Surface-emitting GaInAsP / InP laser (I). In 25th Joint Conference on Applied Physics, pages 63. 27–p–11, Mar. 1978. [109]K. Iga, S. Kinoshita, and F. Koyama. Microcavity GalaAs/GaAs surface-emitting laser with Ith = 6 ma. Electronics Letters, 23:134–136(2), January 1987. [110]K. Iga, F. Koyama, and S. Kinoshita. Surface emitting semiconductor lasers. IEEE Journal of Quantum Electronics, 24(9):1845–1855, 1988. [111]K. Iga, F. Koyama, and S. Kinoshita. Surface emitting semiconductor lasers. IEEE Journal of Quantum Electronics, 24(9):1845–1855, 1988. [112]K. Iga and H. Li. Vertical-Cavity Surface-Emitting Laser Devices. Springer Berlin Heidelberg, 2003. [113]Institute of Electrical and Electronics Engineers. IEEE Standard for Ethernet Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation. IEEE Std 802.3bs-2017 (AmendmenttoIEEE 802.3-2015asamendedbyIEEE’s802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017), pages 1–372, 2017. [114]Institute of Electrical and Electronics Engineers. IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s electrical interfaces task force, Feb. 2020. [115]J. Jewell. Backstory: VCSEL breakthrough, 1989, 2019. [116]J. Jewell, Y. Lee, S. Walker, A. Scherer, J. Harbison, L. Florez, and S. McCall. Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electronics Letters, 25:1123–1124(1), August 1989. [117]J. L. Jewell, K. F. Huang, K. Tai, Y. H. Lee, R. J. Fischer, S. L. McCall, and A. Y. Cho. Vertical cavity single quantum well laser. Applied Physics Letters, 55(5):424– 426, 1989. [118]J. L. Jewell, Y. H. Lee, S. Walker, A. Scherer, J. P. Harbison, L. T. Florez, and S. L. Mccall. Low threshold electrically pumped vertical cavity surface emitting microlasers. In Annual Meeting Optical Society of America, page TUP6. Optica Publishing Group, 1989. [119]W.-J. Jiang, L.-C. Chen, M.-C. Wu, H.-C. Yu, H.-P. Yang, C.-P. Sung, J.-Y. Chi, C.-Y. Huang, and Y.-T. Wu. A new process to improve the performance of 850 nm wavelength GaAs VCSELs. Solid-State Electronics, 46(12):2287–2289, 2002. [120]S. Joshi and S. Moazeni. Scaling up superconducting quantum computers with cryogenic RF-photonics. arXiv, 2022. [121]C. Jung, R. Jager, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Muller, and K. J. Ebeling. 4.8 mW singlemode oxide confined top-surface emitting verticalcavity laser diodes. Electronics Letters, 33(21):1790–1791, 1997. [122]Jurvetson. Velodyne high-def LIDAR photo by Jurvetson. [123]V. P. Kalosha, V. A. Shchukin, N. N. L. Jr., J.-R. Kropp, and N. N. Ledentsov. Robustness versus thermal effects of single-mode operation of vertical-cavity surface-emitting lasers with engineered leakage of high-order transverse optical modes. In Proc. SPIE, volume 10122, page 101220K. SPIE, 2017. [124]H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin. Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF. IEEE Journal of Quantum Electronics, 53(5):1–8, 2017. [125]H.-Y. Kao, C.-Y. Huang, C.-Y. Peng, C.-T. Tsai, H.-Y. Wang, S.-F. Leong, H.-C. Kuo, C.-H. Wu, and G.-R. Lin. Single-mode VCSEL for nearly 100-Gbit/s QAMOFDM transmission over 100-m OM4 multi-mode fiber. In CLEO Pacific Rim Conference 2018, page W3A.12. Optical Society of America, 2018. [126]H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission. Opt. Express, 25(14):16347–16363, Jul 2017. [127]H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, H.-Y. Wang, H.-C. Kuo, C.-H. Wu, W.-H. Cheng, and G.-R. Lin. Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100-300 m in OM4 MMF. Photon. Res., 6(7):666–673, July 2018. [128]K. Kojima, A. Morgan, T. Mullally, G. D. Guth, M. W. Focht, K. E. Leibenguth, and M. T. Asom. Reduction of p-doped mirror electrical resistance of GaAs/AlGaAs vertical-cavity surface-emitting lasers by delta-doping. In Conference on Lasers and Electro-Optics, page CWJ48. Optical Society of America, 1993. [129]F. Koyama, S. Kinoshita, and K. Iga. Room‐temperature continuous wave lasing characteristics of a GaAs vertical cavity surface‐emitting laser. Applied Physics Letters, 55(3):221–222, 1989. [130]S. Krinner, S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo, R. Keller, J. Lütolf, C. Eichler, and A. Wallraff. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technology, 6, May 2019. [131]D. Kuchta, P. Pepeljugoski, and Y. Kwark. VCSEL modulation at 20 Gb/s over 200 m of multimode fiber using a 3.3 V SiGe laser driver IC. In 2001 Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo, pages 2 pp.–, 2001. [132]D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum. A 55Gb/s directly modulated 850nm VCSEL-based optical link. In IEEE Photonics Conference 2012, pages 1–2, 2012. [133]D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson. A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 ◦C. J. Lightwave Technol., 33(4):802–810, Feb. 2015. [134]S. Lai, W. Lin, J. Chen, T. Lu, S. Liu, Y. Lin, Y. Lu, Y. Lin, Z. Chen, H.-C. Kuo, W. Guo, and T. Wu. The impacts of sidewall passivation via atomic layer deposition on GaN-based flip-chip blue mini-LEDs. Journal of Physics D: Applied Physics, 55(37):374001, July 2022. [135]G. Larisch, S. Tian, and D. Bimberg. Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates. Opt. Express, 28(13):18931– 18937, June 2020. [136]A. Larsson, J. S. Gustavsson, P. Westbergh, E. Haglund, E. P. Haglund, E. Simpanen, T. Lengyel, K. Szczerba, and M. Karlsson. VCSEL design and integration for high-capacity optical interconnects. In Proc. SPIE, volume 10109, page 101090M. SPIE, 2017. [137]J. Lavrencik, S. Varughese, N. Ledentsov, Ł. Chorchos, N. N. Ledentsov, and S. E. Ralph. 168Gbps PAM-4 multimode fiber transmission through 50m using 28GHz 850nm multimode VCSELs. In Optical Fiber Communication Conference (OFC) 2020, page W1D.3. Optical Society of America, 2020. [138]A. Leal-Junior, L. Avellar, V. Biazi, M. S. Soares, A. Frizera, and C. Marques. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electronic Advances, 5(10):210098, 2022. [139]K. Lear, H. Hou, V. Hietala, K. Choquette, and R. Schneider. Engineering highperformance vertical cavity lasers. In 1996 Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings, pages 33–41, 1996. [140]K. L. Lear, V. Hietala, H. Hou, J. Banas, B. E. Hammons, J. Zolper, and S. Kilcoyne. Small and large signal modulation of 850 nm oxide-confined verticai-cavity surface-emitting lasers. CLEO ’97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, 11:193–194, 1997. [141]F. Lecocq, F. Quinlan, K. Cicak, J. Aumentado, S. Diddams, and J. Teufel. Control and readout of a superconducting qubit using a photonic link. Nature, 591(7851):575–579, 2021. [142]N. Ledentsov, M. Agustin, V. Shchukin, J.-R. Kropp, N. Ledentsov, Ł. Chorchos, J. Turkiewicz, Z. Khan, C.-L. Cheng, J. Shi, and N. Cherkashin. Quantum dot 850 nm VCSELs with extreme high temperature stability operating at bit rates up to 25 Gbit/s at 150 ◦C. Solid-State Electronics, 155:150–158, 2019. Selected Papers from the Future Trends in Microelectronics (FTM-2018) Workshop. [143]N. Ledentsov, L. Chorchos, M. Agustin, N. N. Ledentsov, and J. P. Turkiewicz. 850 nm single-mode VCSEL for error-free 60 Gbit/s OOK operation and transmission through 800 m of multi-mode fiber. In Optical Fiber Communications Conference and Exhibition, page Th4B.6, 2019. [144]N. Ledentsov, L. Chorchos, O. Makarov, J.-R. Kropp, V.A. Shchukin, V.P. Kalosha, J. P. Turkiewicz, and N. N. Ledentsov.Narrow spectrum VCSEL development for high performance 100G transceivers and increased transmission distance over multimode fiber. In Proc. SPIE, volume 11704, page 117040P. SPIE, 2021. [145]N. N. Ledentsov, J. A. Lott, V. A. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg. Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance. In Proc. SPIE, volume 7224, page 72240P. SPIE, 2009. [146]N. N. Ledentsov, O. Y. Makarov, V. A. Shchukin, V. P. Kalosha, N. Ledentsov, L. Chrochos, M. B. Sanayeh, and J. P. Turkiewicz. High speed VCSEL technology and applications. Journal of Lightwave Technology, 40(6):1749–1763, 2022. [147]N. Ledentsov Jr., M. Agustin, L. Chorchos, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, M. Koepp, C. Caspar, J. P. Turkiewicz, and N. N. Ledentsov. Energy efficient 850-nm VCSEL based optical transmitter and receiver link capable of 56 Gbit/s NRZ operation. In Proc. SPIE, volume 10938, page 109380J. SPIE, 2019. [148]N. Ledentsov Jr., L. Chorchos, O. Y. Makarov, V. A. Shchukin, V. P. Kalosha, J.-R. Kropp, J. P. Turkiewicz, C. Kottke, V. Jungnickel, R. Freund, and N. N. Ledentsov. Serial data transmission at 224 Gbit/s applying directly modulated 850 and 910 nm VCSELs. Electronics Letters, 57(19):735–737, 2021. [149]J. Lee, P.-C. Chiang, P.-J. Peng, L.-Y. Chen, and C.-C. Weng. Design of 56 Gb/ s NRZ and PAM4 SerDes transceivers in CMOS technologies. IEEE Journal of Solid-State Circuits, 50(9):2061–2073, 2015. [150]S.-Y. Lee, X. Chen, W.-C. Lo, K. Li, C.-H. Wang, C.-T. Tsai, C.-H. Cheng, C.-H. Wu, H.-C. Kuo, M.-J. Li, and G.-R. Lin. 850-nm dual-mode VCSEL carried 53-Gbps NRZ- OOK transmission in 100-m graded-index single-mode fiber. In Optical Fiber Communication Conference (OFC) 2021, page Tu5C.3. Optical Society of America, 2021. [151]Y. Lee, J. Jewell, B. Tell, K. Brown-Goebeler, A. Scherer, J. Harbison, and L. Florez. Effects of etch depth and ion implantation on surface emitting microlasers. Electronics Letters, 26:225–227(2), February 1990. [152]E. Li. Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures. Physica E: Low-dimensional Systems and Nanostructures, 5(4):215–273, 2000. [153]H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg. Vertical-cavity surface-emitting lasers for optical interconnects. SPIE Newsroom, 25:126103, 2014. [154]H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. H. Bimberg. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs. IEEE Journal of Quantum Electronics, 50(8):613–621, 2014. [155]J. Li, G. Wen, J. Yu, and G. Song. Die-level leakage current path analysis based on IR-OBIRCH technology. In 2012 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, pages 1–4. IEEE, 2012. [156]M.-J. Li, K. Li, X. Chen, S. K. Mishra, A. A. Juarez, J. E. Hurley, J. S. Stone, C.-H. Wang, H.-T. Cheng, C.-H. Wu, H.-C. Kuo, C.-T. Tsai, and G.-R. Lin. Single-mode VCSEL transmission for short reach communications. Journal of Lightwave Technology, 39(4):868–880, 2021. [157]H. C. Lin, P. D. Ye, and G. D. Wilk. Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs. Applied Physics Letters, 87(18), 10 2005. 182904. [158]A. Liu, P. Wolf, J. A. Lott, and D. Bimberg. Vertical-cavity surface-emitting lasers for data communication and sensing. Photon. Res., 7(2):121–136, Feb. 2019. [159]A.-C. Liu, K. J. Singh, Y.-M. Huang, T. Ahmed, F.-J. Liou, Y.-H. Liou, C.-C. Ting, C.-C. Lin, Y. Li, S. Samukawa, and H.-C. Kuo. Increase in the efficiency of III- Nitride Micro-LEDs: Atomic-layer deposition and etching. IEEE Nanotechnology Magazine, 15(3):18–34, 2021. [160]M. Liu, C. Y. Wang, M. Feng, and N. Holonyak. 850 nm oxide-confined VCSELs with 50 Gb/s error-free transmission operating up to 85 ◦C. In Conference on Lasers and Electro-Optics, page SF1L.6. OSA, 2016. [161]M. Liu, C. Y. Wang, M. Feng, and N. Holonyak. Advanced development of 850 nm oxide-confined VCSELs with 57 Gb/s error-free data transmission. In Proc. GOMACTech, 2016. [162]Y. Liu, W.-C. Ng, K. Choquette, and K. Hess. Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 41(1):15–25, 2005. [163]Y. Liu, W.-C. Ng, F. Oyafuso, B. Klein, and K. Hess. Simulating the modulation response of VCSELs: The effects of diffusion capacitance and spatial hole-burning. Optoelectronics, IEE Proceedings -, 149:182 – 188, Sept. 2002. [164]W.-C. Lo, W.-L. Wu, C.-Y. Peng, H.-Y. Wang, C.-T. Tsai, B. Su, C.-H. Wu, and G.-R. Lin. Multimode VCSEL enables multi-data-format encoding up to 124 Gbit/s. In Conference on Lasers and Electro-Optics, page STu4M.5. Optical Society of America, 2020. [165]S. T. Ltd. Plasma processes for VCSELs, Mar 2023. https://www.spts.com/zh-Hant/resources/tech-insights/plasma-processes-for-vcsels. [166]B. Lu, Y.-C. Lu, J. Cheng, R. Schneider, J. Zolper, and G. Goncher. Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 32(8):1347–1359, 1996. [167]B. Lu, Y. Wang, B.-R. Hyun, H.-C. Kuo, and Z. Liu. Color difference and thermal stability of flexible transparent InGaN/GaN multiple quantum wells Mini-LED arrays. IEEE Electron Device Letters, 41(7):1040–1043, 2020. [168]B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper. High temperature pulsed and continuous‐wave operation and thermally stable threshold characteristics of vertical‐cavity surface‐emitting lasers grown by metalorganic chemical vapor deposition. Applied Physics Letters, 65(11):1337–1339, 1994. [169]D. Lu, J. Ahn, H. Huang, and D. G. Deppe. All-epitaxial mode-confined vertical-cavity surface-emitting laser. Applied Physics Letters, 85(12):2169–2171, 2004. [170]X. Luo, Y. Rahbarihagh, J. C. M. Hwang, H. Liu, Y. Du, and P. D. Ye. Temporal and thermal stability of Al2O3-passivated phosphorene MOSFETs. IEEE Electron Device Letters, 35(12):1314–1316, 2014. [171]M.-L. Ma, J. Wu, Y.-Q. Ning, F. Zhou, M. Yang, X. Zhang, J. Zhang, and G.-Y. Shang. Measurement of gain characteristics of semiconductor lasers by amplified spontaneous emissions from dual facets. Opt. Express, 21(8):10335–10341, Apr 2013. [172]J. J. Maki. Pivotal issues for 400 Gb/s ethernet, May 2014. [173]Mandy. Trumpf becomes strategic partner for auto data communication, Oct 2022. [174]J. Manning, R. Olshansky, and C. Su. The carrier-induced index change in AlGaAs and 1.3 µm InGaAsP diode lasers. IEEE Journal of Quantum Electronics, 19(10):1525–1530, 1983. [175]C. Marques, A. Leal-Júnior, and S. Kumar. Multifunctional integration of optical fibers and nanomaterials for aircraft systems. Materials, 16(4):1433, 2023. [176]S. A. McHugo, A. Krishnan, J. J. Krueger, Y. Luo, N. Tan, T. Osentowski, S. Xie, M. S. Mayonte, R. W. Herrick, and Q. Deng. Characterization of failure mechanisms for oxide VCSELs. In Proc. SPIE, volume 4994, pages 55–66. SPIE, 2003. [177]I. Melngailis. Longitudinal injection‐plasma laser of InSb. Applied Physics Letters, 6(3):59–60, 11 1965. [178]R. Michalzik.VCSELs:Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer, 2012. [179]Millennium Circuits Limited. Low-Temperature PCB Material. https://www.mclpcb.com/blog/low-temp-pcb/. [180]S.-Y. Min, H.-T. Cheng, J.-S. Pan, W.-H. Lin, and C.-H. Wu. Oxide-confined VCSEL with metal apertures for high-speed 850nm transmission. In 2020 Opto-Electronics and Communications Conference (OECC), pages T4–1.2. IEEE, 2020. [181]H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee. VCSEL-based sensors for distance and velocity. In Proc. SPIE, volume 9766, page 97660A. SPIE, 2016. [182]P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg. 81 fj/bit energy-to-data ratio of 850 nm vertical-cavity surfaceemitting lasers for optical interconnects. Applied Physics Letters, 98(23):231106, 2011. [183]P. Moser, J.A. Lott, and D. Bimberg. Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 19(4):1702212–1702212, 2013. [184]S. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard. 180 Gbps PAM4 VCSEL transmission over 300m wideband OM4 fibre. In Optical Fiber Communication Conference, page Th3G.2. Optical Society of America, 2016. [185]O. A. Mukhanov, I. Vernik, A. Kirichenko, A. Kadin, K. D. Choquette, M. P. Tan, and T. Fryslie. Development of energy-efficient cryogenic optical (ECO) data link. In 2013 IEEE 14th International Superconductive Electronics Conference (ISEC), page PA14, 2013. [186]N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama. VCSEL array-based light exposure system for laser printing. In Proc. SPIE, volume 6908, page 69080H. SPIE, 2008. [187]M. V. R. Murty, J. Wang, A. L. Harren, A.-N. Cheng, D. W. Dolfi, Z.-W. Feng, A. Sridhara, S. T. Joyo, J. Chu, and L. M. Giovane. Development and characterization of 100 Gb/s data communication VCSELs. IEEE Photonics Technology Letters, 33(16):812–815, 2021. [188]M. V. R. Murty, J. Wang, A. L. Harren, A.-N. Cheng, D. W. Dolfi, Z.-W. Feng, A. Sridhara, S. T. Joyo, J. Chu, and L. M. Giovane. Development and characterization of 100 Gb/s data communication VCSELs. IEEE Photonics Technology Letters, 33(16):812–815, 2021. [189]R. Murty.RMS spectral width, 2018. https://www.ieee802.org/3/cm/ public/November18/murty_3cm_01_1118.pdf. [190]A. Mutig, G. Fiol, K. Potschke, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg. Temperature-dependent small-signal analysis of high-speed high-temperature stable 980-nm VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 15(3):679–686, 2009. [191]R. Nagarajan, T. Fukushima, M. Ishikawa, J. Bowers, R. Geels, and L. Coldren. Transport limits in high-speed quantum-well lasers: experiment and theory. IEEE Photonics Technology Letters, 4(2):121–123, 1992. [192]N. Nishiyama, M. Arai, S. Shinada, K. Suzuki, F. Koyama, and K. Iga. Multi-oxide layer structure for single-mode operation in vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters, 12(6):606–608, 2000. [193]optics.org. ams, Ibeo and ZF partner to deliver solid-state LiDAR systems. [194]M. Orenstein, A. C. V. Lehmen, C. Chang‐Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell. Vertical‐cavity surface‐emitting InGaAs/GaAs lasers with planar lateral definition. Applied Physics Letters, 56(24):2384– 2386, 06 1990. [195]M. Orenstein, N. G. Stoffel, A. C. Von Lehmen, J. P. Harbison, and L. T. Florez. Efficient continuous wave operation of vertical-cavity semiconductor lasers using buried-compensation layers to optimize current flow. Applied Physics Letters, 59(1):31–33, 1991. [196]Organisation internationale de la Francophonie. OIF CEI-112 G XSR, VSR, MR, and LR working group. [197]J.S. Pan, C.J. Wu, I.H. Wu, and K.F. Tseng. Method for fabricating oxide-confined vertical-cavity surface-emitting laser, Mar. 25 2014. US Patent 8,679,873. [198]T. Paoli. A new technique for measuring the thermal impedance of junction lasers. IEEE Journal of Quantum Electronics, 11(7):498–503, 1975. [199]M.-S. Park, M. Razaei, K. Barnhart, C. L. Tan, and H. Mohseni. Surface passivation and aging of InGaAs/InP heterojunction phototransistors. Journal of Applied Physics, 121(23):233105, 2017. [200]C.-Y. Peng, H.-T. Cheng, Y.-H. Hong, W.-C. Hsu, F.-H. Hsiao, T.-C. Lu, S.W. Chang, S.-C. Chen, C.-H. Wu, and H.-C. Kuo. Performance analyses of photonic-crystal surface-emitting laser: Toward high-speed optical communication. Nanoscale Research Letters, 17(1):90, Sept. 2022. [201]C.-Y. Peng, H.-T. Cheng, H.-C. Kuo, and C.-H. Wu. Design and optimization of VCSELs for up to 40-Gb/s error-free transmission through impurity-induced disordering. IEEE Transactions on Electron Devices, 67(3):1041–1046, 2020. [202]C.-Y. Peng, J. Qiu, T.-Y. Huang, C.-H. Wu, M. Feng, and C.-H. Wu. 850-nm singlemode vertical-cavity surface-emitting lasers for 40 Gb/s error-free transmission up to 500 m in OM4 fiber. IEEE Electron Device Letters, 41(1):84–86, 2020. [203]C.-Y. Peng, C.-T. Tsai, H.-Y. Wang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, G.-R. Lin, and C.-H. W. Wu. High-temperature insensitivity of 50Gb/s 16-QAM-DMT transmission by using the temperature-compensated Vertical-Cavity Surface-Emitting Lasers. Journal of Lightwave Technology, 36(16):3332– 3343, 2018. [204]C.-Y. Peng, K. Tsao, H.-T. Cheng, M. Feng, and C.-H. Wu. Investigation of the current influence on near-field and far-field beam patterns for an oxide-confined vertical-cavity surface-emitting laser. Opt. Express, 28(21):30748–30759, Oct. 2020. [205]M. G. Peters, B. J. Thibeault, D. B. Young, J. W. Scott, F. H. Peters, A. C. Gossard, and L. A. Coldren. Band‐gap engineered digital alloy interfaces for lower resistance vertical‐cavity surface‐emitting lasers. Applied Physics Letters, 63(25):3411–3413, 1993. [206]M. G. Peters, B. J. Thibeault, D. B. Young, J. W. Scott, F. H. Peters, A. C. Gossard, and L. A. Coldren. Band‐gap engineered digital alloy interfaces for lower resistance vertical‐cavity surface‐emitting lasers. Applied Physics Letters, 63(25):3411–3413, 1993. [207]Picosun.PICOSUN® R-200 Standard.https://www.picosun.com/products/research/picosun-r200-standard/. [208]P. Pintus, L. Ranzani, S. Pinna, D. Huang, M. V. Gustafsson, F. Karinou, G. A. Casula, Y. Shoji, Y. Takamura, T. Mizumoto, M. Soltani, and J. E. Bowers. An integrated magneto-optic modulator for cryogenic applications. Nature Electronics, 5(9):604–610, 2022. [209]J. Piprek. Semiconductor optoelectronic devices: introduction to physics and simulation. Elsevier, 2013. [210]J. Piprek, T. Troger, B. Schroter, J. Kolodzey, and C. Ih. Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors. IEEE Photonics Technology Letters, 10(1):81–83, 1998. [211]J. Piprek, H. Wenzel, and G. Sztefka. Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters, 6(2):139–142, 1994. [212]R. G. Probst, T. A. Ellis, A. M. Fowler, I. Gatley, G. B. Heim, and M. Merrill. Cryogenic optical bench: a multifunction camera for infrared astronomy. In Proc. SPIE, volume 2198, pages 695 – 702. SPIE, 1994. [213]H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels. Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(5):050801, 2011. [214]R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J.-R. Kropp, N. Ledentsov, V. Shchukin, N. Ledentsov, R. Henker, I. T. Monroy, J. V. Olmos, and J. Turkiewicz. 107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber. In Optical Fiber Communication Conference Postdeadline Papers, page Th5B.5. Optical Society of America, 2016. [215] J. Qiu, D. Wu, H.-L. Wang, M. Feng, and X. Yu. Advanced single-mode 850 nm VCSELs for record NRZ and PAM4 data rate on SMF-28 fiber up to 1 km. In Optical Fiber Communication Conference (OFC) 2021, page Tu5C.2. Optical Society of America, 2021. [216]J. Qiu, D. Wu, H.-L. Wang, M. Feng, and X. Yu. Advanced single-mode 850 nm vcsels for record nrz and pam4 data rate on smf-28 fiber up to 1 km. In 2021 Optical Fiber Communications Conference and Exhibition (OFC), page Tu5C.2, 2021. [217]J. Qiu, X. Yu, and M. Feng. 85 ◦C operation of single-mode 850 nm VCSELs for high speed error-free transmission up to 1 km in OM4 fiber. In 2019 Optical Fiber Communications Conference and Exhibition (OFC), page W3A.4, 2019. [218]J. Rösler, M. Bäker, and H. Harders. Mechanical Behaviour of Engineering Materials Metals, Ceramics, Polymers, and Composites. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2007. [219]T. E. Sale,C. Amamo,Y. Ohiso,and T. Kurokawa.Using strained (AlxGa1−x)yIn1−yAszP1−z system materials to improve the performance of 850 nm surface- and edge-emitting lasers. Applied Physics Letters, 71(8):1002–1004, 08 1997. [220]O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, C. Kocabas, and A. Aydinli. Passivation of type II InAs/GaSb superlattice photodetectors with atomic layer deposited Al2O3. In Proc. SPIE, volume 8353, page 83530Z. SPIE, 2012. [221]D. Schoeniger, R. Henker, and F. Ellinger. An analytical design method for highspeed VCSEL driver with optimized energy efficiency. IEEE Transactions on Microwave Theory and Techniques, 66(9):3966–3980, 2018. [222]D. K. Serkland, K. M. Geib, G. M. Peake, G. A. Keeler, and A. Y. Hsu. 850-nm VCSELs optimized for cryogenic data transmission. In Proc. SPIE, volume 8276, page 82760S. SPIE, 2012. [223]SFF Committee.INF-8074 SFP (small formfactor pluggable) tansceiver, May 2001. [224]SFF Committee. SFF-8431 SFP+ 10 Gb/s and low speed electrical interface, July 2009. [225]SFF Committee. SFF-8436 QSFP+ 4X 10 Gb/s pluggable transceiver, July 2009. [226]SFF Committee.SFF-8402 SFP+ 1X 28 Gb/s pluggable transceiver solution (SFP28), Sept. 2014. [227]SFF Committee.SFF-8665 QSFP+ 28 Gb/s 4X pluggable transceiver solution (QSFP28), August 2018. [228]C. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21, 1949. [229]C.-C. Shen, T.-C. Hsu, Y.-W. Yeh, C.-Y. Kang, Y.-T. Lu, H.-W. Lin, H.-Y. Tseng, Y.-T. Chen, C.-Y. Chen, C.-C. Lin, C.-H. Wu, P.-T. Lee, Y. Sheng, C.-H. Chiu, and H.-C. Kuo. Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/s. Nanoscale research letters, 14:276, 2019. [230]J.-W. Shi, C.-C. Wei, J. Chen, N. N. Ledentsov, and Y.-J. Yang. Single-mode 850nm vertical-cavity surface-emitting lasers with Zn-diffusion and oxide-relief apertures for > 50 Gbit/sec OOK and 4-PAM transmission. In Proc. SPIE, volume 10122, page 101220F. SPIE, 2017. [231]J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I. C. Lu, J. Chen, and Y.-J. Yang. Single-mode, high-speed, and high-power Vertical-Cavity Surface-Emitting Lasers at 850 nm for short to medium reach (2 km) optical interconnects. Journal of Lightwave Technology, 31(24):4037–4044, 2013. (Jyehong). [232]J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang. Oxide-relief and Zn-diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers with extremely low energy-to-data-rate ratios for 40 Gbit/s operations. IEEE Journal of Selected Topics in Quantum Electronics, 19(2):7900208–7900208, 2013. [233]J. Shin and Y. H. Lee. Determination of nonradiative recombination coefficients of vertical‐cavity surface‐emitting lasers from lateral spontaneous emission. Applied Physics Letters, 67(3):314–316, 1995. [234]J. H. Shin, H. E. Shin, and Y. H. Lee. Effect of carrier diffusion in oxidized vertical-cavity surface-emitting lasers determined from lateral spontaneous emission. Applied Physics Letters, 70(20):2652–2654, 1997. [235]P. H. Smith. Transmission line calculator. Electronics, 12(1):29–31, 1939. [236]P. H. Smith. Electronic Applications of the Smith Chart: In Waveguide, Circuit, and Componenet Analysis. SciTech Publishing, 1995. [237]H. Soda, K. Iga, C. Kitahara, and Y. Suematsu.GaInAsP/InP surface emitting injection lasers.Japanese Journal of Applied Physics, 18(12):2329–2330, Dec. 1979. [238]D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee. Single-fundamental mode photonic-crystal vertical-cavity surface-emitting lasers. Applied Physics Letters, 80(21):3901–3903, 2002. [239]SONY. Optical disc archive generation 2. [240]H. Statz and G. deMars. Quantum Electronics. Columbia Univ., 1960. pp. 530–537. [241]G. Stepniak, A. Lewandowski, J. Kropp, N. Ledentsov, V. Shchukin, N. Ledentsov Jr., G. Schaefer, M. Agustin, and J. Turkiewicz. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF. Electronics Letters, 52(8):633–635, 2016. [242]Y. Su, Y. Chang, and X. Chen. Circuit model for studying temperature effects on vertical-cavity surface-emitting laser. In Conference Proceedings LEOS’96 9th Annual Meeting IEEE Lasers and Electro-Optics Society, volume 1, pages 215– 216 vol.1, 1996. [243]M. Sugimoto, H. Kosaka, K. Kurihara, I. Ogura, T. Numai, and K. Kasahara. Very low threshold current density in vertical-cavity surface-emitting laser diodes with periodically doped distributed Bragg reflectors. Electronics Letters, 28:385– 387(2), February 1992. [244]P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, et al. Scalability in perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2446–2454, 2020. [245]T. Suntola and J. Antson. Method for producing compound thin films, 1977. US Patent 4,058,430. [246]K. Szczerba, P. Westbergh, J. S. Gustavsson, M. Karlsson, P. A. Andrekson, and A. Larsson. Energy efficiency of VCSELs in the context of short-range optical links. IEEE Photonics Technology Letters, 27(16):1749–1752, 2015. [247]K. Szczerba, P. Westbergh, M. Karlsson, P. Andrekson, and A. Larsson. 60 Gbits error-free 4-PAM operation with 850 nm VCSEL. Electronics Letters, 49(15):953– 955, 2013. [248]F. Tan, C. H. Wu, M. Feng, and N. Holonyak. Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission. Applied Physics Letters, 98(19):191107, 2011. [249]T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda. High-speed 850nm AlGaAs/ GaAs Vertical Cavity Surface Emitting Laser with low parasitic capacitance fabricated using BCB planarization technique. In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, page CWI3. OSA, 2005. [250]TE Connectivity, Mar 2021. [251]B. Tell, K. Brown‐Goebeler, R. Leibenguth, F. Baez, and Y.-H. Lee. Temperature dependence of GaAs‐AlGaAs vertical cavity surface emitting lasers. Applied Physics Letters, 60(6):683–685, 1992. [252]The Dow Chemical Company. Advanced packaging polymers product selection guide, 2014. [253]H. Then, C. Wu, M. Feng, and N. Holonyak Jr. Microwave characterization of Purcell enhancement in a microcavity laser. Applied Physics Letters, 96(13):131107, 2010. [254]H. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jager, M. Riedl, and K. J. Ebeling. Increased-area oxidised single-fundamental mode VCSEL with self-aligned shallow etched surface relief. Electronics Letters, 35(16):1340–1341, 1999. [255]H. Unold, S. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. Ebeling. Large-area single-mode VCSELs and the self-aligned surface relief. IEEE Journal of Selected Topics in Quantum Electronics, 7(2):386–392, 2001. [256]J. van Eisden, M. Yakimov, V. Tokranov, M. Varanasi, E. M. Mohammed, I. A. Young, and S. Oktyabrsky. Modulation properties of VCSEL with intracavity modulator. In Proc. SPIE, volume 6484, page 64840A. SPIE, 2007. [257]Velodyne Lidar. Velodyne’s HDL-64E Lidar sensor looks back on a legendary career. [258]B. Vermang, F. Werner, W. Stals, A. Lorenz, A. Rothschild, J. John, J. Poortmans, R. Mertens, R. Gortzen, P. Poodt, F. Roozeboom, and J. Schmidt. Spatially-separated atomic layer deposition of Al2O3, a new option for high-throughput Si solar cell passivation. In 2011 37th IEEE Photovoltaic Specialists Conference, pages 001144–001149. IEEE, 2011. [259]VI Systems GmbH. Vis-datasheet-v50-850c. [260]VI Systems GmbH. V50-850-Cxx - 50 Gbit/s VCSEL (850 nm), 2021. [261]VI Systems GmbH. VM100-850-GSG-Cxx - 100 Gbit/s VCSEL (850 nm), 2022. [262]Vishay Intertechnology. New IRED- and VCSEL-powered VCNL36821S and VCNL36826S proximity sensors feature power consumption down to 6 µa in 2.55 mm x 2.05 mm x 1.0 mm smd package for consumer and industrial applications. [263]C. Y. Wang, M. Liu, M. Feng, and N. Holonyak. Microwave extraction method of radiative recombination and photon lifetimes up to 85 ◦C on 50 Gb/s oxide-vertical cavity surface emitting laser. Journal of Applied Physics, 120(22):223103, 2016. [264]H.-L. Wang, W. Fu, J. Qiu, and M. Feng. 850 nm VCSELs for 50 Gb/s NRZ errorfree transmission over 100-meter OM4 and up to 115 ◦C operation. In Optical Fiber Communication Conference, page W3A.1. OSA, 2019. [265]H.-L. Wang, J. Qiu, X. Yu, M. Feng, and N. Holonyak. 85◦C operation of 850 nm VCSELs deliver a 42 Gb/s error-free data transmission for 100 meter MMF link. In Proc. 2018 Optical Fiber Communications Conference and Exposition (OFC), pages 1–3, 2018. [266]H.-L. Wang, J. Qiu, X. Yu, W. Fu, and M. Feng. The modal effect of VCSELs on transmitting data rate over distance in OM4 fiber. IEEE Journal of Quantum Electronics, 56(6):8000106, 2020. [267]J. Wang, M. V. R. Murty, Z.-W. Feng, S.-J. Taslim, A. Sridhara, X. Cai, A. L. Harren, N. Leong, G. H. Koh, A.-N. Cheng, D. W. Dolfi, J. Chu, and L. M. Giovane. 100Gb/s PAM4 oxide VCSEL development progress at Broadcom. In Proc. SPIE, volume 11300, page 113000G. SPIE, 2020. [268]J. Wang, M. V. R. Murty, Z.-W. Feng, S.-J. Taslim, A. Sridhara, X. Cai, A. L. Harren, N. Leong, G. H. Koh, A.-N. Cheng, D. W. Dolfi, J. Chu, and L. M. Giovane. 100Gb/s PAM4 oxide VCSEL development progress at Broadcom. In Proc. SPIE, volume 11300, page 113000G. SPIE, 2020. [269]J. Wang, M. V. R. Murty, Z.-W. Feng, S.-J. Taslim, A. Sridhara, X. Cai, N. Leong, G.-H. Koh, A. Hioki, A.-N. Cheng, D. W. Dolfi, J. Chu, and L. M. Giovane. High speed 850nm oxide VCSEL development for 100Gb/s ethernet at Broadcom. In Proc. SPIE, volume 12020, page 1202009. SPIE, 2022. [270]J. Wang, M. V. R. Murty, C. Wang, D. Hui, A. L. Harren, H.-H. Chang, Z.-W. Feng, T. R. Fanning, A. Sridhara, S.-J. Taslim, X. Cai, J. Chu, and L. M. Giovane. 50Gb/s PAM-4 oxide VCSEL development progress at Broadcom. In Proc. SPIE, volume 10122, page 1012202. SPIE, 2017. [271]J. Wang, M. V. R. Murty, C. Wang, D. Hui, A. L. Harren, H.-H. Chang, Z.-W. Feng, T. R. Fanning, A. Sridhara, S.-J. Taslim, X. Cai, J. Chu, and L. M. Giovane. 50Gb/ s PAM-4 oxide VCSEL development progress at Broadcom. In K. D. Choquette and C. Lei, editors, Vertical-Cavity Surface-Emitting Lasers XXI, volume 10122, pages 1 – 6. International Society for Optics and Photonics, SPIE, 2017. [272]P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, D. Bimberg, and A. Joel. 32 Gb/s transmission experiments using high speed 850 nm VCSELs. In Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, page CMGG6. OSA, 2009. [273]P. Westbergh, J. S. Gustavsson, A. Haglund, H. Sunnerud, and A. Larsson. Large aperture 850 nm VCSELs operating at bit rates up to 25 Gbit/s. Electronics Letters, 44(15):907–908, 2008. [274]P. Westbergh, J. S. Gustavsson, B. Kögel, Ä. Haglund, and A. Larsson. Impact of photon lifetime on high-speed VCSEL performance. IEEE Journal of Selected Topics in Quantum Electronics, 17(6):1603–1613, 2011. [275]P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel. 40 gbit/s error-free operation of oxide-confined 850 nm vcsel. Electronics Letters, 46:1014 – 1016, Aug. 2010. [276]P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson. High-speed 850 nm VCSELs operating error free up to 57 Gbit/s. Electronics Letters, 49:1021–1023, 2013. [277]P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85 ◦C. IEEE Photonics Technology Letters, 25(8):768– 771, 2013. [278]P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel. High-speed 850-nm VCSELs with 28 GHz modulation bandwidth for short reach communication. In Proc. SPIE, volume 8639, page 86390X. SPIE, 2013. [279]P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel. High-speed 850-nm VCSELs with 28 GHz modulation bandwidth for short reach communication. In Proc. SPIE, volume 8639. SPIE, 2013. paper 86390X. [280]P. Wolf, P. Moser, G. Larisch, H. Li, J. Lott, and D. Bimberg. Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fj/bit dissipated heat. Electronics Letters, 49(10):666–667, 2013. [281]M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, and S. P. DenBaars. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express, 26(16):21324–21331, Aug. 2018. [282]M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, J. S. Speck, and S. P. DenBaars. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt. Express, 28(4):5787–5793, Feb. 2020. [283]C.-H. Wu, T.-Y. Huang, J. Qiu, W. Fu, C.-Y. Peng, T.-T. Shih, J.-J. Huang, H.-C. Kuo, G.-R. Lin, W.-H. Cheng, M. Feng, and C.-H. Wu. 50 Gb/s error-free data transmission using a NRZ-OOK modulated 850 nm VCSEL. In 2018 European Conference on Optical Communication (ECOC), page Th2.14, 2018. [284]C.-H. Wu, S.-Y. Min, and H.-T. Cheng. Vertical-cavity surface emitting laser for emitting a single mode laser beam, Jan. 20 2022. US Patent App. 16/932,839. [285]C. H. Wu, F. Tan, M. Feng, and N. Holonyak. The effect of mode spacing on the speed of quantum-well microcavity lasers. Applied Physics Letters, 97(9), 2010. [286]C. H. Wu, F. Tan, M. K. Wu, M. Feng, and N. Holonyak. The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity. Journal of Applied Physics, 109(5):053112, 2011. [287]C. H. Wu, F. Tan, M. K. Wu, M. Feng, and N. Holonyak. The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity. Journal of Applied Physics, 109(5):053112, 03 2011. [288]C. H. Wu, H. W. Then, M. Feng, and N. Holonyak. Microwave determination of electron-hole recombination dynamics from spontaneous to stimulated emission in a quantum-well microcavity laser. Applied Physics Letters, 96(13):131108, 2010. [289]D. Wu, W. Fu, H. Wu, and M. Feng. Cryogenic VCSEL microwave-optical model for laser frequency response prediction and e–h recombination lifetime analysis. Journal of Applied Physics, 132(22):223101, 2022. [290]D. Wu, X. Yu, H. Wu, W. Fu, and M. Feng. Single-mode 850nm VCSELs demonstrate 96 Gb/s PAM4 OM4 fiber link for extended reach to 1km. In Optical Fiber Communication Conference (OFC) 2022, page W2A.7. Optica Publishing Group, 2022. [291]H. Wu, W. Fu, M. Feng, and D. Deppe. 2.6 K VCSEL data link for cryogenic computing. Applied Physics Letters, 119(4):041101, 2021. [292]H. Wu, W. Fu, D. Wu, and M. Feng. 2.9 K VCSEL demonstrates 100 Gbps PAM-4 optical data transmission. Applied Physics Letters, 121(1):011102, 2022. [293]J. Wu, W. Xiao, and Y.-M. Lu. Temperature and wavelength dependence of gain and threshold current detuning with cavity resonance in vertical-cavity surface-emitting lasers. IET Optoelectronics, 1:206–210(4), October 2007. [294]W.-L. Wu, C.-Y. Huang, H.-Y. Wang, Y.-H. Lin, C.-H. Wu, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, M. Feng, and G.-R. Lin. VCSEL with bi-layer oxidized aperture enables 140-Gbit/s OFDM transmission over 100-m-long OM5 MMF. In Optical Fiber Communication Conference (OFC) 2019, page Tu3A.3. Optical Society of America, 2019. [295]Y.-C. Wu. Temperature-dependent characterization of 850 nm high-speed vertical-cavity surface-emitting lasers, 2015. National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Master’s thesis, Available at https: //hdl.handle.net/11296/jmj757. [296]M. Xun, G. Pan, R. Zhang, Z. Zhao, Y. Sun, Y. Liu, X. Li, D. Wang, J. Zhou, and D. Wu. Optimization of inductively coupled plasma etching for distributed Bragg reflectors in vertical cavity surface emitting lasers. Vacuum, 188:110175, 2021. [297]L. C. Y.-C. Chang, C.S. Wang. High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation. Electronics Letters, 43:1022–1023(1), Sept. 2007. [298]J. Yan, J. Wang, C. Tang, X. Liu, G. Zhang, and Y. He. An electrooptothermal-coupled circuit-level model for VCSELs under pulsed condition. IEEE Transactions on Industrial Electronics, 66(2):1315–1324, 2019. [299]H. Yang, Y. Chang, F. Lai, H. Yu, Y. Hsu, G. Lin, R. Hsiao, H. Kuo, S. Wang, and J. Chi. Singlemode InAs quantum dot photonic crystal VCSELs. Electronics Letters, 41:1130–1132(2), September 2005. [300]Y. Yang, T. Dziura, S. Wang, G. Du, and S. Wang. Single-mode operation of mushroom structure surface emitting lasers. IEEE Photonics Technology Letters, 3(1):9– 11, 1991. [301]Y.-C. Yang, H.-T. Cheng, and C.-H. Wu. 30 GHz highly damped oxide confined vertical-cavity surface-emitting laser. In 2021 IEEE Photonics Conference (IPC), pages 1–2, 2021. [302]Y.-C. Yang, H.-T. Cheng, and C.-H. Wu. Ultra-fast and highly efficient 850-nm VCSELs for next-gen PAM-4 transceivers. In Asia Communications and Photonics Conference 2021, page W3D.4. Optical Society of America, 2021. [303]Y.J. Yang, T.G. Dziura, T. Bardin, S.C. Wang, and R. Fernandez. Continuous-wave single-transverse-mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion. In Conference on Lasers and Electro-Optics, page JThA3. Optical Society of America, 1992. [304]Y.-W. Yeh, S.-H. Lin, T.-C. Hsu, S. Lai, P.-T. Lee, S.-Y. Lien, D.-S. Wuu, G. Li, Z. Chen, T. Wu, and H.-C. Kuo. Advanced atomic layer deposition technologies for Micro-LEDs and VCSELs. Nanoscale Research Letters, 16:164, 2021. [305]Yole Développement. VCSEL - market and technology trends 2021 report, 2021. [306]Yole Intelligence. VCSEL - market and technology trends 2022 report, 2022. [307]D. Young, A. Kapila, J. Scott, V. Malhotra, and L. Coldren. Reduced threshold vertical-cavity surface-emitting lasers. Electronics Letters, 30(3):233–235, 1994. [308]D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren. Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 29(6):2013–2022, 1993. [309]S. Yu, W. Wong, P. Shum, and E. Li. Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 32(12):2139–2147, 1996. [310]J. Zarębski and K. Górecki. A method of the thermal resistance measurements of semiconductor devices with p–n junction. Measurement, 41(3):259–265, 2008. [311]Y.-Q. Zhang, Z.-Y. Zuo, Q. Kan, and J. Zhao. Common failure modes and mechanisms in oxide vertical cavity surface emitting lasers. Chinese Optics, 15(2):187– 209, 2022. [312]. Zhao, T. Chen, and A. Yariv. The extra differential gain enhancement in multiple-quantum-well lasers. IEEE Photonics Technology Letters, 4(2):124–126, 1992. [313]B. Zhao, T. R. Chen, Y. H. Zhuang, A. Yariv, J. E. Ungar, and S. Oh. High speed operation of very low threshold strained InGaAs/GaAs double quantum well lasers. Applied Physics Letters, 60(11):1295–1297, 1992. [314]G. Zhao and D. Deppe. Thermal performance of oxide-free lithographic VCSELs. In IEEE Photonic Society 24th Annual Meeting, pages 915–916, 2011. [315]L. Zhi-Mei, J. Can, J. Peng, W. Ju, and W. Zhan-Guo. Temperature insensitivity of optical properties of InAs/GaAs quantum dots due to a pregrown InGaAs quantum well. Chinese Physics Letters, 26(1):017802, jan 2009. [316]K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu. Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems. Opt. Express, 23(2):1176–1189, Jan. 2015. [317]L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang. Brief review of surface passivation on III-V semiconductor. Crystals, 8(5):226, 2018. [318]Z. Zou, D. Huffaker, and D. Deppe. Ultralow-threshold cryogenic vertical-cavity surface-emitting laser. IEEE Photonics Technology Letters, 12(1):1–3, 2000.
|