|
O. Agarwal, H. Ge, S. Shakeri, and R. Al-Rfou. Knowledge graph based synthetic corpus generation for knowledge-enhanced language model pre-training. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3554–3565, Online, June 2021. Association for Computational Linguistics. O. Agarwal, M. Kale, H. Ge, S. Shakeri, and R. Al-Rfou. Machine translation aided bilingual data-to-text generation and semantic parsing. In Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+), pages 125–130, Dublin, Ireland (Virtual), 12 2020. Association for Computational Linguistics. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a web of open data. In Proceedings of the 6th International The Semantic Web and 2nd Asian Conference on Asian Semantic Web Conference, ISWC’07/ASWC’07, page 722 – 735, Berlin, Heidelberg, 2007. Springer-Verlag. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014. S. Banerjee and A. Lavie. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 284(5):34–43, May 2001. T. Castro Ferreira, C. Gardent, N. Ilinykh, C. van der Lee, S. Mille, D. Moussallem, and A. Shimorina. The 2020 bilingual, bi-directional WebNLG+ shared task: Overview and evaluation results (WebNLG+ 2020). In Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+), pages 55–76, Dublin, Ireland (Virtual), 12 2020. Association for Computational Linguistics. A. Celikyilmaz, E. Clark, and J. Gao. Evaluation of text generation: A survey. ArXiv, abs/2006.14799, 2020. X. Chen, C. Liang, D. Huang, E. Real, K. Wang, Y. Liu, H. Pham, X. Dong, T. Luong, C.-J. Hsieh, Y. Lu, and Q. V. Le. Symbolic discovery of optimization algorithms. ArXiv, abs/2302.06675, 2023. A. Colas, M. Alvandipour, and D. Z. Wang. Gap: A graph-aware language model framework for knowledge graph-to-text generation. In International Conference on Computational Linguistics, 2022. A. Colas, A. Sadeghian, Y. Wang, and D. Z. Wang. Eventnarrative: A large-scale event-centric dataset for knowledge graph-to-text generation, 2022. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. P. Dognin, I. Padhi, I. Melnyk, and P. Das. ReGen: Reinforcement learning for text and knowledge base generation using pretrained language models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1084–1099, Online and Punta Cana, Dominican Republic, Nov. 2021. Association for Computational Linguistics. P. Dufter, M. Schmitt, and H. Schütze. Position information in transformers: An overview. Computational Linguistics, 48(3):733–763, Sept. 2022. V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. ArXiv, abs/2012.09699, 2020. V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking graph neural networks. ArXiv, abs/2003.00982, 2020. M. Freitag and Y. Al-Onaizan. Beam search strategies for neural machine translation. In Proceedings of the First Workshop on Neural Machine Translation, pages 56–60, Vancouver, Aug. 2017. Association for Computational Linguistics. S. Gottschalk and E. Demidova. Eventkg: A multilingual event-centric temporal knowledge graph. In Extended Semantic Web Conference, 2018. Q. Guo, Z. Jin, X. Qiu, W. Zhang, D. Wipf, and Z. Zhang. CycleGT: Unsupervised graph-to-text and text-to-graph generation via cycle training. In Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+), pages 77–88, Dublin, Ireland (Virtual), 12 2020. Association for Computational Linguistics. D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv: Learning, 2016. J. Hewitt and C. D. Manning. A structural probe for finding syntax in word representations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4129–4138, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. L. Hu, T. Yang, L. Zhang, W. Zhong, D. Tang, C. Shi, N. Duan, and M. Zhou. Compare to the knowledge: Graph neural fake news detection with external knowledge. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 754–763, Online, Aug. 2021. Association for Computational Linguistics. F. Ilievski, P. Szekely, and B. Zhang. Cskg: The commonsense knowledge graph. Extended Semantic Web Conference (ESWC), 2021. Z. Jin, Q. Guo, X. Qiu, and Z. Zhang. GenWiki: A dataset of 1.3 million content-sharing text and graphs for unsupervised graph-to-text generation. In Proceedings of the 28th International Conference on Computational Linguistics, pages 2398–2409, Barcelona, Spain (Online), Dec. 2020. International Committee on Computational Linguistics. M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. B. Viégas, M. Wattenberg, G. S. Corrado, M. Hughes, and J. Dean. Google' s multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association for Computational Linguistics, 5:339–351, 2016. J. Kim, D. Nguyen, S. Min, S. Cho, M. Lee, H. Lee, and S. Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing Systems, 35:14582–14595, 2022. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014. T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ArXiv, abs/1609.02907, 2016. T. Kudo. Subword regularization: Improving neural network translation models with multiple subword candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 66–75, Melbourne, Australia, July 2018. Association for Computational Linguistics. M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online, July 2020. Association for Computational Linguistics. T. Lin, Y. Wang, X. Liu, and X. Qiu. A survey of transformers. AI Open, 3:111–132, 2021. L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of the adaptive learning rate and beyond. ArXiv, abs/1908.03265, 2019. Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis, and L. Zettlemoyer. Multilingual denoising pre-training for neural machine translation. Transactions of the Association for Computational Linguistics, 8:726–742, 2020. M. Mayank, S. Sharma, and R. Sharma. Deap-faked: Knowledge graph based approach for fake news detection. 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 47–51, 2021. I. Melnyk, P. Dognin, and P. Das. Knowledge graph generation from text. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1610–1622, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics. E. Min, R. Chen, Y. Bian, T. Xu, K. Zhao, W. bing Huang, P. Zhao, J. Huang, S. Ananiadou, and Y. Rong. Transformer for graphs: An overview from architecture perspective. ArXiv, abs/2202.08455, 2022. M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation extraction without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages 1003–1011, Suntec, Singapore, Aug. 2009. Association for Computational Linguistics. S. Ouyang, Z. Zhang, and H. Zhao. Dialogue graph modeling for conversational machine reading. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3158–3169, Online, Aug. 2021. Association for Computational Linguistics. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics. A. Radford and K. Narasimhan. Improving language understanding by generative pre-training. 2018. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. A. Rogers, O. Kovaleva, and A. Rumshisky. A primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics, 8:842–866, 2020. A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. P. Hsu, and K. Wang. An overview of microsoft academic service (mas) and applications. In International World Wide Web Conferences. Microsoft, May 2015. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014. I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014. A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, 2017. D. Vrandečić and M. Krötzsch. Wikidata: A free collaborative knowledgebase. Commun. ACM, 57(10):78 – 85, sep 2014. Y. Xu, L. Fu, Z. Lin, J. Qi, and X. Wang. Infinity: A simple yet effective unsupervised framework for graph-text mutual conversion. ArXiv, abs/2209.10754, 2022. J. Yang, G. Xiao, Y. Shen, W. Jiang, X. Hu, Y. Zhang, and J. Peng. A survey of knowledge enhanced pre-trained models. ArXiv, abs/2110.00269, 2021. C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do transformers really perform bad for graph representation? In Neural Information Processing Systems, 2021. J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec. Graphrnn: Generating realistic graphs with deep auto-regressive models. In International Conference on Machine Learning, 2018. L. Zhang and R. Li. KE-GCL: Knowledge enhanced graph contrastive learning for commonsense question answering. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 76–87, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics. T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating text generation with bert. ArXiv, abs/1904.09675, 2019. Y. Zhang, H. Dai, K. Toraman, and L. Song. Kg^2: Learning to reason science exam questions with contextual knowledge graph embeddings, 2018. L. Zhong, J. Wu, Q. Li, H. Peng, and X. Wu. A comprehensive survey on automatic knowledge graph construction, 2023. Y. Zhu, Y. Du, Y. Wang, Y. Xu, J. Zhang, Q. Liu, and S. Wu. A survey on deep graph generation: Methods and applications. In LOG IN, 2022.
|