跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃昱家
研究生(外文):Yu-Jia Huang
論文名稱:電池儲能系統應用於微電網之自動發電控制及基於螢火蟲最佳化演算法之頻率預防控制
論文名稱(外文):AGC Strategy of BESS Applied to Microgrid and Preventive Frequency Control using Firefly Algorithm
指導教授:許源浴許源浴引用關係
指導教授(外文):Yuan-Yih Hsu
口試委員:張忠良劉運鴻吳進忠蒲冠志
口試委員(外文):Zhong-Liang ZhangYun-Hong LiuChin-Chung WuGuan-Zhi Pu
口試日期:2022-12-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:99
中文關鍵詞:風力發電雙饋式感應發電機電池儲能系統自動發電控制預防控制螢火蟲演算法
外文關鍵詞:Wind power generationDFIGBESSAGCPreventive controlFirefly Algorithm
DOI:10.6342/NTU202300023
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文目的在於設計微電網中電池儲能系統(Battery Energy Storage System, BESS)的自動發電控制(Automatic Generation Control, AGC)策略,來控制電池儲能系統的輸出功率,以改善風速變動時所導致的風機輸出波動與負載在較小擾動下對於微電網系統的動態頻率響應所帶來的不良影響。
本論文另一個貢獻是,當微電網遭遇大型負載擾動時,使用本論文提出的預防控制(Preventive Control)方法,利用電池儲能系統反應速度快速的特性,結合螢火蟲最佳化演算法(Firefly Algorithm, FA)設計出電池儲能系統最佳輸出功率大小及最佳充放電時機等相關參數,在確保電池儲能系統的電量狀態 (State of Charge, SOC)充足情況下,能夠防止系統頻率過低觸動低頻卸載電驛造成微電網中用戶停電的情況發生,且藉由最佳化演算法得以保證微電網中的柴油機組發電成本最小化,使得傳統機組發電廠達到最經濟的運轉成本考量。與此同時微電網中的雙饋式感應風力發電機(Doubly-Fed Induction Generator, DFIG)的葉片旋角(Pitch angle)則維持 0°,確保風機葉片從風中擷取到最大風能,讓風電業者在不同風速下,都能以最大功率匯入微電網,避免風能溢出浪費的狀況產生。若是電池儲能預防控制無法改善電網頻率至安全的界線,則加入風機的葉片旋角(Pitch angle)之預防控制來協助改善微電網系統之頻率低點。
本論文藉由MATLAB®/Simulink軟體進行模擬,並以微電網之非線性數學模型為研究範例,來驗證本論文所提出之儲能系統自動發電控制策略及系統頻率低點之預防控制的有效性。
The purpose of this paper is to design the Automatic Generation Control(AGC) strategy of the Battery Energy Storage System(BESS) in the microgrid to control the output power of the BESS , so as to improve the frequency response due to output fluctuation of the wind turbine and the small-scale load disturbance.
Another contribution of this paper is that when the microgrid encounters large-scale load disturbances, using the preventive control method proposed in this paper, taking advantage of the fast response speed of the BESS, combined with the Firefly Algorithm(FA) to design parameters of the BESS. Related parameters such as optimal output power and optimal charging/discharging timing. Under the premise of sufficient SOC, the method can prevent the occurrence of power failure in the microgrid, and the optimization algorithm can ensure the generation cost of diesel units in the microgrid is minimized. At the same time, the pitch angle of DFIG in the microgrid is maintained at 0° to ensure that the wind turbine blades capture the maximum wind energy from the wind, so that the wind power operator can offer the maximum power under different wind speeds into the microgrid, also avoid spilling of wind energy.
In this paper, MATLAB®/Simulink software is used for simulation, and the nonlinear mathematical model of the microgrid is used as a study system to verify the effectiveness of the proposed methods in this paper, the AGC strategy of the BESS and the prevention control of the low frequency event.
目錄
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究目的與方法 5
1.4 論文內容概述 7
第二章 微電網數學模型 8
2.1 前言 8
2.2 柴油發電機組頻率控制數學模型 9
2.3 雙饋式感應風力發電機 9
2.3.1 風力發電機原理[14] 9
2.3.2 雙饋式感應風力發電機頻率控制數學模型[19] 13
2.4 電池儲能系統數學模型 14
2.4.1 電池儲能系統控制方塊圖 14
2.4.2電池模型(Battery model) 16
2.4.3 高斯-賽德爾疊代法求解電池模型與準確度驗證 19
2.5 微電網頻率控制非線性數學模型 26
第三章 微電網之線性模型離散化推導與驗證 28
3.1 前言 28
3.2 頻率控制線性數學模型推導與離散化數值解析方法 29
3.2.1 頻率控制線性數學模型推導 29
3.2.2 離散化數值解析方法 36
3.3 驗證微電網線性模型之精確度 38
3.3.1 負載變動(或太陽光電變動)之案例 38
3.3.2 風速變動之案例 42
3.3.3 風機葉片旋角變動之案例 46
第四章 自動發電控制策略與頻率預防控制方法 50
4.1 前言 50
4.2 電池儲能系統自動發電控制策略 53
4.3 頻率預防控制方法 55
4.3.1 螢火蟲演算法 55
4.3.2 電池儲能系統頻率預防控制方法 60
4.3.3風機葉片旋角頻率預防控制方法 65
第五章 模擬結果與分析 69
5.1 前言 69
5.2 電池儲能系統自動發電控制之案例 69
5.2.1風速變動之案例 70
5.2.2負載變動之案例 75
5.3 頻率預防控制之案例 80
5.3.1 電池儲能系統頻率預防控制之案例 81
5.3.2風機葉片旋角頻率預防控制與電池儲能系統協調運用之案例 89
第六章 結論與未來研究方向 95
6.1 結論 95
6.2 未來研究方向 96
參考文獻 97
經濟部能源局,“109年能源供給概況,”中華民國110年12月。https://www.moeaboe.gov.tw/
經濟部能源局,“風力發電4年推動計畫,”中華民國106年11月。https://www.infolink-group.com/industry/tw/
InfoLink,“台灣累積儲能市場規模預測,”西元2021年11月。https://www.infolink-group.com/industry/tw/。
M. Ceraolo, "New dynamical models of lead-acid batteries," IEEE Transactions on Power Systems, vol. 15, no. 4, pp. 1184-1190, Nov. 2000.
S. Teleke, M. E. Baran, S. Bhattacharya and A. Q. Huang, "Optimal Control of Battery Energy Storage for Wind Farm Dispatching," IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 787-794, Sept. 2010.
Z. Wu, D. W. Gao, H. Zhang, S. Yan and X. Wang, "Coordinated Control Strategy of Battery Energy Storage System and PMSG-WTG to Enhance System Frequency Regulation Capability," IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 1330-1343, July 2017.
J. W. Shim, G. Verbic, N. Zhang and K. Hur, "Harmonious Integration of Faster-Acting Energy Storage Systems into Frequency Control Reserves Power Grid with High Renewable Generation," 2019 IEEE Power & Energy Society General Meeting (PESGM), 2019. 
M. Chen and G. A. Rincon-Mora, "Accurate electrical battery model capable of predicting runtime and I-V performance," IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504-511, June 2006.
S. Zhang, Y. Mishra and M. Shahidehpour, "Fuzzy-Logic Based Frequency Controller for Wind Farms Augmented With Energy Storage Systems," IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1595-1603, March 2016.
Choi, Jin & Heo, Shin & Kim, Mun. (2016). Hybrid operation strategy of wind energy storage system for power grid frequency regulation. IET Generation, Transmission & Distribution. 10. 736-749. 10.1049/iet-gtd.2015.
U. Datta, A. Kalam and J. Shi, "Battery Energy Storage System to Stabilize Transient Voltage and Frequency and Enhance Power Export Capability," IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 1845-1857, May 2019.
H. Luo, Z. Hu, H. Zhang and H. Chen, "Coordinated Active Power Control Strategy for Deloaded Wind Turbines to Improve Regulation Performance in AGC," IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 98-108, Jan. 2019.
M. A. M. Manaz and C. -N. Lu, "Design of Resonance Damper for Wind Energy Conversion System Providing Frequency Support Service to Low Inertia Power Systems," IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4297-4306, Nov. 2020.
陳翊瑋, “雙饋式感應風力發電機之粒子群優法自調式頻率控制器設計,” 臺灣大學電機所碩士論文, 2019. 
陳偉倫, “風力-感應發電機系統之電壓及頻率調整器設計,” 臺灣大學電機所博士論文, 2006.
R. Pena, J. C. Clare, et al., “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,” IEE Proc.-Electric Power Appl., vol. 143, no. 3, pp. 231-241, 1996.
Martin O.L. Hansen, “Aerodynamics of Wind Turbines,” Earthscn, Inc, 2007.
M. Shahabi, M. R. Haghifam, et al., “Microgrid Dynamic Performance Improvement Using a Doubly Fed Induction Wind Generator,” IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 137-145, March 2009.
羅國泰, “降載風機於微電網使用解析模型做預防頻率調整,” 臺灣大學電機所碩士論文, 2022.
洪郁翔, “利用粒子群優法設計與電網並聯之風機有效與無效電力自調式控制器,” 臺灣大學電機所碩士論文, 2019.
B. W. Karl Johan Åström, Computer-Controlled Systems: Theory and Design, Second Edition.
李泓希, “獨立系統頻控效能指標計算之頻率誤差控制目標研擬,” 國立中山大學電機工程學系碩士論文, 2010.
台灣電力公司, “電力系統運轉操作章則彙編”, 2020
Yang X-S. 2009. Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T, eds. Stochastic Algorithms: Foundations and Applications. Berlin, Berlin Heidelberg: Springer, 169–178.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊