跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林煒翔
研究生(外文):Wei-Hsiang Lin
論文名稱:內藏式永磁同步電機之可變繞組在線切換研究
論文名稱(外文):Research of Online Switching of Variable-winding for Interior Permanent Magnet Synchronous Machines
指導教授:劉志文劉志文引用關係
指導教授(外文):Chih-Wen Liu
口試委員:黃世杰楊俊哲
口試委員(外文):Shyh-Jier HuangJun-Zhe Yang
口試日期:2023-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:70
中文關鍵詞:內藏式永磁同步電機(IPMSM)每安培最大轉矩(MTPA)弱磁(FW)磁場導向控制(FOC)可變繞組電機參數估測技術遞迴最小平方法(RLS)轉矩估測
外文關鍵詞:Interior Permanent Magnet Synchronous Motor (IPMSM)Maximum Torque Per Ampere (MTPA)Field Weakening (FW)Field Oriented Control (FOC)Variable-winding motorParameter EstimationRecursive least Square (RLS)Torque Estimation
DOI:10.6342/NTU202301533
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一種結合遞迴最小平方算法(Recursive Least Square, RLS)的參數估測技術和轉矩估測方法(Torque Estimation),應用於可變繞組設計之永磁同步電機的在線繞組切換控制,所提出的方法能夠在電機運行時,有效並快速估測電機參數(包括定子電阻、交直軸電感以及轉子磁通鏈),並根據電機參數與繞組匝數之間的關係,分別估測出主繞組和高速繞組的轉矩響應。透過轉矩估測結果,可以計算出繞組最佳的切換條件,實現平滑的繞組在線切換控制,並同時達到最大轉矩輸出。此外,以磁場導向控制(Field Oriented Control, FOC)為基礎架構,控制策略結合了定轉矩區的每安培最大轉矩控制(Maximum Torque Per Ampere, MTPA)和定功率區的弱磁控制(Field-Weakening, FW),以完成整個閉迴路控制。最後,在模擬軟體MATLAB/Simulink中建立可變繞組設計之電機模型、控制策略和繞組切換演算法,以驗證本文所提出的繞組在線切換控制策略的可行性與強健性。
This thesis proposes a novel approach that combines a parameter estimation technique using the recursive least square (RLS) algorithm with Torque Estimation for online winding switch control in variable-winding interior permanent magnet synchronous machine (PMSM). The method introduced in this study can effectively and rapidly estimate motor parameters, including stator resistance, d-q axis inductance, and rotor flux linkage, during motor operation. Based on the relationship between motor parameters and number of winding turns, the torque responses of the primary winding and high-speed winding are estimated separately. Through the results of the torque estimation, optimal switching condition for the windings can be calculated. This facilitates a smooth online winding switch control and simultaneously achieves maximum torque output. Moreover, the control strategy, grounded in the architecture of field oriented control (FOC), maximum torque per ampere (MTPA) is applied in the constant torque region and field-weakening (FW) in the constant power region to finalize the complete closed-loop control. Finally, a variable-winding motor model, control strategy, and winding switching algorithm are established in MATLAB/Simulink. This setup serves to validate the feasibility and robustness of the online winding switch control strategy proposed in this thesis.
口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究貢獻 6
1.4 章節摘要 6
第二章 永磁同步電機基本原理及理論 8
2.1 前言 8
2.2 永磁同步電機簡介 8
2.2.1表面黏貼式(Surface)永磁同步電機 9
2.2.2內藏式(Interior)永磁同步電機 9
2.3 座標軸轉換 9
2.3.1靜止座標軸轉換 11
2.3.2同步旋轉座標軸轉換 12
2.4 永磁同步電機模型 13
2.4.1三相座標軸數學模型 13
2.4.2旋轉座標軸數學模型 17
2.5 空間向量脈波寬度調變 19
2.6 磁場導向控制 23
2.6.1電流控制器設計 24
2.6.2速度控制器設計 27
2.7 電機參數量測 29
2.7.1定子電阻量測 29
2.7.2交直軸電感量測 31
2.7.3轉子磁通鏈量測 33
2.7.4轉動慣量與摩擦係數量測 33
第三章 永磁同步電機之可變繞組切換系統 35
3.1 前言 35
3.2 可變繞組之永磁同步電機 36
3.3 每安培最大轉矩控制[35] 40
3.4 弱磁控制 41
3.5 繞組切換演算法 43
3.5.1參數估測技術 44
3.5.2轉矩估測方法 47
第四章 控制策略模擬結果 49
4.1 前言 49
4.2 模擬模型搭建 49
4.3 模擬結果 55
4.3.1控制策略模擬 56
4.3.2參數估測模擬 58
4.3.3轉矩估算模擬 60
第五章 結論與未來工作 62
5.1 結論 62
5.2 未來工作 63
參考文獻 64
[1] G. Pellegrino, A. Vagati, P. Guglielmi and B. Boazzo, "Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application," IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 803-811, Feb. 2012, doi: 10.1109/TIE.2011.2151825.
[2] Different Topologies of Electrical Machines, Storage Systems, and Power Electronic Converters and Their Control for Battery Electric Vehicles — A Technical review
[3] G. Qiao, M. Wang, F. Liu, Y. Liu and P. Zheng, "Analysis of Novel Hybrid-PM Variable-Flux PMSMs With Series-Parallel Magnetic Circuits," IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-6, Feb. 2021.
[4] Y. Wang, Y. Sun, Y. Dun, G. Chen, Q. Yang and X. Zhang, "Winding Switching Simulation of Dual-Stator Permanent Magnet Synchronous Motor for Electric Vehicles," International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 262-265, Aug.-Sept. 2018.
[5] B. Tian, Z. Zhang, J. Wei and T. A. Lipo, "Investigation of dual-inverter-fed drives for permanent magnet synchronous motor with winding switching," Annual Conference of the IEEE Industrial Electronics Society, pp. 709-714, Oct.-Nov. 2014.
[6] G. Shen, W. Yan and Q. Yang, "Adaptive control approach for PMSM based on parameter identification: A simulation perspective," 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan, 2014, pp. 835-839, doi: 10.1109/InfoSEEE.2014.6947784.
[7] Z. Ma, W. Zhang, J. He and H. Jin, "Multi-Parameter Online Identification of Permanent Magnet Synchronous Motor Based on Dynamic Forgetting Factor Recursive Least Squares," 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 2022, pp. 4865-4870, doi: 10.1109/CIEEC54735.2022.9846108.
[8] M. Khov, J. Regnier and J. Faucher, "On-line parameter estimation of PMSM in open loop and closed loop," 2009 IEEE International Conference on Industrial Technology, Churchill, VIC, Australia, 2009, pp. 1-6, doi: 10.1109/ICIT.2009.4939651.
[9] Tomonobu Senjyu, Yohei Noguchi, Naomitsu Urasaki, Atsushi Yona and Hideomi Sekine, "Parameter identification for interior permanent-magnet synchronous motor," 2007 International Conference on Electrical Machines and Systems (ICEMS), Seoul, Korea (South), 2007, pp. 566-571, doi: 10.1109/ICEMS12746.2007.4412027.
[10] H. -D. Mou, S. -D. Huang, G. -Z. Cao, G. Jing and L. Yan, "Parameter Identification of Permanent Magnet Synchronous Linear Motors Using Multi-Innovation Least Squares Method," 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 2021, pp. 1-5, doi: 10.1109/LDIA49489.2021.9505920.
[11] Y. Inoue, Y. Kawaguchi, S. Morimoto and M. Sanada, "Performance Improvement of Sensorless IPMSM Drives in a Low-Speed Region Using Online Parameter Identification," IEEE Transactions on Industry Applications, vol. 47, no. 2, pp. 798-804, March-April 2011, doi: 10.1109/TIA.2010.2101994.
[12] P. Sun, Q. Ge, B. Zhang and X. Wang, "Sensorless Control Technique of PMSM Based on RLS On-Line Parameter Identification," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea (South), 2018, pp. 1670-1673, doi: 10.23919/ICEMS.2018.8549482.
[13] X. Li and R. Kennel, "General Formulation of Kalman-Filter-Based Online Parameter Identification Methods for VSI-Fed PMSM," IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp. 2856-2864, April 2021, doi: 10.1109/TIE.2020.2977568.
[14] Xiaoliang Jiang, Pindong Sun and Z. Q. Zhu, "Modeling and simulation of parameter identification for PMSM based on EKF," 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, China, 2010, pp. 345-348, doi: 10.1109/CMCE.2010.5610314.
[15] G. Pei, J. Liu, L. Li, P. Du, L. Pei and Y. Hu, "MRAS Based Online Parameter Identification for PMSM Considering VSI Nonlinearity," 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 2018, pp. 1-7, doi: 10.1109/PEAC.2018.8590394.
[16] T. Boileau, B. Nahid-Mobarakeh and F. Meibody-Tabar, "On-Line Identification of PMSM Parameters: Model-Reference vs EKF," 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 2008, pp. 1-8, doi: 10.1109/08IAS.2008.176.
[17] T. Boileau, N. Leboeuf, B. Nahid-Mobarakeh and F. Meibody-Tabar, "Online Identification of PMSM Parameters: Parameter Identifiability and Estimator Comparative Study," in IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1944-1957, July-Aug. 2011, doi: 10.1109/TIA.2011.2155010.
[18] Wang Weihua and Xiao Xi, "Research on predictive control for PMSM based on online parameter identification," IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, 2012, pp. 1982-1986, doi: 10.1109/IECON.2012.6388898.
[19] Y. Ouyang and Y. Dou, "Speed Sensorless Control of PMSM Based on MRAS Parameter Identification," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea (South), 2018, pp. 1618-1622, doi: 10.23919/ICEMS.2018.8549314.
[20] L. Hongzhang, C. Shijun and C. Hui, "The parameters identification of PMSM based on model reference adaptive," 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 2012, pp. 687-689, doi: 10.1109/CECNet.2012.6201541.
[21] Y. A. -R. I. Mohamed and E. F. El-Saadany, "A Current Control Scheme With an Adaptive Internal Model for Torque Ripple Minimization and Robust Current Regulation in PMSM Drive Systems," IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 92-100, March 2008, doi: 10.1109/TEC.2007.914352.
[22] A. Piippo, M. Hinkkanen and J. Luomi, "Adaptation of Motor Parameters in Sensorless PMSM Drives," 2007 7th International Conference on Power Electronics and Drive Systems, Bangkok, Thailand, 2007, pp. 175-182, doi: 10.1109/PEDS.2007.4487697.
[23] D. Liang, J. Li, R. Qu and W. Kong, "Adaptive Second-Order Sliding-Mode Observer for PMSM Sensorless Control Considering VSI Nonlinearity," in IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8994-9004, Oct. 2018, doi: 10.1109/TPEL.2017.2783920.
[24] M. A. Hamida, J. De Leon, A. Glumineau and R. Boisliveau, "An Adaptive Interconnected Observer for Sensorless Control of PM Synchronous Motors With Online Parameter Identification," IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 739-748, Feb. 2013, doi: 10.1109/TIE.2012.2206355.
[25] Kyu-Wang Lee, Doo-Hee Jung and In-Joong Ha, "An online identification method for both stator resistance and back-EMF coefficient of PMSMs without rotational transducers," IEEE Transactions on Industrial Electronics, vol. 51, no. 2, pp. 507-510, April 2004, doi: 10.1109/TIE.2004.825280.
[26] X. Zhang, B. Hou and Y. Mei, "Deadbeat Predictive Current Control of Permanent-Magnet Synchronous Motors with Stator Current and Disturbance Observer," IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3818-3834, May 2017, doi: 10.1109/TPEL.2016.2592534.
[27] Y. Feng, X. Yu and F. Han, "High-Order Terminal Sliding-Mode Observer for Parameter Estimation of a Permanent-Magnet Synchronous Motor," IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4272-4280, Oct. 2013, doi: 10.1109/TIE.2012.2213561.
[28] R. Raja, T. Sebastian and M. Wang, "Online Stator Inductance Estimation for Permanent Magnet Motors Using PWM Excitation," IEEE Transactions on Transportation Electrification, vol. 5, no. 1, pp. 107-117, March 2019, doi: 10.1109/TTE.2019.2891047.
[29] Y. Yan, J. Yang, Z. Sun, C. Zhang, S. Li and H. Yu, "Robust Speed Regulation for PMSM Servo System With Multiple Sources of Disturbances via an Augmented Disturbance Observer," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 769-780, April 2018, doi: 10.1109/TMECH.2018.2799326.
[30] A. Avdeev and O. Osipov, "PMSM Identification Using Genetic Algorithm," 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED), Moscow, Russia, 2019, pp. 1-4, doi: 10.1109/IWED.2019.8664250.
[31] R. Kumar, R. A. Gupta and A. K. Bansal, "Identification and Control of PMSM Using Artificial Neural Network," 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007, pp. 30-35, doi: 10.1109/ISIE.2007.4374567.
[32] Y. Yu et al., "Full Parameter Estimation for Permanent Magnet Synchronous Motors," IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4376-4386, May 2022, doi: 10.1109/TIE.2021.3078391.
[33] E. Thomas and K. Electronics (Feb. 2017). Implementation of space vector modulation for electric motor systems. Retrieved from https://www.eettaiwan.com/20170220TA31-Implementation-of-space-vector-modulation-for-electric-motor-systems/
[34] D. Wilson (July, 2015). Teaching Your PI Controller to Behave. Retrieved from https://e2e.ti.com/blogs_/b/industrial_strength/posts/teaching-your-pi-controller-to-behave-part-i
[35] M. N. Uddin, T. S. Radwan and M. A. Rahman, "Performance of interior permanent magnet motor drive over wide speed range," IEEE Transactions on Energy Conversion, vol. 17, no. 1, pp. 79-84, March 2002.
[36] J. Wang, J. Wu, C. Gan and Q. Sun, "Comparative study of flux-weakening control methods for PMSM drive over wide speed range," International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6, Nov. 2016.
[37] 謝宇航,內藏式永磁同步馬達之混合型全速無感測器控制系統設計與雙繞組電機闊速驅動系統開發,博士論文,國立臺灣大學電機資訊學院電機工程學系,民國一百一十一年一月。
[38] J. C. Hwang (2019). Electromechanical Systems. Taipei: Department of Electrical Engineering of National Taiwan University of Science and Technology.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top