跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/14 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪瑜辰
研究生(外文):Yu-Chen Hung
論文名稱:飼料中添加納豆枯草桿菌對日本鰻玻璃鰻生長、腸道形態、免疫和抗病力的影響
論文名稱(外文):Effects of adding Bacillus subtilis natto in feed on growth, intestinal morphology, immunity and disease resistance of Anguilla japonica glass eels
指導教授:韓玉山韓玉山引用關係
指導教授(外文):Yu-San Han
口試委員:李昆達陳立涵
口試委員(外文):Kung-Ta LeeLi-Han Chen
口試日期:2023-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:45
中文關鍵詞:日本鰻生長表現免疫基因表現愛德華氏菌枯草桿菌
外文關鍵詞:Anguilla japonicaGrowth performanceimmune related genesBacillus subtilisEdwardsiella tarda
DOI:10.6342/NTU202301742
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
日本鰻(Anguilla japonica)為臺灣重要的經濟魚種。近年來由於土地成本增加,養殖戶集約化養殖程度越來越高,病原菌滋生傳播的問題也越來越嚴重,鰻魚養殖最深受其害的病菌為愛德華氏菌(Edwardsiella tarda),經常造成養鰻業者莫大的損失,因此抗生素的使用也逐漸形成濫用的情況。鑒於這樣的情形,本研究希望能利用益生菌去取代抗生素的使用。納豆枯草桿菌 (Bacillus subtilis natto) 是一種芽孢桿菌,作為一種兼性厭氧菌,同時也可以承受高溫,在飼料處理步驟中存活更加容易。此外,芽孢桿菌可以應付胃環境中遇到的低pH值、膽汁鹽和其他惡劣條件。芽孢桿菌不僅可通過競爭性排斥促進腸道健康,而且可產生對細菌病原體具有細胞毒性的抗菌肽 (antimicrobial peptide, AMP)。芽孢桿菌還可通過改變腸道菌群,產生有益的代謝物來改善腸道健康。本試驗探討飼料中添加不同比例納豆枯草桿菌對於日本鰻之生長表現、腸道形態、免疫相關基因表現和對愛德華氏菌抗病力的影響。試驗分為 5 組,每組4重複。每組的飼料有不同納豆枯草桿菌添加量,分別是 0 %、0.25%、0.5 %、1 %、2 %。日本鰻試驗共 400 尾,時長12周。每 14 天測量一次魚體全長和體重,進行生長性能分析。每天記録死亡數量和餵食情況。試驗結束後每缸犧牲4尾,採集腸道、頭腎以及肝。採集的腸道進行石蠟包埋,切片觀察腸道形態及腸道絨毛狀態。採集的頭腎以及肝進行 qPCR 分析免疫相關基因表現。攻毒試驗使用愛德華氏菌。結果顯示,在生長表現上添加納豆枯草桿菌的所有組別皆與控制組有顯著差異,而在qPCR的實驗當中,添加納豆枯草桿菌0.5%以上的組別中腎臟的HSP70 表達量和其它組相比有顯著差異,IgM在0.25%以上所有組別都與控制組有顯著差異,而SOD則在0.5%的組別和其它組有顯著差異,CAT、POD、HSP90則皆沒有顯著差異。在肝臟當中HSP70一樣是0.5%以上的組別中與其它組有顯著差異,IgM在0.25%以上的所有組別與控制組有顯著差異,SOD、CAT、POD、HSP90則皆沒有顯著差異,腸道切片在絨毛長上皆無顯著差異。另外,在腸道菌群分析的實驗中可發現2%的組別與其他四組有非常不同的菌群組成,其中鯨桿菌屬成了最主要的菌種。最後從攻毒實驗的結果可以發現0.5%以及1%的組別的存活曲線有顯著提升。從這些結果可以顯現出,飼料添加納豆枯草桿菌對於日本鰻玻璃鰻的免疫以及生長表現有所幫助。
Anguilla japonica is the main species farmed in Taiwan. In recent years, due to the increase of land cost, the cultivation of fish farms has become more and more intensive, and the problem of the breeding and transmission of pathogenic bacteria has become serious. The bacteria which the eel is most affected is Edwardsiella tarda, which often causes great losses to eel farmers. Therefore, the use of antibiotics has gradually become abusive. In view of this situation, this study hopes to use probiotics to replace the use of antibiotics. Bacillus subtilis natto is a kind of Bacillus. As a facultative anaerobic bacterium, it can withstand high temperature, and it is easier to survive in the feed processing. In addition, Bacillus can cope with low pH, bile salts and other harsh conditions encountered in the gastric environment. Bacillus not only promotes intestinal health through competitive rejection, but also produces antimicrobial peptides (AMPs) that are cytotoxic to bacterial pathogens. Bacillus also improves intestinal health by changing the intestinal flora to produce beneficial metabolites. Bacillus enhances IL-1β and IFN γ of chicken intestinal cells to stimulate the intestinal immune system. Some probiotics of Bacillus have been used to help alleviate human gastric diseases clinically. This experiment was conducted to investigate the effects of different proportions of B. subtilis natto added to feed on growth performance, intestinal morphology, expression of immune related genes and resistance to E. tarda of Japanese eel. Each test was divided into 5 groups, with 4 repeats for each group. There were different amounts of B. subtilis natto added in each group, which were 0%, 0.25%, 0.5%, 1%, 2% respectively. 250 Japanese eels were tested for 12 weeks. The total length and weight of fish were measured every 14 days for growth performance analysis. The number of deaths and feeding conditions were recorded daily. After the test, 3 fishes were sacrificed in each cylinder to collect intestine, liver and kidney tissues. The collected intestine was embedded in paraffin, and the intestinal morphology and villus status were observed by histology. The collected livers and kidneys were analyzed by qPCR for the expression of immune related genes. E. tarda was used in the challenge test. The results showed that the growth performance of all groups added with B. subtilis natto was significantly different from that of the control group. In the qPCR experiment, the expression of HSP70 in kidney was significantly different from that of the control group than 0.5% B. subtilis natto and above group, and there was a significant difference in the control group and the groups above 0.25%. However, there was a significant difference between the 0.5% group and the control group in SOD, and there was no significant difference in CAT, POD, and HSP90. In the liver, there is a significant difference between the groups with HSP70 above 0.5% and the control group, the groups with IgM above 0.25% have significant differences between the control group, and there is no significant difference in SOD, CAT, POD, and HSP90 among groups. There was no significant difference in villi length among intestinal sections. In addition, in the experiment of intestinal microbiota analysis, it can be found that 2% of the group has a very different microbiota composition from the other four groups, among which Cetobacterium is the dominant species. In the challenge experiment, it can be found that the survival curves of the 0.5% and 1% groups have significantly improved. From these results, it can be seen that the addition of B. subtilis natto to the diet is helpful for the immunity and growth performance of the Japanese eel glass eel.
致謝 i
中文摘要 ii
Abstract iv
Content vi
Introduction 1
Materials and methods 8
Experimental Methods 8
Sample collection and feeding trail 8
Sample collection and processing 9
Growth performance 10
RNA extraction and cDNA synthesis 11
Real-time PCR 12
Challenge test 12
Metagenomics analysis 13
Statistical analysis 15
Results 16
Growth Performance 16
Intestinal morphology 16
Expression of immune-related genes 17
Challenge test 17
Gastrointestinal microbiota analysis 17
Discussion 19
Conclusion 24
Tables and Figures 25
References 41
黃振庭, 劉秉忠, 張銘訓, 袁書涵, &繆峽. (2016). 臺灣鱸鰻及黑鰻養殖產業現況. 海大漁推, (46), 1-31.
楊順德、張錦宜、周瑞良、劉富光 。開發日本鰻苗人工膏狀飼料取代絲蚯蚓馴餌,2011台灣水產學會學術論專 題 報 導12文發表會論文摘要集,DO-07,p. 36,2011b
郭錦朱(2021). 台日美核准使用的水產動物用藥品, 水試專訊第75期
Alderman, D. J., and T. S. Hastings. (1998). Antibiotic use in aquaculture: development of antibiotic resistance–potential for consumer health risks. International journal of food science & technology, 33.2: 139-155
Alcaide, Elena, Sonia Herraiz, and Consuelo Esteve. (2006). Occurrence of Edwardsiella tarda in wild European eels Anguilla anguilla from Mediterranean Spain. Diseases of aquatic organisms, 73.1: 77-81
Arulkumaran, N., Routledge, M., Schlebusch, S., Lipman, J., & Conway Morris, A. (2020). Antimicrobial-associated harm in critical care: a narrative review. Intensive care medicine, 46(2), 225-235.
Azimirad, M., Alebouyeh, M., & Naji, T. (2017). Inhibition of lipopolysaccharide-induced interleukin 8 in human adenocarcinoma cell line HT-29 by spore probiotics: B. coagulans and B. subtilis (natto). Probiotics and antimicrobial proteins, 9(1), 56-63.
Barbosa, T., Serra, C., La Ragione, R., Woodward, M. & Henriques, A. (2005). Screening for Bacillus isolates in the broiler gastrointestinal tract. Applied and Environmental Microbiology, 71, 968–978.
Baik, J. E., Jang, Y. O., Kang, S. S., Cho, K., Yun, C. H., & Han, S. H. (2015). Differential profiles of gastrointestinal proteins interacting with peptidoglycans from Lactobacillus plantarum and Staphylococcus aureus. Molecular immunology, 65(1), 77-85.
Chaiyawan, N., Taveeteptaikul, P., Wannissorn, B., Ruengsomwong, S., Klungsupya, P., Buaban, W. & Itsaranuwat, P. (2010). Characterization and probiotic properties of Bacillus strains isolated from broiler. Thai Journal of Veterinary Medicine, 40, 207–214.
Chen, H., Zhao, Y., Chen, K., Wei, Y., Luo, H., Li, Y., ... & Luo, D. (2022). Isolation, Identification, and Investigation of Pathogenic Bacteria From Common Carp (Cyprinus carpio) Naturally Infected With Plesiomonas shigelloides. Frontiers in Immunology, 13, 872896.
Ciprandi, G., Scordamaglia, A., Venuti, D., Caria, M., & Canonica, G. W. (1986). In vitro effects of Bacillus subtilis on the immune response. Chemioterapia: international journal of the Mediterranean Society of Chemotherapy, 5(6), 404-407.
Council of Agriculture, R.O.C. (Taiwan). (2009). Wildlife conservation act.
Cuesta, A., Meseguer, J., & Esteban, M. (2004). Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.). Veterinary Immunology and Immunopathology, 101(3-4), 203-210
Davidson, J., Good, C., Welsh, C., Brazil, B., & Summerfelt, S. (2009). Heavy metal and waste metabolite accumulation and their potential effect on rainbow trout performance in a replicated water reuse system operated at low or high system flushing rates. Aquacultural Engineering, 41,136−145.
Engevik, M. A., Danhof, H. A., Ruan, W., Engevik, A. C., Chang-Graham, A. L., Engevik, K. A., Shi, Z., Zhao, Y., Brand, C. K., & Krystofiak, E. S. (2021). Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. MBio, 12(2), e02706-02720.
Gao, Y. J., Yang, H. J., Liu, Y. J., Chen, S. J., Guo, D. Q., Yu, Y. Y., & Tian, L. X. (2014). Effects of graded levels of threonine on growth performance, biochemical parameters and intestine morphology of juvenile grass carp Ctenopharyngodon idella. Aquaculture, 424, 113-119.
Guo, X., Li, D., Lu, W., Piao, X. & Chen, X. (2006). Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie van Leeuwenhoek, 90, 139–146.
Han Y S. (2010) Study of production of potential aquaculture species -Anguilla marmorata. Project report of the Council of Agriculture
Hong, H. A., Huang, J. M., Khaneja, R., Hiep, L. V., Urdaci, M. C., & Cutting, S. M. (2008). The safety of Bacillus subtilis and Bacillus indicus as food probiotics. Journal of applied microbiology, 105(2), 510-520.
Kers, J. G., & Saccenti, E. (2022). The power of microbiome studies: Some considerations on which alpha and beta metrics to use and how to report results. Frontiers in Microbiology, 12, 4366.
Klurfeld, D. M. (1999). Nutritional regulation of gastrointestinal growth. Frontiers in Bioscience-Landmark, 4(4), 299-302.
Knap, I., Kehlet, A.B., Bennedsen, M., Mathis, G.F., Hofacre, C.L., Lumpkins, B.S., Jensen, M.M., Raun, M. & Lay, A. (2011). Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poultry Science, 90, 1690–1694.
Ji, Z., Zhu, C., Zhu, X., Ban, S., Yu, L., Tian, J., ... & Jiang, M. (2023). Dietary host-associated Bacillus subtilis supplementation improves intestinal microbiota, health and disease resistance in Chinese perch (Siniperca chuatsi). Animal Nutrition, 13, 197-205.
Landers, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: perspective, policy, and potential. Public health reports, 127(1), 4-22.
La Ragione, R.M. & Woodward, M.J. (2003). Competitive exclusion by Bacillus subtilis spores of Salmonella enterica, serotype Enteritidis and Clostridium perfringens in young chickens. Veterinary Microbiology, 94, 245–256.
Lee, J. S., Cheng, H., Damte, D., Lee, S. J., Kim, J. C., Rhee, M. H., & Park, S. C. (2013). Effects of dietary supplementation of Lactobacillus pentosus PL11 on the growth performance, immune and antioxidant systems of Japanese eel Anguilla japonica challenged with Edwardsiella tarda. Fish & shellfish immunology, 34(3), 756-761.
Lee, K., Lillehoj, H.S., Jang, S.I., Li, G., Lee, S.-H., Lillehoj, E.P. & Siragusa, G.R. (2010b). Effect of Bacillus-based direct-fed microbials on Eimeria maxima infection in broiler chickens. Comparative Immunology, Microbiology and Infectious Diseases, 33, e105–e110.
Liang, F., Zhang, G., Yin, S., & Wang, L. (2016). The role of three heat shock protein genes in the immune response to Aeromonas hydrophila challenge in marbled eel, Anguilla marmorata. Royal Society Open Science, 3(10), 160375.
Liu, X.-q., Li, K.-f., Du, J., Li, J., & Li, R. (2011). Growth rate, catalase and superoxide dismutase activities in rock carp (Procypris rabaudi Tchang) exposed to supersaturated total dissolved gas. Journal of Zhejiang University Science B, 12, 909-914.
Park, S. B., Aoki, T., & Jung, T. S. (2012). Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Veterinary research, 43, 1-11.
Paul, S. I., Rahman, M. M., Salam, M. A., Khan, M. A. R., & Islam, M. T. (2021). Identification of marine sponge-associated bacteria of the Saint Martin's island ofthe Bay of Bengal emphasizing on the prevention of motile Aeromonas septicemia in Labeo rohita. Aquaculture, 545, 737156.
Rahman, M. M., Paul, S. I., Akter, T., Tay, A. C. Y., Foysal, M. J., & Islam, M. T. (2020). Whole-genome sequence of Bacillus subtilis WS1A, a promising fish probiotic strain isolated from marine sponge of the Bay of Bengal. Microbiology Resource Announcements, 9(39), e00641-20.
Ramírez, C., Coronado, J., Silva, A., & Romero, J. (2018). Cetobacterium is a major component of the microbiome of giant Amazonian fish (Arapaima gigas) in Ecuador. Animals, 8(11), 189.
Rijkers, G. T., De Vos, W. M., Brummer, R. J., Morelli, L., Corthier, G., & Marteau, P. (2011). Health benefits and health claims of probiotics: bridging science and marketing. British Journal of Nutrition, 106(9), 1291-1296.
Ritter, A. C., Paula, A., Correa, F., Veras, F. F., & Brandelli, A. (2018). Characterization of Bacillus subtilis available as probiotics. Journal of Microbiology Research, 8(2), 23-32.
Ruiz Sella, S. R., Bueno, T., de Oliveira, A. A., Karp, S. G., & Soccol, C. R. (2021). Bacillus subtilis natto as a potential probiotic in animal nutrition. Critical Reviews in Biotechnology, 41(3), 355-369.
Sakamoto, K., Hirose, H., Onizuka, A., Hayashi, M., Futamura, N., Kawamura, Y., & Ezaki, T. (2000). Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. Journal of Surgical Research, 94(2), 99-106.
Saleem, N., Ryckaert, F., Snow, T. A. C., Satta, G., Singer, M., & Arulkumaran, N. (2022). Mortality and clinical cure rates for pneumonia: a systematic review, meta-analysis, and trial sequential analysis of randomized control trials comparing bactericidal and bacteriostatic antibiotic treatments. Clinical Microbiology and Infection, 28(7), 936-945.
Salinas, I., Fernández-Montero, Á., Ding, Y., & Sunyer, J. O. (2021). Mucosal immunoglobulins of teleost fish: A decade of advances. Developmental & Comparative Immunology, 121, 104079.
Setlow, P. (2006). Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 101, 514–525.
Shivaramaiah, S., Pumford, N.R., Morgan, M.J., Wolfenden, R.E., Wolfenden, A.D., Torres-Rodríguez, A., Hargis, B.M. 12 A. GRANT ET AL. & Téllez, G. (2011). Evaluation of Bacillus species as potential candidates for direct-fed microbials in commercial poultry. Poultry Science, 90, 1574–1580.
Sumi, C., Yang, B., Yeo, I.-C. & Hahm, Y. (2015). Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Canadian Journal of Microbiology, 61, 93–103.
Tibbetts, S. M., S. P. Lall, and D. M. Anderson. (2000). Dietary protein requirement of juvenile American eel (Anguilla rostrata) fed practical diets. Aquaculture, 186.1-2, 145-155
Tsukamoto, Katsumi. (1992)."Discovery of the spawning area for Japanese eel. Nature, 356.6372 : 789-791.
Verschuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and molecular biology reviews, 64(4), 655-671.
Wang, B., Kong, Q., Li, X., Zhao, J., Zhang, H., Chen, W., & Wang, G. (2020). A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients, 12(10), 3197.
Xie, M., Zhou, W., Xie, Y., Li, Y., Zhang, Z., Yang, Y., Olsen, R. E., Ran, C., & Zhou, Z. (2021). Effects of Cetobacterium somerae fermentation product on gut and liver health of common carp (Cyprinus carpio) fed diet supplemented with ultra-micro ground mixed plant proteins. Aquaculture, 543, 736943.
Xu, X., Huang, Q., Mao, Y., Cui, Z., Li, Y., Huang, Y., ... & Li, W. (2012). Immunomodulatory effects of Bacillus subtilis (natto) B4 spores on murine macrophages. Microbiology and immunology, 56(12), 817-824.
Yang, J., Huang, K., Wang, J., Wu, D., Liu, Z., Yu, P., ... & Chen, F. (2021). Combined Use of Bacillus subtilis yb-1 14,246 and Bacillus licheniformis yb-2 14,245 Improves Body Growth Performance of Chinese Huainan Partridge Shank Chickens by Enhancing Intestinal Digestive Profiles. Probiotics and Antimicrobial Proteins, 13, 327-342.
Yajima, D., Fujita, H., Hayashi, I., Shima, G., Suzuki, K., & Toju, H. (2023). Core species and interactions prominent in fish-associated microbiome dynamics. Microbiome, 11(1), 53.
Yuan, Y., Yuan, Y., Dai, Y., Gong, Y., & Yuan, Y. (2022). Development status and trends in the eel farming industry in Asia. North American Journal of Aquaculture, 84.1:3-17.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊