跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/15 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王家鎬
研究生(外文):Chia-Hao Wang
論文名稱:二相流噴嘴應用於全流式發電系統之實驗性能分析研究
論文名稱(外文):Experimental investigation of two-phase nozzles applying to total-flow geothermal power generation systems
指導教授:陳希立陳希立引用關係
指導教授(外文):Sih-Li Chen
口試委員:蔡協澄顏維謀梁俊德
口試委員(外文):Hsieh-Chen TsaiWei-Mon YanJyun-De Liang
口試日期:2023-01-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:69
中文關鍵詞:地熱全流式地熱發電系統二相流液汽混和流噴射純液流噴射漸縮漸擴管
外文關鍵詞:geothermaltotal-flow geothermal systemtwo-phase flowpure liquid flow jetliquid-vapour flow jetconverging-diverging nozzle
DOI:10.6342/NTU202300175
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究建立在全流式地熱發電機組中用以產生推力之噴嘴上,利用不同條件下之噴嘴型式使用單相流噴射或二相流流體進行噴射,偵測和記錄其在不同溫度點下產生之推力值和單位時間的質量變化量進而推算其速度和能量,並從繪製而成的圖表中分析並比較其中優劣,此外,亦沿用前人研究的方式,將實驗結果和理論數值之比值定義為推力係數,將此無因次數值在不同噴嘴條件、噴射方式和溫度點繪製成圖,並利用其在各條件下的最大值比對前人實驗成果得出結論和最佳化方案。
實驗結果顯示上述各項數據如推力值、質量流率、速度和能量,無論不同噴嘴條件下均隨溫度上升而增加,然而後兩者並未與喉部直徑呈現正相關,隨著喉部直徑的增加,將存在極限值使得速度呈現最大化,且從能量表現上看來,二相流噴射對比單相流噴射時,喉部直徑14mm的噴嘴將超過17mm的噴嘴,意味著二相流噴射下速度項對能量的影響將大於質量變化的影響。最後將實驗推力值和假設等熵過程下的理論推力值之比值視為推力係數,比較各噴嘴和不同噴射模式,係數均隨溫度上升而整體增加且以14mm表現最佳,且二相流噴射優於單相流。若總結所有最大推力係數並依據出口與喉部的截面積比繪製成圖,以此結果與前人研究比較可發現,不管擴散角度如何推力係數均會呈現中間極值的狀況,且隨角度增加將使得極值所在的截面積比增加,此外,若在本實驗以能呈現最大推力係數的方面進行考量並結合本次實驗的出口面積計算,喉部尺寸應設定為11.18mm上下能有更好的效果。
The purpose of the investigation is about the nozzle of total-flow geothermal power plant to generate thrust. Utilizing single phase or two-phase flow jet under different kinds of conditions, we detect and record the thrust and mass flow rate with specified temperature point, then calculate the velocity and energy, and analyzes the pros and cons from the chart. Besides, we adopt predecessors’ method and treat the ratio of experimental result to theoretical value as thrust coefficient, drawing diagrams of this dimensionless value under different nozzle conditions, jet type, and temperature point. It can produce conclusions and optimization by comparing the maximum under all conditions to predecessors’ result.
The experimental results reveal that regardless of different nozzle conditions, all parameters above mentioned like thrust, mass flow rate, velocity and energy rise along with the increasing of temperature, but the latter two are not positive correlation with throat diameter. There exists the extremum maximizing velocity. Observing the energy chart and comparing two-phase jet to single phase jet, the nozzle of 14mm throat diameter is better than the nozzle of 17mm. It can show that with two-phase jet, the influence caused by velocity term are bigger than mass change term. Finally, treating the ratio of experimental thrust value to theoretical value supposed under isentropic process as thrust coefficient and comparing it under all nozzle and two types jet, the coefficient will rise along with temperature and the nozzle having 14mm throat diameter is the best. Furthermore, two-phase jet is better than single phase jet. If combining all maximum thrust coefficient and drawing diagrams with the cross-sectional area ratio of export to throat, compared to predecessors’ result, there can be observed that it would exist middle extremum regardless of different diverging angle, and the cross-sectional area ratio of the extremum also increases along with diverging angle. Moreover, if pursuing the nozzle which can produce maximum thrust coefficient, taking the fixed experiment export area into account, the throat diameter should be set 11.18mm making the performance better.
目錄 I
摘要 III
Abstract V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 6
1.2.1乾蒸氣式系統 7
1.2.2 閃發系統 9
1.2.3 雙循環系統 12
1.2.4 全流式系統 15
1.2.5 台灣地熱發電系統 22
1.3 研究動機與目的 27
第二章 實驗介紹 30
2.1 實驗設備 30
2.1.1 鍋爐、膨脹槽 30
2.1.2 壓力感測器 31
2.1.3 地磅及其顯示器 32
2.1.4 溫度感測器 32
2.1.5 壓克力防護罩 33
2.1.6 二相流噴嘴 34
2.1.7 秤重感測器 34
2.1.8 PLC系統、攝影器材 35
2.2實驗架構 36
2.3實驗流程 37
第三章 實驗結果與討論 39
3.1 實驗數據取法 39
3.2 單相流噴射 41
3.3 二相流噴射 44
3.4 單噴嘴比較 47
3.4.1 推力變化比較 47
3.4.2 質量流率變化比較 49
3.4.3 速度變化比較 51
3.4.4 能量變化比較 53
3.5 壓力分佈 55
3.6 推力係數 57
3.6.1 理論推力值 57
3.6.2 實驗推力值 58
3.6.3 單相流噴射推力係數 60
3.6.4 二相流噴射推力係數 61
3.6.5最大推力係數 62
第四章 結論與建議 64
4.1 結論 64
4.2 未來建議與展望 66
參考文獻 67
[ 1 ]World Bank, World Energy Consumption, 1965-2020, Retrieved from https://transportgeography.org/contents/chapter4/transportation-and-energy/world-energy-consumption/, 2020
[ 2 ] IRENA, Electricity Capacity, Retrieved from https://www.irena.org/Data/View-data-by-topic/Capacity-and-Generation/Regional-Trends
[ 3 ] Our world in data, Installed geothermal energy capacity, Retrieved from https://ourworldindata.org/grapher/installed-geothermal-capacity?time=2020, 2020
[ 4 ]能源局,歷年進口能源依賴度,取自: https://www.esist.org.tw/Database/Detail?CacheKey=20710111201Y05_3_1&ChartType=1&I=0
[ 5 ]經濟部,能源發展綱領,2017
[ 6 ]經濟部能源局,能源轉型白皮書109年度執行報告,2020
[ 7 ]國家發展委員會,臺灣2050淨零排放路徑及策略總說明,2022
[ 8 ]經濟部能源局,109年度我國燃料燃燒二氧化碳排放統計與分析,2020
[ 9 ]台灣地熱資訊平台,台灣地熱現況簡介,取自: https://www.geothermal-taiwan.org.tw/Intro/Page2, 2022
[ 10 ]IRENA, Geothermal power technology brief, 2017
[ 11 ]R. DiPippo. (2022), Comprehensive Renewable Energy
[ 12 ]Bayu Rudiyanto, IbnuAtho Illah, Nugroho Agung Pambudi, Chin-Chi Cheng, Reza Adiprana, Muhammad Imran, Lip Huat Saw, Renanto Handogo . (2017), Preliminary analysis of dry-steam geothermal power plant by employing exergy assessment: Case study in Kamojang geothermal power plant, Indonesia, Case Studies in Thermal Engineering
[ 13 ] M. El Haj Assad, E. Bani‑Hani, M. Khalil .(2017), Performance of geothermal power plants (single, dual, and binary) to compensate for LHC‑CERN power consumption: comparative study, Geothermal Energy, 5
[ 14 ] Ronald DiPippo .(2014), Geothermal power plants: Evolution and performance assessments, Geothermics,53, 291-307
[ 15 ] R. DiPippo .(1980), Geothermal energy as a source of electricity, 221-226
[ 16 ] T.A.H. Ratlamwala, I. Dincer .(2012), Comparative efficiency assessment of novel multi-flash integrated geothermal systems for power and hydrogen production, Applied Thermal Engineering, 48, 359-366
[ 17 ] Einar Tjörvi Eliasson, Sverrir Thorhallsson, Benedikt Steingrímsson .(2011), GEOTHERMAL POWER PLANTS
[ 18 ] Anil Basaran, Leyla Ozgener .(2013), Investigation of the effect of different refrigerants on performances of binary geothermal power plants, Energy Conversion and Management, 483-498
[ 19 ] Hyungsul Moon, Sadiq J. Zarrouk, EFFICIENCY OF GEOTHERMAL POWER PLANTS: A WORLDWIDE REVIEW
[ 20 ]A. L. Austin .(1974), THE TOTAL FLOW CONCEPT FOR GEOTHERMAL ENERGY CONVERSION, Geothermics, 51, 142-153
[ 21 ]A. L. Austin, A. W. Lundberg .(1978), THE LLL GEOTHERMAL ENERY PROGRAM A Status Report on the Development of the Total-Flow Concept
[ 22 ]Yafen Tiana, Yanting Genga, Zhaorui Zhaoa, Ziwen Xingc, Hua Zhanga .(2021), Thermodynamic evaluation and comparison of direct geothermal power systems and their expanders, Energy Reports, 7, 1319-1335
[ 23 ]Koji AKAGAWA , Terushige FUJII, Junichi OHTA, Kenji INOUE, Kazutoshi TANIGUCHI .(1988), Performance Characteristics of Divergent-Convergent Nozzles for Subcooled Hot Water
[ 24 ]地熱發電單一出口,臺灣地熱現況簡介,取自: https://www.geothermal-taiwan.org.tw/Intro/Page2
[ 25 ] 林子淵(2020),使用Turgo渦輪與同軸閉迴路地熱取熱系統之全流式地熱發電廠創新設計,台灣大學機械研究所博士論文
[ 26 ] 陳世哲(2019),全流式地熱發電系統與兩相流噴嘴之實驗與理論分析,宜蘭大學機械與機電工程學系碩士論文
[ 27 ] 葛佳宇(2019),拉格朗日有限體積法於漸縮漸擴噴嘴中超音速液氣兩相流之數值研究,台灣大學機械研究所碩士論文
[ 28 ] 蔡坤益(2021),全流式地熱發電系統與兩相流噴嘴之實驗與理論分析,台灣大學機械研究所碩士論文
[ 29 ] 經濟部能源委員會,台灣地熱探勘資料彙整,1994
[ 30 ] Tzu-Yuan Lin, Chia-Yu Ko, Shih-Jhe Chen, Guo Chung Tsai, Hsieh-Chen Tsai .(2021), A novel total-flow geothermal power generator using Turgo turbine: Design and field tests
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top