跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏維
研究生(外文):Po-Wei Huang
論文名稱:基於機器視覺之閥門內部洩漏檢測:應用於石油產業設備之開發
論文名稱(外文):Internal Valve Leakage Inspection based on Machine Vision for the Petroleum Industry
指導教授:王富正
指導教授(外文):Fu-Cheng Wang
口試委員:顏家鈺林振生
口試委員(外文):Jia-Yush YenZhen-Sheng Lin
口試日期:2023-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:107
中文關鍵詞:閥門內部洩漏氣泡洩漏石化石油產業機器視覺物件追蹤YOLO-V5
外文關鍵詞:Internal valve leakagebubble leakagepetrochemical and petroleum industrymachine visionobject trackingYOLO-V5
DOI:10.6342/NTU202303965
相關次數:
  • 被引用被引用:1
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在石化產業中,工業閥門必須要能在高溫、高壓或低溫等極端條件下密封流體。但在物理條件限制下,無法達成完全密封,仍會產生極為小洩漏,考量到這些極微小洩漏可能對環境帶來的危害,美國石油協會(API)及其餘相關協會各自定義關於洩漏檢測的標準,將工業閥門的洩漏依部位區分為內部與外部洩漏,並使用氣泡為單位來計算洩漏量。
首先本論文使用符合規範定義的洩漏收集瓶,並設計黑箱外殼罩住外部形成一個封閉的成像環境,以隔絕外部雜訊干擾,接著安裝嵌入式系統及相機,在內部收集洩漏影像,供機器視覺辨識演算法進行計數。接著本論文建立一個人機互動介面,方便測試人員確認測試環境及設備參數,同時也將規範整併至數位化資料庫內部,以減少測試人員反覆查閱多份規範表單所消耗的時間成本。
本論文共開發兩種氣泡辨識計數的演算法,首先是基於側邊投影的生成式計數法,利用影像的亮度特徵進行計數,實驗結果顯示使用此方法能有效的進行計數,正確率可達99% ; 其次是使用底部投影的完整追蹤計數法,透過結合YOlO-V5模型及SORT演算法,對氣泡動態進行完整追蹤,並計算符合洩漏動態的氣泡序列,實驗結果顯示使用完整追蹤計數法在小洩漏的準確率上較生成式計數法佳,但是由於計算速度不夠快而無法在邊緣運算裝置上實現real-time檢測。
最後,本論文結合正規化的的規範資料庫與人機互動介面,達成一站式的檢測,並實際收集洩漏影像以驗證其效果。透過計算可知使用此檢測設備可以降低閥門製造商的人力成本至原先的三成。
In the petrochemical industry, industrial valves must be able to seal fluids under extreme conditions such as high temperature, high pressure, or low temperature. Hence, most industrial valves use metal sealing components. However, due to some physical conditions, it is impossible to achieve perfect sealing, and there may still be tiny leaks. Considering the potential environmental hazards caused by these tiny leaks, the American Petroleum Institute (API) and other relevant associations have defined standards for leak detection. They classify valve leaks into internal and external leaks and use bubbles as units to calculate the leakage rate. Because current leakage detection depends on examiners, this thesis aims to develop automatic counting algorithms to relieve the labor work.
We develop two bubble recognition and counting methods: generative counting and tracking counting methods. We built leak collection bottles that complied with the specified standards, and we designed a black box enclosure to create a closed imaging environment to isolate interferences from external noises. We then developed an embedded system with a camera to collect leak images for automatic counting. We also constructed a human-machine interaction interface to confirm the test environment and equipment parameters. The specifications are integrated into the digital database to satisfy the multiple standards by different associations.
The generative counting method applied side projection, counting bubbles by the brightness features of images. Experimental results showed that this method could effectively count with an accuracy rate of up to 99%. The tracking counting method applied bottom projection, tracking the dynamic movements of bubbles and calculating bubble sequences. Experimental results showed that the tracking counting method achieved better accuracy than the generative counting method when leakage was little. However, due to its processing speed, the tracking counting method could not achieve real-time detection.
Finally, we integrated the system as a portable leak detection robot for leakage detection in the petroleum and petrochemical industries. It uses machine vision to develop algorithms for leak counting and combines a normalized specification database and a human-machine interaction interface to achieve one-stop detection. Actual leak images are collected to verify the effectiveness of the device. We also estimated that this detection robot could reduce the labor cost for valve manufacturers by two-thirds.

謝................................................................................................................................ I
摘要.............................................................................................................................. III
Abstract ......................................................................................................................... V
目錄............................................................................................................................ VII
圖目錄.......................................................................................................................... XI
表目錄........................................................................................................................ XV
符號......................................................................................................................... XVII
縮寫........................................................................................................................... XIX
第一章 緒論................................................................................................................ 1
1.1 前言 ..................................................................................................................... 1
1.2 研究動機 ............................................................................................................. 2
1.3 文獻回顧 ............................................................................................................. 3
1.4 研究方法 ............................................................................................................. 7
1.5 論文架構 ............................................................................................................. 8
第二章 氣泡洩漏檢測設備硬體架構........................................................................ 9
2.1 洩漏測試及標的物簡介 ..................................................................................... 9
2.1.1 洩漏測試 ...................................................................................................... 9
2.1.2 測試標的物 ................................................................................................ 12
2.2 氣泡洩漏檢測設備硬體架構概述 ................................................................... 14
2.3 氣泡洩漏檢測設備頭部元件 ........................................................................... 16
2.3.1 洩漏收集裝置 ............................................................................................ 17
2.3.2 微處理器系統 ............................................................................................ 18
2.3.3 鏡頭模組 .................................................................................................... 19
2.3.4 人機互動觸控螢幕 .................................................................................... 20
2.4 氣泡洩漏檢測設備身體元件 ........................................................................... 21
2.4.1 氣源設備 .................................................................................................... 22
2.4.2 電源設備 .................................................................................................... 22
2.4.3 外殼及骨架 ................................................................................................ 24
第三章 氣泡洩漏檢測設備之軟體整合.................................................................. 27
3.1 軟體架構概述 ................................................................................................... 27
3.2 人機互動介面設計 ........................................................................................... 29
3.3 規範資料庫連線 ............................................................................................... 34
第四章 機器視覺演算法於洩漏計數...................................................................... 37
4.1 機器視覺及影像處理 ....................................................................................... 37
4.1.1 影像濾波及二元化處理 ............................................................................ 37
4.1.2 邊緣偵測 .................................................................................................... 40
4.1.3 深度學習於物件偵測 ................................................................................ 43
4.1.4 物件追蹤 .................................................................................................... 45
4.2 生成式計數 ....................................................................................................... 47
4.2.1 預處理 ........................................................................................................ 48
4.2.2 圖像裁剪 .................................................................................................... 49
4.2.3 亮度特徵響應 ............................................................................................ 50
4.2.4 峰值分析 .................................................................................................... 51
4.2.5 標準化 ........................................................................................................ 52
4.3 完整追蹤計數 ................................................................................................... 55
4.3.1 物件偵測器 ................................................................................................ 55
4.3.2 物件偵測訓練 ............................................................................................ 58
4.3.3 物件偵測訓練結果分析 ............................................................................ 62
4.3.4 物件追蹤計數 ............................................................................................ 66
第五章 實驗與分析.................................................................................................. 71
5.1 生成式計數實驗結果 ....................................................................................... 71
5.1.1 性能評估指標 ............................................................................................ 71
5.1.2 結果討論 .................................................................................................... 73
5.2 完整追蹤計數實驗結果 ................................................................................... 78
IX
5.3 整合測試比較 ................................................................................................... 82
5.3.1 計數誤差比較 ............................................................................................ 82
5.3.2 執行速度比較 ............................................................................................ 84
5.4 工業成本分析 ................................................................................................... 85
第六章 結論與未來展望.......................................................................................... 87
6.1 結論 ................................................................................................................... 87
6.2 未來展望 ........................................................................................................... 88
參考文獻...................................................................................................................... 89
附錄A、生成式計數結果 .......................................................................................... 97
附錄B、美國石油協會測試標準[3] ....................................................................... 101
附錄C、口試委員之問題與回答 ............................................................................ 103
[1] M. A. D’Andrea and G. K. Reddy, "Hematological and hepatic alterations in nonsmoking residents exposed to benzene following a flaring incident at the British petroleum plant in Texas City," Environmental health, vol. 13, no. 1, pp. 1-8, 2014.
[2] Z. O. Merhi, "Gulf Coast oil disaster: impact on human reproduction," Fertility and sterility, vol. 94, no. 5, pp. 1575-1577, 2010.
[3] "API Std 598: Valve Inspection and Testing, Tenth Edition, 2016, A. P. Institute. [Online]. Available: https://www.techstreet.com/standards/api-std-598?product_id=1933049
[4] R. Bloomer, "Leak detection and measurements by vacuum bubblers," Vacuum, vol. 23, no. 7, pp. 239-244, 1973.
[5] F. d'Errico, W. Alberts, and M. Matzke, "Advances in superheated drop (bubble) detector techniques," Radiation protection dosimetry, vol. 70, no. 1-4, pp. 103-108, 1997.
[6] T. Jin, B. Xu, K. Tang, and J.-p. Hong, "Bubble counter based on photoelectric technique for leakage detection of cryogenic valves," Journal of Zhejiang University-SCIENCE A, vol. 9, no. 1, pp. 88-92, 2008.
[7] J. Zhu, L. Ren, S.-C. Ho, Z. Jia, and G. Song, "Gas pipeline leakage detection based on PZT sensors," Smart Materials and Structures, vol. 26, no. 2, p. 025022, 2017.
[8] X. Tian, W. Jiao, T. Liu, L. Ren, and B. Song, "Leakage detection of low-pressure gas distribution pipeline system based on linear fitting and extreme learning machine," International Journal of Pressure Vessels and Piping, vol. 194, p.104553, 2021.
[9] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, "Support vector machines," IEEE Intelligent Systems and their applications, vol. 13, no. 4, pp. 18-28, 1998.
[10] H. Medwin, "Counting bubbles acoustically: a review," Ultrasonics, vol. 15, no. 1, pp. 7-13, 1977.
[11] T. Leighton and P. White, "Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions," Proceedings of the royal society A: mathematical, physical and engineering sciences, vol. 468, no. 2138, pp. 485-510, 2012.
[12] J. W. Boyd and J. Varley, "The uses of passive measurement of acoustic emissions from chemical engineering processes," Chemical Engineering Science, vol. 56, no. 5, pp. 1749-1767, 2001.
[13] W. Kaewwaewnoi, A. Prateepasen, and P. Kaewtrakulpong, "Investigation of the relationship between internal fluid leakage through a valve and the acoustic emission generated from the leakage," Measurement, vol. 43, no. 2, pp. 274-282, 2010.
[14] G. Thompson and G. Zolkiewski, "An experimental investigation into the detection of internal leakage of gases through valves by vibration analysis," Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 211, no. 3, pp. 195-207, 1997.
[15] E. Meland, V. Henriksen, E. Hennie, and M. Rasmussen, "Spectral analysis of internally leaking shut-down valves," Measurement, vol. 44, no. 6, pp. 1059-1072, 2011.
[16] M. Noipitak, A. Prateepasen, and W. Kaewwaewnoi, "A relative calibration method for a valve leakage rate measurement system," Measurement, vol. 44, no. 1, pp. 211-218, 2011.
[17] K. O'Shea and R. Nash, "An introduction to convolutional neural networks," arXiv preprint arXiv:1511.08458, 2015.
[18] S.-B. Zhu, Z.-L. Li, X. Li, H.-h. Xu, and X.-m. Wang, "Convolutional neural networks-based valve internal leakage recognition model," Measurement, vol. 178, p. 109395, 2021.
[19] L.-J. Lu and C. Smith, "Image processing of hydrogen bubble flow visualization for determination of turbulence statistics and bursting characteristics," Experiments in Fluids, vol. 3, no. 6, pp. 349-356, 1985.
[20] G. Bradski, "The openCV library," Dr. Dobb's Journal: Software Tools for the Professional Programmer, vol. 25, no. 11, pp. 120-123, 2000.
[21] A. Paszke et al., "Pytorch: An imperative style, high-performance deep learning library," Advances in neural information processing systems, vol. 32, 2019.
[22] M. Honkanen, P. Saarenrinne, T. Stoor, and J. Niinimäki, "Recognition of highly overlapping ellipse-like bubble images," Measurement Science and Technology, vol. 16, no. 9, p. 1760, 2005.
[23] A. Zaruba, E. Krepper, H.-M. Prasser, and B. R. Vanga, "Experimental study on bubble motion in a rectangular bubble column using high-speed video observations," Flow Measurement and instrumentation, vol. 16, no. 5, pp. 277-287, 2005.
[24] J. Sochman and J. Matas, "Waldboost-learning for time constrained sequential detection," in 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), 2005, vol. 2: IEEE, pp. 150-156.
[25] N. Strokina, J. Matas, T. Eerola, L. Lensu, and H. Kälviäinen, "Detection of bubbles as concentric circular arrangements," Machine Vision and Applications, vol. 27, pp. 387-396, 2016.
[26] T. Haas, C. Schubert, M. Eickhoff, and H. Pfeifer, "BubCNN: Bubble detection using Faster RCNN and shape regression network," Chemical Engineering Science, vol. 216, p. 115467, 2020.
[27] "Basic Principles of Control Valves and Actuators." https://control.com/textbook/control-valves/control-valve-sizing/ (accessed.
[28] ANSI/FCI 70-2-2021: Control Valve Seat Leakage, F. C. Institute. [Online]. Available: https://www.techstreet.com/standards/fci-70-2-2021?product_id=2207310
[29] "," HIPPO Valve.
[30] "," HIPPO Valve.
[31] W. Gay, Raspberry Pi Hardware Reference. 2014.
[32] "BCM2711 ARM Peripherals." https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf (accessed.
[33] "Raspberry Pi OS." https://www.raspberrypi.com/documentation/computers/os.html (accessed.
[34] "樹莓派夜視攝影鏡頭模組(可調整焦距, 5MP) - 莓亞科技-官網." https://www.printfriendly.com/p/g/iSbb6P (accessed.
[35] "Raspberry Pi Documentation." https://www.raspberrypi.com/documentation/ (accessed.
[36] "樹莓派7吋 1024×600 HDMI LCD (H)電容式觸控螢幕." https://www.meiyagroup.com.tw/product/%e6%a8%b9%e8%8e%93%e6%b4%be7%e5%90%8b-1024x600-hdmi-lcd-h%e9%9b%bb%e5%ae%b9%e5%bc%8f%e8%a7%b8%e6%8e%a7%e8%9e%a2%e5%b9%95/ (accessed.
[37] "LIAN LI 聯力 O11 AIR MINI ATX玻璃透側機殼/機箱(黑) – O11Air Mini-X (O11AMX)." https://24h.pchome.com.tw/prod/DRAEC6-A900C1VNT (accessed.
[38] "萬象活動腳輪【多款可選】." https://24h.pchome.com.tw/prod/DEAC9Z-A900F2VMA?fq=/S/DQBJ39 (accessed.
[39] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable object-oriented software. Pearson Deutschland GmbH, 1995.
[40] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, "Design of an image edge detection filter using the Sobel operator," IEEE Journal of solid-state circuits, vol. 23, no. 2, pp. 358-367, 1988.
[41] X. Wang, "Laplacian operator-based edge detectors," IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 5, pp. 886-890, 2007.
[42] J. Canny, "A computational approach to edge detection," IEEE Transactions on pattern analysis and machine intelligence, no. 6, pp. 679-698, 1986.
[43] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, "Comparative study of Hough transform methods for circle finding," Image and vision computing, vol. 8, no. 1, pp. 71-77, 1990.
[44] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, pp. 436-444, 2015.
[45] K. l. Hsu, H. V. Gupta, and S. Sorooshian, "Artificial neural network modeling of the rainfall‐runoff process," Water resources research, vol. 31, no. 10, pp. 2517-2530, 1995.
[46] R. Hecht-Nielsen, "Theory of the backpropagation neural network," in Neural networks for perception: Elsevier, 1992, pp. 65-93.
[47] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788.
[48] W. Liu et al., "Ssd: Single shot multibox detector," in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, 2016: Springer, pp. 21-37.
[49] R. Girshick, "Fast r-cnn," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440-1448.
[50] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn," in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961-2969.
[51] Z. Soleimanitaleb and M. A. Keyvanrad, "Single Object Tracking: A Survey of Methods, Datasets, and Evaluation Metrics," arXiv preprint arXiv:2201.13066, 2022.
[52] O. Maron and T. Lozano-Pérez, "A framework for multiple-instance learning," Advances in neural information processing systems, vol. 10, 1997.
[53] J. Ning, J. Yang, S. Jiang, L. Zhang, and M.-H. Yang, "Object tracking via dual linear structured SVM and explicit feature map," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4266-4274.
[54] S. Zhang, H. Yao, X. Sun, and X. Lu, "Sparse coding based visual tracking: Review and experimental comparison," Pattern Recognition, vol. 46, no. 7, pp. 1772-1788, 2013.
[55] W.-L. Lu and J. J. Little, "Simultaneous tracking and action recognition using the pca-hog descriptor," in The 3rd Canadian Conference on Computer and Robot Vision (CRV'06), 2006: IEEE, pp. 6-6.
[56] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim, "Multiple object tracking: A literature review," Artificial intelligence, vol. 293, p. 103448, 2021.
[57] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, "Discriminative scale space tracking," IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 8, pp. 1561-1575, 2016.
[58] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, "High-speed tracking with kernelized correlation filters," IEEE transactions on pattern analysis and machine intelligence, vol. 37, no. 3, pp. 583-596, 2014.
[59] G. Welch and G. Bishop, "An introduction to the Kalman filter," 1995.
[60] D. P. Bertsekas, "A new algorithm for the assignment problem," Mathematical Programming, vol. 21, no. 1, pp. 152-171, 1981.
[61] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, "Simple online and realtime tracking," in 2016 IEEE international conference on image processing (ICIP), 2016: IEEE, pp. 3464-3468.
[62] N. Wojke, A. Bewley, and D. Paulus, "Simple online and realtime tracking with a deep association metric," in 2017 IEEE international conference on image processing (ICIP), 2017: IEEE, pp. 3645-3649.
[63] P. Virtanen et al., "SciPy 1.0: fundamental algorithms for scientific computing in Python," Nature methods, vol. 17, no. 3, pp. 261-272, 2020.
[64] K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," IEEE transactions on pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904-1916, 2015.
[65] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path aggregation network for instance segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8759-8768.
[66] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117-2125.
[67] Tzutalin, "LabelImg," ed, 2015.
[68] C. Goutte and E. Gaussier, "A probabilistic interpretation of precision, recall and F-score, with implication for evaluation," in Advances in Information Retrieval: 27th European Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain, March 21-23, 2005. Proceedings 27, 2005: Springer, pp. 345-359.
[69] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, "Generalized intersection over union: A metric and a loss for bounding box regression," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 658-666.
[70] S.-B. Zhu, Z.-L. Li, S.-M. Zhang, and H.-F. Zhang, "Deep belief network-based internal valve leakage rate prediction approach," Measurement, vol. 133, pp. 182-192, 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top