跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖尚諄
研究生(外文):Shang-Zhun Liao
論文名稱:應用中尺度到微尺度極端風模型於風機之負載分析
論文名稱(外文):Analysis of Wind Turbine Loads with Mesoscale to Microscale Extreme Wind Modeling
指導教授:盧南佑
指導教授(外文):Nan-You Lu
口試委員:連國淵吳亦莊林宗岳
口試委員(外文):Guo-Yuan LianYi-Zhuang WuZong-Yue Lin
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:86
中文關鍵詞:WRF大渦流模擬風機負載颱風極端負載
外文關鍵詞:WRFLESwind turbine loadtyphoonextreme load
DOI:10.6342/NTU202303358
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在利用先進的風場模型探討臺灣離岸風機於極端風速下之負載,並利用一歷史之颱風事件為案例進行分析,計算風機受到真實極陣風以及處於紊流下時產生的結構響應,並進行後續的延伸評估,包含考慮該風機是否同時受到附近其他風機的尾流效應影響,以及使用大量不同風場及狀況下的風機模擬結果進行一系列統計分析。在以往的極端風場模擬中,經常遇到無法同時考量影響颱風事件的中尺度大氣參數及微尺度的複雜紊流結構的問題,導致模擬結果與實際結果有所出入。為了解決這個問題,本研究針對模擬流程及方法進行了改良。研究中將通過天氣研究與預報模式 (weather research and forecasting, WRF) 模擬獲得的颱風風速、溫度及壓力等資訊,以邊界條件的形式導入一解析度較高的大渦流模擬 (large-eddy simulation, LES) 中,微尺度大渦流模擬使用美國國家再生能源實驗室NREL (National Renewable Energy Laboratory)所開發可應用於大氣邊界層紊流分析的SOWFA程式(第6版),通過模擬計算獲得在時間上以及在空間上更高解析度的風場。取得高解析度風場後,再以致動線模型計算風速轉換至風機上的受力以及尾流,研究中使用了兩種不同軟體,分別是開放軟體SOWFA與OpenFAST,利用這兩個軟體計算並評估風機於尾流影響以及不同非運作狀況下受到的各種負載,負載種類包含葉片根部出轉子平面向彎矩(OoPBM)、塔底前後向彎矩(FATBM)以及機艙水平擺動扭矩(TTYM)三種。模擬中使用到的風機模型是採用NREL所開發的NREL-5MW以及參考IEA規範設計的IEA-15MW-240-RWT,並以這兩種風機模型做為風力發電場內兩種研究案例之目標風機。於風機尾流模擬案例中,結果顯示因尾流影響上游風機之輪轂高度風速為21.9 m/s、下游風機之輪轂高度風速為21.3 m/s,上游風速較下游風速大,但葉片負載則為下游風機38.75 MN-m、上游風機29.99MN-m,下游負載較大。於不同風機非運作狀態下負載統計分析案例中,相同條件下普通停機(parked)與無負荷(idling)葉片根部彎矩負載值相差2.97 MN-m,三種平擺角度(0、45、90度)葉片根部值分別為5.39、4.49、1.76 MN-m。結果顯示不當的停機狀態對風機負載也有極大的影響。本研究期許能夠建立一套完善且可靠的分析流程,足以做為未來評估臺灣離岸風電場受颱風侵襲時,在極端負載下準確的設計依據。
This paper studies the offshore wind turbine loads under extreme wind speeds in Taiwan using advanced wind field modelling. Based on a historical typhoon event, the structural response of turbines under realistic extreme gusts and turbulences is investigated. Subsequent extended assessments are also conducted, including the consideration of wake effects from nearby turbines and a series of statistical analyses using simulation results under wind turbines in different wind conditions. Traditional models for extreme wind simulation usually fail to include both the mesoscale atmospheric parameters, which are essential to typhoon events, and the complex structures of turbulence in microscales. This discrepancy often leads to disparities between the simulation results and the actual observations. To address this issue, this study has made improvements to the simulation process and methodology. In this study, we use the Weather Research and Forecasting (WRF) mode to simulate the typhoon fields and feed the derived data of wind velocities, temperatures and pressures, as boundary conditions, into a higher resolution model of large-eddy simulation (LES). The microscale LES employs the SOWFA v6 program developed by the National Renewable Energy Laboratory (NREL) for analyzing turbulent flows in the atmospheric boundary layer. Through these simulations, fields with higher temporal and spatial resolutions can be obtained. The fields are then coupled with turbine models through the methods of actuator line. The forces exerted on the turbines and the wakes resulting from the inflow velocities are in turn computed by the open-source software, SOWFA and OpenFAST, which allow to estimate turbine loads with the wake effects and to discuss the loads when turbine is operated in different conditions. Three considered types of loads include the out-of-plane blade root bending moment (OoPBM), the fore-aft tower base bending moment (FATBM), and the yawing moment of the nacelle (TTYM). As for the wind turbine model used in the simulations, we take the NREL-5MW and IEA-15MW-240-RWT developed by NREL, which serves as the target turbine for two different studies within the wind farm for offshore wind power generation. In the results of Case 1, the hub-height wind speed for the upstream turbine affected by wake is 21.9 m/s, while for the downstream turbine, it is 21.3 m/s. The wind speed is higher upstream compared to downstream. However, the blade load for the downstream turbine is 38.75 MN-m, while for the upstream turbine, it is 29.99 MN-m. The loads are higher for the downstream turbine compared to the upstream turbine. In the results of Case 2, under the same conditions, the OoPBM values differ by 2.97 MN-m between normal parked and idling modes. The OoPBM values for three yaw angles (0, 45, 90 degrees) are 5.39 MN-m, 4.49 MN-m, and 1.76 MN-m, respectively. The results indicate that improper parked conditions also have a significant impact on the turbine loads. This research project aims to establish a complete and solid framework of advanced simulation processes for future estimation of the extreme loads on offshore wind farms in Taiwan during the impact of typhoons.
口試委員審定書 i
致謝 ii
摘要 iii
Abstract v
目 錄 vii
圖目錄 x
表目錄 xiii
第一章 導論 1
1.1 研究背景及動機 1
1.2 文獻回顧 6
1.3 本文架構 10
第二章 風場與風機模擬方法 12
2.1 WRF-LES 耦合風場 12
2.2 風機尾流模擬 13
2.2.1 LES模型簡介 13
2.2.2 OpenFAST 15
2.2.3 OpenFAST 參數設定 23
2.2.4 致動線模型 26
2.2.5 尾流模擬風場設定 29
2.3 颱風下之風機負載分析之風場設定 31
2.4 整體研究方法與流程 33
2.4.1 風機尾流模擬之流程 34
2.4.2 風機負載分析之流程 34
第三章 風機模型與測試 36
3.1 目標風機模型 36
3.1.1 IEA-15-240-RWT風機 36
3.1.2 NREL-5MW風機 38
3.2 高斯函數寬度測試 41
3.3 等效疲勞負載 44
第四章 風機尾流模擬 46
4.1 尾流模擬之風場配置 46
4.2 三座風機之尾流效應 47
第五章 風機負載分析 55
5.1 負載分析之風場配置 55
5.2 非運作風機於不同狀態下之負載 57
5.2.1 無變槳與無負荷停機比較 59
5.2.2 平擺角比較 64
5.2.3 葉片停放方位角比較 68
5.2.4 颱風前中後比較 72
5.3 負載資料統計分析 78
第六章 結果與討論 80
6.1 成果討論 80
6.2 未來工作 81
參考文獻 82
[1]Joyce Lee, F.Z., "Global Wind Report 2022.". Global Wind Energy Council., 2022.
[2]Mark Hutchinson, F.Z., "Global Wind Report 2023.". Global Wind Energy Council., 2023.
[3]台灣電力公司. 再生能源發電概況. 2023; (accessed Aug. 4, 2023) https://www.taipower.com.tw/tc/page.aspx?mid=204&cid=1581&cchk=82fb957e-2fe8-49b6-90a9-b750387de936.
[4]中央氣象局. 颱風資料庫. 2023; (accessed Aug. 4, 2023) https://rdc28.cwb.gov.tw/TDB/public/typhoon_list/.
[5]Chou, J.-S., et al., "Failure analysis of wind turbine blade under critical wind loads. " Engineering Failure Analysis, 2013. 27: p. 99-118.
[6]Jonkman, J., et al., "Definition of a 5-MW reference wind turbine for offshore system development. " 2009, National Renewable Energy Lab.(NREL), Golden, CO (United States).
[7]Gaertner, E., et al., "IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine. " 2020, National Renewable Energy Lab.(NREL), Golden, CO (United States).
[8]Skamarock, W.C., et al., "A description of the advanced research WRF model version 4. " National Center for Atmospheric Research: Boulder, CO, USA, 2019. 145(145): p. 550.
[9]柯旻佑, "應用WRF與LES耦合模型分析真實颱風邊界層中之風場特性, " . 2023. 國立臺灣大學. (印刷中)
[10]Calaf, M., C. Meneveau, and J. Meyers, "Large eddy simulation study of fully developed wind-turbine array boundary layers. " Physics of fluids, 2010. 22(1): p. 015110.
[11]Lu, H. and F. Porté-Agel, "Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. " Physics of Fluids, 2011. 23(6): p. 065101.
[12]Porté-Agel, F., et al., "Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. " Journal of Wind Engineering and Industrial Aerodynamics, 2011. 99(4): p. 154-168.
[13]Vermeer, L., J.N. Sørensen, and A. Crespo, "Wind turbine wake aerodynamics. " Progress in aerospace sciences, 2003. 39(6-7): p. 467-510.
[14]Sorensen, J.N. and W.Z. Shen, "Numerical modeling of wind turbine wakes. " J. Fluids Eng., 2002. 124(2): p. 393-399.
[15]Fleming, P., et al., "SOWFA super-controller: A high-fidelity tool for evaluating wind plant control approaches. " 2013, National Renewable Energy Lab.(NREL), Golden, CO (United States).
[16]OpenFAST v3.0.0 Documentation, 2021 (accessed Aug. 4, 2023) https://openfast.readthedocs.io/en/main/index.html.
[17]Churchfield, M.J., et al., "A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. " Journal of turbulence, 2012(13): p. N14.
[18]Churchfield, M., et al. "A large-eddy simulation of wind-plant aerodynamics. " in 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 2012.
[19]Chinese National Standards. "Wind turbines – Part 1: Design requirements. " CNS 15176-1. 2018.
[20]Liu, Q., et al., "Storm‐Scale and Fine‐Scale Boundary Layer Structures of Tropical Cyclones Simulated with the WRF‐LES Framework. " Journal of Geophysical Research: Atmospheres, 2021. 126(21): p. e2021JD035511.
[21]Wu, L., Q. Liu, and Y. Li, "Tornado-scale vortices in the tropical cyclone boundary layer: numerical simulation with the WRF–LES framework. " Atmospheric Chemistry and Physics, 2019. 19(4): p. 2477-2487.
[22]Wang, Z., et al., "Extreme dynamic responses of mw-level wind turbine tower in the strong typhoon considering wind-rain loads. " Mathematical Problems in Engineering, 2013.
[23]Chen, X., C. Li, and J. Xu, "Failure investigation on a coastal wind farm damaged by super typhoon: A forensic engineering study. " Journal of Wind Engineering and Industrial Aerodynamics, 2015. 147: p. 132-142.
[24]沈丞佑, "大型風機在台灣風場下之安全性研究, " .2012. 國立臺灣大學. (碩士論文).
[25]Ke, S., L. Xu, and T. Wang, "Aerodynamic performance and wind-induced responses of large wind turbine systems with meso-scale typhoon effects. " Energies, 2019. 12(19): p. 3696.
[26]Takemi, T., et al., "Quantitative estimation of strong winds in an urban district during Typhoon Jebi (2018) by merging mesoscale meteorological and large-eddy simulations. " SOLA, 2019. 15: p. 22-27.
[27]Cécé, R., et al., "A 30 m scale modeling of extreme gusts during Hurricane Irma (2017) landfall on very small mountainous islands in the Lesser Antilles. " Natural Hazards and Earth System Sciences, 2021. 21(1): p. 129-145.
[28]Moeng, C.-H., "A large-eddy-simulation model for the study of planetary boundary-layer turbulence. " Journal of the Atmospheric Sciences, 1984. 41(13): p. 2052-2062.
[29]Jonkman, J. "The new modularization framework for the FAST wind turbine CAE tool. " in 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 2013.
[30]Wang, Q., et al., "BeamDyn: A high‐fidelity wind turbine blade solver in the FAST modular framework. " Wind Energy, 2017. 20(8): p. 1439-1462.
[31]Guntur, S., et al., "A validation and code-to-code verification of FAST for a megawatt-scale wind turbine with aeroelastically tailored blades. " Wind Energy Science, 2017. 2(2): p. 443-468.
[32]Gasmi, A., et al. "Numerical stability and accuracy of temporally coupled multi-physics modules in wind turbine CAE tools. " in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013.
[33]Sprague, M.A. and J.M. Jonkman. "FAST modular wind turbine CAE tool: Nonmatching spatial and temporal meshes. " in 32nd ASME Wind Energy Symposium. 2014.
[34]Sprague, M.A., J.M. Jonkman, and B. Jonkman. "FAST modular framework for wind turbine simulation: New algorithms and numerical examples. " in 33rd Wind Energy Symposium. 2015.
[35]Hasselmann, K., et al., "Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). " Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A, 1973.
[36]Shen, W.Z., et al., "Tip loss corrections for wind turbine computations. " Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 2005. 8(4): p. 457-475.
[37]Glauert, H., "Aerodynamic theory. " The Aeronautical Journal, 1930. 34(233): p. 409-414.
[38]Jonkman, J. and M. Buhl, "FAST user's guide, NREL/EL-500-38230. " National Renewable Energy Laboratory, Tech. Rep., 2005.
[39]Bir, G., "User's guide to BModes (software for computing rotating Beam-coupled Modes). " 2005, National Renewable Energy Lab.(NREL), Golden, CO (United States).
[40]Quon, E. README.SOWFA. 2020 (accessed Aug. 4, 2023) https://github.com/NREL/SOWFA-6.git.
[41]Lu, N.-Y., et al., "On wind turbine loads during thunderstorm downbursts in contrasting atmospheric stability regimes. " Energies, 2019. 12(14): p. 2773.
[42]Gajoni, L., "A modified actuator line model for the optimization of wind farm simulations. " 2021.
[43]Troldborg, N., "Actuator line modeling of wind turbine wakes. " 2009.
[44]Sutherland, H.J., "On the fatigue analysis of wind turbines." 1999.
電子全文 電子全文(網際網路公開日期:20250801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top