跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:嚴慶隆
研究生(外文):Ching-Lung Yen
論文名稱:非平面微波生物感測器應用於葡萄糖溶液即時監測
論文名稱(外文):Non-planar microwave biosensor for real-time monitoring of glucose
指導教授:劉建豪劉建豪引用關係
指導教授(外文):Chien-Hao Liu
口試委員:許聿翔林哲宇
口試委員(外文):Yu-Hsiang HsuChe-Yu Lin
口試日期:2023-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:91
中文關鍵詞:微波互補式開口共振環非接觸式感測微波共振器
外文關鍵詞:MicrowaveComplementary Split-Ring ResonatorNon-contact sensing Microwave resonator
DOI:10.6342/NTU202303453
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一種由互補式開口共振環所組成的非平面式互補式開口共振環(Non-planar Complementary Split Ring Resonator, NPCSRR)進行感測,由於材料的介電常數會影響電磁場分佈,因此藉由將待測物放置在感測區,以此觀測共振環的散射參數。在本文中先以等效電路模擬以及三維電磁模擬,了解所設計共振環的特性例如散射參數、品質因子、電磁場分佈等。在設計上藉由CSRR結構對於介電常數變化較為敏感,以及增加與待測物感測面積等方法達到較高的靈敏度。所提出裝置共振頻率為4.41GHz、電場強度為307.48 kV/m,對於介電常數變化的靈敏度可到達51.89 MHz/Δε。
確認所設計裝置符合預期後便以FR-4基板製作出來,並藉由網路分析儀量測確認與模擬是否相符,以確認製作出來之成品是否符合設計要求,接著進行了不同濃度的葡萄糖溶液量測,濃度範圍從100 mg/dL到600 mg/dL,並觀測此時裝置的共振頻率,由於葡萄糖濃度與介電常數有所關聯,因此為更好的分析其關聯性便以德拜模型(Debye model)與等效電路進行分析,了解葡萄糖濃度、介電常數、共振頻率三者的關係,為了確認本研究裝置的性能,所以與其他文獻中的裝置進行比較,確立了本研究裝置具有良好的靈敏度可以達到非接觸式感測。
This thesis proposes a non-planar Complementary Split Ring Resonator (NPCSRR) composed of complementary split ring resonators for sensing. The electromagnetic field distribution is influenced by the dielectric constant of the material, so the scattering parameters of the resonator are observed by placing the target substance in the sensing area. In this paper, equivalent circuit simulations and 3D electromagnetic simulations are conducted to understand the characteristics of the designed resonator, such as scattering parameters, quality factor, and electromagnetic field distribution. The design aims to achieve higher sensitivity by using the CSRR structure, which is more sensitive to changes in the dielectric constant, and increasing the sensing area with the target substance. The proposed device has a resonance frequency of and an electric field intensity of , with a sensitivity of to changes in the dielectric constant.
After confirming that the designed device meets the expectations, it is fabricated on an FR-4 substrate. Measurements with a network analyzer are conducted to verify if the fabricated device matches the simulation. Subsequently, glucose solutions of different concentrations ranging from 100 mg/dL to 600 mg/dL are measured, and the resonance frequency of the device is observed. As glucose concentration is related to the dielectric constant, the Debye model and equivalent circuit analysis are employed to analyze the relationship between glucose concentration, dielectric constant, and resonance frequency. To confirm the performance of the proposed device, a comparison is made with other devices in the literature, establishing that the research device exhibits good sensitivity for non-contact sensing.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xii
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.2.1 微波量測方法 4
1.2.2 微波平面式感測器 8
1.3 章節概述 13
Chapter 2 理論基礎 14
2.1 串聯與並聯共振電路 14
2.1.1 串聯共振電路 14
2.1.2 並聯共振電路 17
2.1.3 微波共振電路Q值 21
2.2 微帶線理論 23
2.2.1 傳輸線阻抗匹配設計 25
2.3 開口環形與互補式環形共振器 27
2.3.1 開口式共振環 27
2.3.2 互補式開口共振環 28
2.4 微波共振器感測原理 30
Chapter 3 設計與模擬分析 34
3.1 非平面互補式開口共振環結構探討 34
3.1.1 結構設計理論 34
3.1.2 三維結構參數與示意圖 37
3.2 等效電路分析 41
3.2.1 ADS模擬軟體介紹 41
3.2.2 NPCSRR之等校電路模型分析 42
3.3 三維電磁模擬分析 44
3.3.1 CST模擬軟體介紹 44
3.3.2 NPCSRR之三維電磁分析 45
Chapter 4 製程 50
4.1 印刷電路板 50
4.2 製程規劃與材料簡介 51
4.3 製程簡介 53
4.3.1 光罩製作 53
4.3.2 曝光 53
4.3.3 顯影 54
4.3.4 蝕刻 55
4.3.5 光阻去除與接頭焊接 56
Chapter 5 實驗量測 58
5.1 實驗儀器與相關參數簡介 58
5.1.1 向量網路分析儀 58
5.1.2 散射參數介紹 59
5.2 不同濃度葡萄糖量測 65
5.2.1 模擬與成品比較 65
5.2.2 濃度量測 66
5.2.3 流道實驗 71
Chapter 6 分析與討論 74
6.1 葡萄糖濃度分析 74
6.2 靈敏度比較 78
Chapter 7 結論與未來展望 81
7.1 結論 81
7.2 未來展望 82
REFERENCE 83
[1]O. O. Soldatkin, V. M. Peshkova, S. V. Dzyadevych, A. P. Soldatkin, N. Jaffrezic-Renault, and A. V. El’skaya, “Novel sucrose three-enzyme conductometric biosensor,” Materials Science and Engineering: C, vol. 28, no. 5, pp. 959–964, Jul. 2008.
[2]J. E. Shaw, R. A. Sicree, and P. Z. Zimmet, “Global estimates of the prevalence of diabetes for 2010 and 2030,” Diabetes Research and Clinical Practice, vol. 87, no. 1, pp. 4–14, Jan. 2010.
[3]D. R. Whiting, L. Guariguata, C. Weil, and J. Shaw, “IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030,” Diabetes Research and Clinical Practice, vol. 94, no. 3, pp. 311–321, Dec. 2011.
[4]D. Bruen, C. Delaney, L. Florea, and D. Diamond, “Glucose Sensing for Diabetes Monitoring: Recent Developments,” Sensors, vol. 17, no. 8, Art. no. 8, Aug. 2017.
[5]M. Naderi-Boldaji, M. Fazeliyan-Dehkordi, S. A. Mireei, and M. Ghasemi-Varnamkhasti, “Dielectric power spectroscopy as a potential technique for the non-destructive measurement of sugar concentration in sugarcane,” Biosystems Engineering, vol. 140, pp. 1–10, Dec. 2015.
[6]N. M. Nawi, G. Chen, and T. Jensen, “In-field measurement and sampling technologies for monitoring quality in the sugarcane industry: a review,” Precision Agric, vol. 15, no. 6, pp. 684–703, Dec. 2014.
[7]A. E. Omer et al., “Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell CSRR hexagonal configuration,” Sci Rep, vol. 10, no. 1, Art. no. 1, Sep. 2020.
[8]S. Harnsoongnoen and A. Wanthong, “Real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentration by electromagnetic sensing,” Food Chemistry, vol. 232, pp. 566–570, Oct. 2017.
[9]R. A. Alahnomi, Z. Zakaria, E. Ruslan, S. R. Ab Rashid, and A. A. Mohd Bahar, “High-Q Sensor Based on Symmetrical Split Ring Resonator With Spurlines for Solids Material Detection,” IEEE Sensors Journal, vol. 17, no. 9, pp. 2766–2775, May 2017.
[10]P. Vélez, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martín, “Highly-Sensitive Microwave Sensors Based on Open Complementary Split Ring Resonators (OCSRRs) for Dielectric Characterization and Solute Concentration Measurement in Liquids,” IEEE Access, vol. 6, pp. 48324–48338, 2018.
[11]W. Liu, H. Sun, and L. Xu, “A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor,” Sensors, vol. 18, no. 5, Art. no. 5, May 2018.
[12]M. Shete, M. Shaji, and M. J. Akhtar, “Design of a Coplanar Sensor for RF Characterization of Thin Dielectric Samples,” IEEE Sensors Journal, vol. 13, no. 12, pp. 4706–4715, Feb. 2013.
[13]K. Sarabandi and F. T. Ulaby, “Technique for measuring the dielectric constant of thin materials,” IEEE Transactions on Instrumentation and Measurement, vol. 37, no. 4, pp. 631–636, Feb. 1988.
[14]P. M. Narayanan, “Microstrip Transmission Line Method for Broadband Permittivity Measurement of Dielectric Substrates,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2784–2790, Jan. 2014.
[15]M. A. Stuchly, T. W. Athey, G. M. Samaras, and G. E. Taylor, “Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part II - Experimental Results,” IEEE Transactions on Microwave Theory and Techniques, vol. 30, no. 1, Art. no. 1, Jan. 1982.
[16]E. C. Burdette, F. L. Cain, and J. Seals, “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF through Microwave Frequencies,” IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 4, pp. 414–427, Apr. 1980.
[17]A. Kraszewski, M. A. Stuchly, S. S. Stuchly, and A. M. Smith, “In vivo and in vitro dielectric properties of animal tissues at radio frequencies,” Bioelectromagnetics, vol. 3, no. 4, pp. 421–432, 1982.
[18]J.-L. Schwartz and G. A. R. Mealing, “Dielectric properties of frog tissues in vivo and in vitro,” Phys. Med. Biol., vol. 30, no. 2, p. 117, Feb. 1985.
[19]S. N. Jha et al., “Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods—a review,” J Food Sci Technol, vol. 48, no. 4, pp. 387–411, Aug. 2011.
[20]A. La Gioia et al., “Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues: Challenges and Common Practices,” Diagnostics, vol. 8, no. 2, Art. no. 2, Jun. 2018.
[21]M. S. Venkatesh and G. S. V. Raghavan, “An overview of dielectric properties measuring techniques,” CANADIAN BIOSYSTEMS ENGINEERING, vol. 47, 2005.
[22]D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Transactions on Instrumentation and Measurement, vol. 39, no. 2, pp. 387–394, Apr. 1990.
[23]“Basics of Measuring the Dielectric Properties of Materials”.
[24]A. K. Jha and M. J. Akhtar, “A Generalized Rectangular Cavity Approach for Determination of Complex Permittivity of Materials,” IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 11, pp. 2632–2641, Jan. 2014.
[25]W. Che, Z. Wang, Y. Chang, and P. Russer, “Permittivity Measurement of Biological Materials with Improved Microwave Cavity Perturbation Technique,” in 2008 38th European Microwave Conference, Oct. 2008, pp. 905–908.
[26]M. S. Boybay and O. M. Ramahi, “Non-Destructive Thickness Measurement Using Quasi-Static Resonators,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 4, pp. 217–219, Apr. 2013.
[27]H.-J. Lee, H.-S. Lee, K.-H. Yoo, and J.-G. Yook, “DNA sensing using split-ring resonator alone at microwave regime,” Journal of Applied Physics, vol. 108, no. 1, p. 014908, Jul. 2010.
[28]A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Dual-mode behavior of the complementary electric-LC resonators loaded on transmission line: Analysis and applications,” Journal of Applied Physics, vol. 116, no. 8, p. 083705, Aug. 2014.
[29]S. Mohammadi, A. V. Nadaraja, K. Luckasavitch, M. C. Jain, D. J. Roberts, and M. H. Zarifi, “A Label-Free, Non-Intrusive, and Rapid Monitoring of Bacterial Growth on Solid Medium Using Microwave Biosensor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 14, no. 1, pp. 2–11, Feb. 2020.
[30] S. Harnsoongnoen, “Microwave sensors based on coplanar waveguide loaded with split ring resonators: A review,” Appl. Sci. Eng. Prog., pp. 1–11, Nov. 2018.
[31]B. Wiltshire, K. Mirshahidi, K. Golovin, and M. H. Zarifi, “Robust and sensitive frost and ice detection via planar microwave resonator sensor,” Sensors and Actuators B: Chemical, vol. 301, p. 126881, Dec. 2019.
[32]A. Raj, A. Kumar Jha, M. A. H. Ansari, M. J. Akhtar, and S. Panda, “Metamaterial-inspired microwave sensor for measurement of complex permittivity of materials,” Microwave and Optical Technology Letters, vol. 58, no. 11, pp. 2577–2581, 2016.
[33]S. P. Chakyar, S. S. K., A. Murali, S. T. A., J. Andrews, and J. V. P., “Determination of permittivity of pulses and cereals using metamaterial split ring resonator,” AIP Conference Proceedings, vol. 1849, no. 1, p. 020024, Jun. 2017.
[34]A. A. Mohd Bahar, Z. Zakaria, S. R. Ab Rashid, A. a. M. Isa, and R. A. Alahnomi, “Dielectric analysis of liquid solvents using microwave resonator sensor for high efficiency measurement,” Microwave and Optical Technology Letters, vol. 59, no. 2, pp. 367–371, 2017.
[35]M. Bakir, “Electromagnetic-Based Microfluidic Sensor Applications,” J. Electrochem. Soc., vol. 164, no. 9, p. B488, Aug. 2017.
[36]A. A. Mohd Bahar, Z. Zakaria, S. R. Ab Rashid, A. A. M. Isa, and R. A. Alahnomi, “High-Efficiency Microwave Planar Resonator Sensor Based on Bridge Split Ring Topology,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 6, pp. 545–547, Jun. 2017.
[37]M. Shafi K.T., A. K. Jha, and M. J. Akhtar, “Nondestructive technique for detection of adulteration in edible oils using planar RF sensor,” in 2016 IEEE MTT-S International Microwave and RF Conference (IMaRC), Feb. 2016, pp. 1–4.
[38]M. H. Zarifi and M. Daneshmand, “Liquid sensing in aquatic environment using high quality planar microwave resonator,” Sensors and Actuators B: Chemical, vol. 225, pp. 517–521, Mar. 2016.
[39]L. Y. Zhang et al., “Discrimination of colorectal cancer cell lines using microwave biosensors,” Sensors and Actuators A: Physical, vol. 216, pp. 405–416, Sep. 2014.
[40]A. Salim, S.-H. Kim, J. Y. Park, and S. Lim, “Microfluidic Biosensor Based on Microwave Substrate-Integrated Waveguide Cavity Resonator,” Journal of Sensors, vol. 2018, p. e1324145, Feb. 2018.
[41]R. Narang et al., “Sensitive, Real-time and Non-Intrusive Detection of Concentration and Growth of Pathogenic Bacteria using Microfluidic-Microwave Ring Resonator Biosensor,” Sci Rep, vol. 8, no. 1, Art. no. 1, Oct. 2018.
[42]M. C. Jain, A. V. Nadaraja, B. M. Vizcaino, D. J. Roberts, and M. H. Zarifi, “Differential Microwave Resonator Sensor Reveals Glucose-Dependent Growth Profile of E. coli on Solid Agar,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 5, pp. 531–534, May 2020.
[43]T. Qiang, C. Wang, and N.-Y. Kim, “Quantitative detection of glucose level based on radiofrequency patch biosensor combined with volume-fixed structures,” Biosensors and Bioelectronics, vol. 98, pp. 357–363, Dec. 2017.
[44]V. V. Deshmukh and R. B. Ghongade, “Measurement of dielectric properties of aqueous glucose using planar ring resonator,” in 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), Jan. 2016, pp. 1–5.
[45]N. Shebani, A. Mohammed, and B. Khamoudi, “Design Curves of Microstrip Ring Resonator,” Dec. 2011.
[46]H. Torun, F. C. Top, G. Dundar, and A. D. Yalcinkaya, “A split-ring resonator-based microwave sensor for biosensing,” in 2014 International Conference on Optical MEMS and Nanophotonics, Aug. 2014, pp. 159–160.
[47]A. Ebrahimi, J. Scott, and K. Ghorbani, “Differential Sensors Using Microstrip Lines Loaded With Two Split-Ring Resonators,” IEEE Sensors Journal, vol. 18, no. 14, pp. 5786–5793, Jul. 2018.
[48]M. G. Mayani, F. J. Herraiz-Martínez, J. M. Domingo, R. Giannetti, and C. R.-M. García, “A Novel Dielectric Resonator-Based Passive Sensor for Drop-Volume Binary Mixtures Classification,” IEEE Sensors Journal, vol. 21, no. 18, pp. 20156–20164, Sep. 2021.
[49]A. Salim and S. Lim, “Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor,” Sensors, vol. 16, no. 11, Art. no. 11, Nov. 2016.
[50]H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett., vol. 92, no. 25, Art. no. 25, Jun. 2008.
[51]H.-J. Lee et al., “A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules,” Sensors and Actuators B: Chemical, vol. 169, pp. 26–31, Jul. 2012.
[52]A. M. Albishi, M. S. Boybay, and O. M. Ramahi, “Complementary Split-Ring Resonator for Crack Detection in Metallic Surfaces,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 6, pp. 330–332, Jun. 2012.
[53]J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett., vol. 76, no. 25, pp. 4773–4776, Jun. 1996.
[54]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, Art. no. 11, Nov. 1999.
[55]J. D. Baena et al., “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, Art. no. 4, Apr. 2005.
[56]R. Rajni, G. Singh, and A. Marwaha, “Modeling of Split Ring Resonators loaded microstrip line with different orientations,” International Journal of Electrical and Computer Engineering (IJECE), vol. 5, pp. 1363–1371, Dec. 2015.
[57]A. M. Albishi, M. K. E. Badawe, V. Nayyeri, and O. M. Ramahi, “Enhancing the Sensitivity of Dielectric Sensors With Multiple Coupled Complementary Split-Ring Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 10, pp. 4340–4347, Oct. 2020.
[58]M. S. Boybay and O. M. Ramahi, “Material Characterization Using Complementary Split-Ring Resonators,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 11, pp. 3039–3046, Jan. 2012.
[59]C. Gao, T. Wei, F. Duewer, Y. Lu, and X.-D. Xiang, “High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope,” Applied Physics Letters, vol. 71, no. 13, pp. 1872–1874, Sep. 1997.
[60]D. M.Pozar, Microwave Engineering, 3Rd Ed. Wiley India Pvt. Limited, 2009.
[61]A. Albishi and O. M. Ramahi, “Detection of Surface and Subsurface Cracks in Metallic and Non-Metallic Materials Using a Complementary Split-Ring Resonator,” Sensors, vol. 14, no. 10, Art. no. 10, Oct. 2014.
[62]J. Bai, H. Guo, H. Li, C. Zhou, and H. Tang, “Flexible Microwave Biosensor for Skin Abnormality Detection Based on Spoof Surface Plasmon Polaritons,” Micromachines, vol. 12, no. 12, Art. no. 12, Dec. 2021.
[63]A. E. Omer et al., “Non-Invasive Real-Time Monitoring of Glucose Level Using Novel Microwave Biosensor Based on Triple-Pole CSRR,” IEEE Transactions on Biomedical Circuits and Systems, vol. 14, no. 6, pp. 1407–1420, Feb. 2020.
[64]W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, “Metamaterial-based microfluidic sensor for dielectric characterization,” Sensors and Actuators A: Physical, vol. 189, pp. 233–237, Jan. 2013.
[65]H. Sun, H. Deng, P. Meng, S. Wang, Y. Shuai, and Q. Gao, “High-Sensitivity Sensor Loaded With Coupled Complementary Spiral Resonators for Simultaneous Permittivity and Thickness Measurement of Solid Dielectric Sheet,” IEEE Sensors Journal, vol. 22, no. 23, pp. 22591–22599, Feb. 2022.
[66] M. Saadat-Safa, V. Nayyeri, A. Ghadimi, M. Soleimani, and O. M. Ramahi, “A pixelated microwave near-field sensor for precise characterization of dielectric materials,” Sci. Rep., vol. 9, no. 1, pp. 1–12, 2019.
[67]H. Hao, D. Wang, Z. Wang, B. Yin, and W. Ruan, “Design of a High Sensitivity Microwave Sensor for Liquid Dielectric Constant Measurement,” Sensors, vol. 20, no. 19, Art. no. 19, Jan. 2020.
[68]M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, “Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity,” IEEE Sensors Journal, vol. 15, no. 12, pp. 7181–7189, Feb. 2015.
[69]L. Su, J. Naqui, J. Mata-Contreras, P. Vélez, and F. Martín, “Transmission line metamaterials based on pairs of coupled split ring resonators (SRRs) and complementary split ring resonators (CSRR): A comparison to the light of the lumped element equivalent circuits,” in 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Sep. 2015, pp. 891–894.
[70]J. Yeo and J.-I. Lee, “High-Sensitivity Microwave Sensor Based on an Interdigital-Capacitor-Shaped Defected Ground Structure for Permittivity Characterization,” Sensors, vol. 19, no. 3, Art. no. 3, Jan. 2019.
[71]A. Ebrahimi, J. Scott, and K. Ghorbani, “Ultrahigh-Sensitivity Microwave Sensor for Microfluidic Complex Permittivity Measurement,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 10, pp. 4269–4277, Oct. 2019.
[72]P. K. Varshney, A. Sharma, and M. J. Akhtar, “Exploration of adulteration in some food materials using high-sensitivity configuration of electric-LC resonator sensor,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 30, no. 2, p. 22045, 2020.
[73]A. Ebrahimi, J. Scott, and K. Ghorbani, “Transmission Lines Terminated With LC Resonators for Differential Permittivity Sensing,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 12, pp. 1149–1151, Feb. 2018.
[74]“PCB產業迎戰5G,一篇帶您了解什麼是PCB、PCB產業應用及製造流程-晟鈦股份有限公司.” http://www.cheer-time.com.tw/index.php?view=custom1&d=30 (accessed Jun. 17, 2023).
[75]“PCB擴產需求熱,製程數位升級需求高 | Digorlon益控通,” 益控通製造業媒合平台 | Digorlon Platform. http://digorlon.com/home/post/1406 (accessed Jun. 17, 2023).
[76]“RF & Microwave PCB’s,” Specialized in RF & Microwave PCB Manufacturing | 5G | RF Low PIM. https://aciatlanta.com/rf-microwave-pcbs/ (accessed Jun. 17, 2023).
[77]“曝光機(8支燈管) KVB-30DQ.” https://kinsten.com.tw/index.php?route=product/product&path=18_953_954&product_id=36427 (accessed Jun. 28, 2023).
[78]Keysight, “E5071C ENA 向量網路分析儀,” Keysight. https://www.keysight.com/tw/zh/product/E5071C/e5071c-ena-vector-network-analyzer.html (accessed Jun. 05, 2023).
[79]N.-Y. Kim, K. K. Adhikari, R. Dhakal, Z. Chuluunbaatar, C. Wang, and E.-S. Kim, “Rapid, Sensitive and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip,” Sci Rep, vol. 5, no. 1, Art. no. 1, Jan. 2015.
[80]A. A. Mohd Bahar, Z. Zakaria, M. K. Md. Arshad, A. a. M. Isa, Y. Dasril, and R. A. Alahnomi, “Real Time Microwave Biochemical Sensor Based on Circular SIW Approach for Aqueous Dielectric Detection,” Sci Rep, vol. 9, no. 1, Art. no. 1, Apr. 2019.
[81] M.Memon and S.Lim, “Microwave chemical sensor using substrate integrated-waveguide cavity,” Sensors, vol. 16, no. 11, p. 1829, Oct. 2016.
[82]S. Kiani, P. Rezaei, and M. Navaei, “Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection,” Measurement, vol. 160, p. 107805, Aug. 2020.
[83]V. Rawat, S. Dhobale, and S. N. Kale, “Ultra-fast selective sensing of ethanol and petrol using microwave-range metamaterial complementary split-ring resonators,” Journal of Applied Physics, vol. 116, no. 16, p. 164106, Oct. 2014.
[84]Y. Seo, M. U. Memon, and S. Lim, “Microfluidic Eighth-Mode Substrate-Integrated-Waveguide Antenna for Compact Ethanol Chemical Sensor Application,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 3218–3222, Jul. 2016.
[85]A. Ebrahimi, J. Scott, and K. Ghorbani, “Microwave reflective biosensor for glucose level detection in aqueous solutions,” Sensors and Actuators A: Physical, vol. 301, p. 111662, Jan. 2020.
[86]A. Kumar et al., “High-Sensitivity, Quantified, Linear and Mediator-Free Resonator-Based Microwave Biosensor for Glucose Detection,” Sensors, vol. 20, no. 14, Art. no. 14, Jan. 2020.
[87]N. Y. Kim, R. Dhakal, K. K. Adhikari, E. S. Kim, and C. Wang, “A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level,” Biosensors and Bioelectronics, vol. 67, pp. 687–693, May 2015.
[88]G. Govind and M. J. Akhtar, “Metamaterial-Inspired Microwave Microfluidic Sensor for Glucose Monitoring in Aqueous Solutions,” IEEE Sensors Journal, vol. 19, no. 24, pp. 11900–11907, Feb. 2019.
[89]B. Camli, E. Kusakci, B. Lafci, S. Salman, H. Torun, and A. Yalcinkaya, “A Microwave Ring Resonator Based Glucose Sensor,” Procedia Engineering, vol. 168, pp. 465–468, Jan. 2016.
[90]J. Dornhof, J. Kieninger, H. Muralidharan, J. Maurer, G. A. Urban, and A. Weltin, “Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures,” Lab on a Chip, vol. 22, no. 2, pp. 225–239, 2022.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top