[1]S. Y. Wang, “A finite element model for the static and dynamic analysis of a piezoelectric bimorph.”, International Journal of Solids and Structures, 41(15), pp. 4075-4096, 2004
[2]C. C. Ma, Y. C. Lin, Y. H. Huang, and H. Y. Lin, “Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs.”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 54(2), pp. 227-239, 2007.
[3]A. Erturk, D. J. Inman, “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations.”, Smart Materials and Structures, 18(2), 025009, 2009.
[4]Y. H. Huang, C. C. Ma, “Experimental and numerical investigations of vibration characteristics for parallel-type and series-type triple-layered piezoceramic bimorphs.”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 56(12), pp. 2598-2611, 2009.
[5]Y. C. Shu, I. C. Lien, W. J. Wu, “An improved analysis of the SSHI interface in piezoelectric energy harvesting.”, Smart Materials and Structures, 16(6), 2253, 2007
[6]Y. K. Ramadass, A. P. Chandrakasan, “An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor.”, IEEE journal of solid-state circuits, 45(1), pp. 189-204, 2009
[7]H. C. Lin, P. H. Wu, I. C. Lien, Y. C. Shu, ”Analysis of an array of piezoelectric energy harvesters connected in series.”, Smart Materials and Structures, 22(9),094026, 2013.
[8]E. S. Leland, P. K. Wright, “Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload.”, Smart Materials and Structures, 15(5), 1413, 2006.
[9]H. Xue, Y. Hu, Q. M. Wang, “Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 55(9), pp. 2104-2108, 2008.
[10]D. Zhu, S. Roberts, J. Tudor, S. Beeby, “Closed loop frequency tuning of a vibration-based micro-generator.”, 2008.
[11]J. T. Lin, B. Lee, B. Alphenaar, “The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency.”, Smart Materials and Structures, 19(4), 045012, 2010.
[12]鄭雅倫,趙振綱,黃育熙,「串聯型三層壓電雙晶片於電極設計搭配模態振形之能量截取效率提升」,國立台灣科技大學機械工程學系碩士論文,2016。[13]周聖倫,黃育熙,「壓電能量擷取系統以邊界設計方法降低共振頻率之研究」,國立臺灣科技大學機械工程所碩士論文,2017。[14]陳新承,黃育熙,「可變剛性邊界應用於壓電平板理論之能量擷取系統」,國立臺灣大學機械工程所碩士論文,2021[15]F.J. Shaker, “Effects of axial load on mode shapes and frequencies of beams”, NASA Lewis Research Centre Report NASA-TN-8109, pp. 1-25, 1975
[16]A. W. Leissa, “Vibration of plates, NASA SP-160.”, National Aeronautics and Space Administration, Washington DC, 1969
[17]D. J. Gorman, “Free vibration analysis of the completely free rectangular plate by the method of superposition.”, Journal of Sound and Vibration, 57(3), pp. 437-447, 1978.
[18]C. S. Kim, P. G. Young, S. M. Dickinson, “On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method.”, Journal of Sound and Vibration, 143(3), pp. 379-394, 1990.
[19]D. J. Gorman, “Free vibration and buckling of in-plane loaded plates with rotational elastic edge support.”, Journal of Sound and Vibration, 229(4), pp. 755-773, 2000.
[20]吳亦莊,馬劍清,「理論解析與實驗量測壓電平板的面外振動及特性探討」,國立臺灣大學機械工程所碩士論文,2009。[21]X. He, G. D. Doolen, T. Clark, “Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier–Stokes equations.”, Journal of Computational Physics, 179(2), pp. 439-451, 2002
[22]H. Zhou, G. Mo, F. Wu, J. Zhao, M. Rui, K. Cen, “GPU implementation of lattice Boltzmann method for flows with curved boundaries.”, Computer Methods in Applied Mechanics and Engineering, 225, pp. 65-73, 2012.
[23]E. Aharonov, D. H. Rothman, “Non‐Newtonian flow (through porous media): A lattice‐Boltzmann method.”, Geophysical Research Letters, 20(8), pp. 679-682, 1993
[24]X. He, G. D. Doolen, “Lattice Boltzmann method on a curvilinear coordinate system: Vortex shedding behind a circular cylinder.”, Physical Review E, 56(1), 434, 1997
[25]X. He, S. Chen, R. Zhang, “A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability.”, Journal of Computational Physics, 152(2), pp. 642-663, 1999
[26]S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows.”, Annual review of fluid mechanics, 30(1), pp. 329-364, 1998
[27]D. Raabe, “Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering.”, Modelling and Simulation in Materials Science and Engineering, 12(6), R13, 2004
[28]C. K. Aidun, J. R. Clausen, “Lattice-Boltzmann Method for Complex Flows.”, Annual review of fluid mechanics, 42, pp. 439-472, 2010
[29]L. Jahanshaloo, E. Pouryazdanpanah, N. A. Che Sidik, “A review on the application of the lattice Boltzmann method for turbulent flow simulation.”, Numerical Heat Transfer, Part A: Applications, 64(11), pp. 938-953, 2013
[30]Z. Lu, Y. Liao, D. Qian, J. B. McLaughlin, J. J. Derksen, K. Kontomaris, “Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid.”, Journal of Computational Physics, 181(2), pp. 675-704, 2002
[31]O. Malaspinas, P. Sagaut, “Wall model for large-eddy simulation based on the lattice Boltzmann method.”, Journal of Computational Physics, 275, pp. 25-40, 2014
[32]J. Jacob, O. Malaspinas, P. Sagaut, “A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for lattice Boltzmann method-based large eddy simulation.”, Journal of Turbulence, 19(11-12), pp. 1051-1076, 2018
[33]K. D. Jensen, “Flow Measurement.”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(4), pp. 400-419, 2004
[34]R. P. Shimpi, H. G. Patel, “ A two variable refined plate theory for orthotropic plate analysis.” International Journal of Solids and Structures, 43(22-23), pp. 6783-6799, 2006
[35]G. Akoun, J. P. Yonnet, “3D analytical calculation of the forces exerted between two cuboidal magnets.”, IEEE Transactions and Magnetics, 20(5), pp. 1962-1964, 1984.
[36]D. V. Patil, K. N. Lakshmisha, B. Rogg, “Lattice Boltzmann simulation of lid-driven flow in deep cavities.”, Computers & Fluids, 35(10), pp. 1116-1125, 2016
[37]P. L. Bhatnagar, E. P. Gross, M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems.”, Physical Review, 94 (3), pp. 511–525, 1954
[38]P. Lallemand, L. S. Luo, “Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability.”, Physical Review E, 61(6), 6546, 2000
[39]R. Mei, W. Shyy, D. Yu,, L. S. Luo, “Lattice Boltzmann method for 3-D flows with curved boundary.”, Journal of Computational Physics, 161(2), pp. 680-699, 2000
[40]S. K. Kang, Y. A. Hassan, “The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows.”, Journal of Computational Physics, 232(1), pp. 100-117, 2013
[41]洪國勛,黃育熙,「流體致振壓電能量擷取系統之數值開發與風洞實驗」,國立臺灣大學機械工程所碩士論文,2022。[42]Q. Zou, X. He, “On pressure and velocity flow boundary conditions for the lattice Boltzmann BGK model.”, Physics of fluids, 9(6), pp. 1591-1598, 1997
[43]R. Mei, D. Yu, W. Shyy, L. S. Luo, “ Force evaluation in the lattice Boltzmann method involving curved geometry.”, Physical Review E, 65(4), 041203, 2002.
[44]A. G. Kravchenko, P. Moin, “Numerical studies of flow over a circular cylinder at Re D= 3900.”, Physics of fluids, 12(2), pp. 403-417, 2000
[45]M. A. Miguel, M. Di Nardo, “Running FineOpen43 simulations at VKI: A tutorial and a collection of scripts.”, 2017
[46]M. M. Rahman, M. M. Karim, M. A. Alim, “Numerical investigation of unsteady flow past a circular cylinder using 2-D Finite volume method.”, Journal of Naval Architecture and Marine Engineering, 4(1), pp. 27–42, 2007
[47]廖展誼,馬劍清,「矩形平板於流固耦合問題的振動特性與暫態波傳之理論分析、數值計算與實驗量測」,國立臺灣大學機械工程所博士論文,2018。