跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧名宇
研究生(外文):Arthur Teng
論文名稱:基於MMC方法之混合式拓樸最佳化架構應用於撓性機構設計
論文名稱(外文):MMC-based Hybrid Topology Optimization Framework for Compliant Mechanism Design
指導教授:李志中李志中引用關係
指導教授(外文):Jyh-Jone Lee
口試委員:莊嘉揚徐冠倫林鎮洲
口試委員(外文):Jia-Yang JuangKuan-Lun HsuChen-Chou Lin
口試日期:2023-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:79
中文關鍵詞:撓性機構最佳化設計MMC拓樸最佳化啟發式演算法非線性有限元素分析
外文關鍵詞:Compliant MechanismOptimal DesignMMC Topology OptimizationMetaheuristic AlgorithmNonlinear Finite Element Analysis
DOI:10.6342/NTU202302448
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一個全新的拓樸最佳化(Topology Optimization)架構,稱為基於MMC(Moving Morphable Component)方法之混合式拓樸最佳化,用於設計撓性機構(Compliant Mechanism)。此架構以MMC拓樸最佳化為基礎,融合了啟發式演算法(Metaheuristic Algorithm)和梯度式演算法(Gradient-based Algorithm)。由於撓性機構的運動通常涉及大形變,演算法使用非線性有限元素分析以獲取準確的結構響應。混合式拓樸最佳化分為三個階段:啟發式搜索(Metaheuristic Search)、部件擴增(Component Augmentation)和梯度式搜索(Gradient-based Search)。首先,啟發式搜索利用極少量的B樣條尋找機構骨幹。接著,部件擴增將機構骨幹轉換為梯度式搜索的初始猜值。最後,梯度式搜索找出機構的最佳拓樸。本研究透過三個設計問題展示混合式拓樸最佳化的效用。此外,本研究也針對混合式拓樸最佳化的效能做進一步的分析,包括運算加速、對特定參數的敏感度和初始猜值的影響。本研究提出的架構不僅能消除拓樸最佳化對人為設定初始猜值的依賴性,還能夠高效率地運行啟發式搜索。
This study proposes a novel topology optimization framework called MMC (Moving Morphable Component)-based Hybrid Topology Optimization for compliant mechanism design. Based on MMC Topology Optimization, this framework incorporates both metaheuristic and gradient-based algorithms into the optimization process. Due to the fact that compliant mechanisms usually undergo large deformation, the algorithms employ nonlinear finite element analysis to obtain accurate structure responses. The Hybrid Topology Optimization consists of three main stages: Metaheuristic Search, Component Augmentation, and Gradient-Based Search. In the first stage, a small number of splines are used to search for the backbone structure of the mechanism. Then, in the second stage, the backbone structure is converted into an initial guess for the next stage. Finally, the algorithm identifies the optimized topology in the third stage. This study demonstrates the effectiveness of the proposed framework through three design problems. Furthermore, additional analyses are conducted to evaluate the framework’s performance, including computational acceleration, sensitivity to specific parameters, and the influence of initial guesses. The proposed framework not only eliminates the dependency on initial guesses decided by designers in conventional topology optimization methods but also enables efficient execution of the metaheuristic search.
目錄
致謝辭 i
口試委員會審定書 ii
摘要 iii
Abstract iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
1.1 撓性機構 1
1.2 撓性機構的設計方法 2
1.3 研究動機與目標 3
1.4 論文架構 3
第二章 文獻回顧 4
2.1 結構最佳化 4
2.1.1 尺寸最佳化 6
2.1.2 形狀最佳化 6
2.1.3 拓樸最佳化 7
2.2 MMC拓樸最佳化 9
2.3 使用啟發式演算法之拓樸最佳化 11
第三章 基於MMC方法之混合式拓樸最佳化 13
3.1 拓樸表示式 13
3.1.1 構成單元 14
3.1.2 水平集函數 16
3.1.3 階躍函數 18
3.2 有限元素分析 20
3.2.1 數值分析模型 20
3.2.2 非線性有限元素分析 21
3.2.3 超彈性材料添加法 22
3.2.4 APDL 副程式 24
3.3 混合式拓樸最佳化的核心概念 24
3.4 階段一:啟發式搜索 26
3.4.1 基因演算法 27
3.5 階段二:部件擴增 28
3.5.1 結點植入 29
3.5.2 樣條增生 30
3.6 階段三:梯度式搜索 31
3.6.1 敏感度分析 33
3.6.2 MMA 35
3.6.3 收斂條件 37
第四章 實例應用 38
4.1 位移反向器 38
4.2 撓性夾爪 45
4.3 等力夾爪 50
第五章 混合式拓樸最佳化性能探討 60
5.1 使用平行處理實現運算加速 60
5.2 樣條增生對最佳化結果的影響 63
5.3 啟發式搜索的重要性 66
5.4 相關文獻整理 68
第六章 結論與未來展望 70
6.1 結論 70
6.2 未來展望 71
參考文獻 73
Zhang, X., and Zhu, B., Topology Optimization of Compliant Mechanisms, Springer, Singapore, pp. 1-7. (2018)
Jagtap, S.P., Deshmukh, B.B. and Pardeshi, S., “Applications of Compliant Mechanism In Today's World – A Review,” Journal of Physics: Conference Series, Vol. 1969, p. 012013. (2021)
Carollo, G., Ingrassia, T. and Pantano, A., “Design of a Low Cost 3D Printable Single-Component Compliant Mechanism for FWMAV’s Wing Actuation,” Design Tools and Methods in Industrial Engineering II, Rome, Italy. (2021)
Najmon, J.C., Jacob, D.J., Wood, Z.M. and Tovar, A., “Cellular Helmet Liner Design through Bio-inspired Structures and Topology Optimization of Compliant Mechanism Lattices,” SAE International Journal of Transportation Safety, Vol. 6, pp. 217-235. (2018)
Olesnavage, K.M., Prost, V. and Johnson, W.B., “Passive Prosthetic Foot Shape and Size Optimization Using Lower Leg Trajectory Error,” Journal of Mechanical Design, Vol. 140, p. 102302. (2018)
Liu, C.H., Chen, T.L., Chiu, C.H., Hsu, M.C., Chen, Y., Pai, T.Y., Peng, W.G., and Chiang, Y.P., “Optimal Design of a Soft Robotic Gripper for Grasping Unknown Objects,” Soft Robotics, Vol. 5, pp. 452-465. (2018)
Lo, C.W., Chang, Y., Wang, M.L., Lin, C.R., and Lee, J.J., “Design of a Monolithic Constant-Force Compliant Mechanism for Extended Range of Motion and Minimal Force Variation,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Virtual, Online. (2021)
Christensen, P.W., and Klarbring, A., An Introduction to Structural Optimization, Springer, Dordrecht, pp. 1-7. (2009)
Bendsøe, M.P., Ben-Tal, A. and Zowe, J., “Optimization Methods for Truss Geometry and Topology Design,” Structural Optimization, Vol. 7, pp. 141–159. (1994)
Pedersen, C.B. and Seshia, A.A., “On the Optimization of Compliant Force Amplifier Mechanisms for Surface Micromachined Resonant Accelerometers,” Journal of Micromechanics and Microengineering, Vol. 10, pp. 1281-1293. (2004)
Schlinquer, T., Mohand-Ousaid, A. and Rakotondrabe, M., “Displacement Amplifier Mechanism for Piezoelectric Actuators Design Using SIMP Topology Optimization Approach,” IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21-25 May. (2018)
James, K.A., and Waisman, H., “Layout Design of a Bi-stable Cardiovascular Stent Using Topology Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 305, pp. 869–890. (2016)
Tai, K., Cui, G.Y. and Ray, T., “Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape,” Journal of Mechanical Design, Vol. 124, pp. 492–500. (2002)
Miao, Y. and Zheng, J., “Optimization Design of Compliant Constant-force Mechanism for Apple Picking Actuator,” Computers and Electronics in Agriculture, Vol. 170, p. 105232. (2020)
Liu, C.H., Chung, F.M. and Ho, Y.P., “Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger,” IEEE/ASME Transactions on Mechatronics, Vol. 26, pp. 1828–1836. (2021)
Plevris, V., Mitropoulou, C.C., and Lagaros, L.D., Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications, IGI Global, Pennsylvania, pp. 232-268. (2012)
Zhang, X., Zhu, B., Zhang, H., Liang, J., Zang, H., Li, H. and Wang, R., “Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review,” Mechanism and Machine Theory, Vol. 143, pp. 1828–1836. (2020)
Kumar, P., Sauer, R.A. and Saxena, A., “Synthesis of C0 Path-Generating Contact-Aided Compliant Mechanisms Using the Material Mask Overlay Method,” Journal of Mechanical Design, Vol. 138, p. 062301. (2016)
Bendsøe, M.P., “Optimal Shape Design as a Material Distribution Problem,” Structural Optimization, Vol. 1, pp. 193–202. (1989)
Wang, M.Y., Wang, X., and Guo, D., “A Level Set Method for Structural Topology Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 192, pp. 227–246. (2003)
Luo, Z., Tong, L., Wang, M.Y. and Wang, S., “Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method,” Journal of Computational Physics, Vol. 227, pp. 680–705. (2007)
Guo, X., Zhang, W. and Zhong W., “Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework,” Journal Applied Mechanics, Vol. 81, p. 081009. (2014)
Zhang, W., Yuan, J., Zhang, J. and Guo, X., “A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model,” Structural and Multidisciplinary Optimization, Vol. 53, pp. 1243–1260. (2016)
Zhu, B., Wang, R., Wang, N., Zhang, X., Li, H. and Nishiwaki, S., “Explicit Structural Topology Optimization Using Moving Wide Bezier Components with Constrained Ends,” Structural and Multidisciplinary Optimization, Vol. 64, pp. 53–70. (2021)
Zhu, B., Wang, R., Liang, J., Lai, J., Zhang, X., Zhang, H., Li, H., Li, H. and Nishiwaki, S., “Design of Compliant Mechanisms: An Explicit Topology Optimization Method Using End-Constrained Spline Curves with Variable Width,” Mechanism and Machine Theory, Vol. 171, p. 104713. (2022)
Zhu, B., Wang, R., Wang, N. and Zhang, X., “Imposing Minimum Length Scale in Moving Morphable Component (MMC)-Based Topology Optimization Using an Effective Connection Status (ECS) Control Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 351, pp. 667–693. (2019)
Jain, C. and Saxena, A., “An Improved Material-Mask Overlay Strategy for Topology Optimization of Structures and Compliant Mechanisms,” Journal of Mechanical Design, Vol. 132, p. 061006. (2010)
Sigmund, O., “A 99 Line Topology Optimization Code Written in Matlab,” Structural and Multidisciplinary Optimization, Vol. 21, pp. 120–127. (2001)
Challis, V.J., “A Discrete Level-Set Topology Optimization Code Written in Matlab,” Structural and Multidisciplinary Optimization, Vol. 41, pp. 453–464. (2010)
Chen, Q., Zhang, X. and Zhu, B., “A 213-Line Topology Optimization Code for Geometrically Nonlinear Structures,” Structural and Multidisciplinary Optimization, Vol. 59, pp. 1863–1879. (2019)
Bendsøe, M.P. and Sigmund, O., Topology Optimization: Theory, Methods, and Applications, Springer, Berlin. (2004)
Bendsøe, M.P. and Kikuchi, N., “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 71, pp. 197–224. (1998)
Hoang, V.N. and Jang, G.W., “Topology Optimization Using Moving Morphable Bars for Versatile Thickness Control,” Computer Methods in Applied Mechanics and Engineering, Vol. 317, pp. 153–173. (2017)
Guo, X., Zhang, W., Zhang, J. and Yuan, J., “Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) with Curved Skeletons,” Computer Methods in Applied Mechanics and Engineering, Vol. 310, pp. 711–748. (2016)
Zhang, W., Li, D., Kang, P., Guo, X. and Youn, S.K., “Explicit Topology Optimization Using IGA-Based Moving Morphable Void (MMV) Approach,” Computer Methods in Applied Mechanics and Engineering, Vol. 360, p. 112685. (2020)
Hoang, V.N. and Xuan, H.N., “Extruded-Geometric-Component-Based 3D Topology Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 371, p. 113293. (2020)
Zhu, B., Chen, Q., Wang, R. and Zhang, X., “Structural Topology Optimization Using a Moving Morphable Component-Based Method Considering Geometrical Nonlinearity,” Journal of Mechanical Design, Vol. 140, p.081403. (2018)
Zhang, W., Li, D., Zhou, J., Du, Z., Li, B. and Guo, X., “A Moving Morphable Void (MMV)-Based Explicit Approach for Topology Optimization Considering Stress Constraints,” Computer Methods in Applied Mechanics and Engineering, Vol. 334, pp.381–413. (2018)
Zhang, W., Song J., Zhou, J., Du, Z., Zhu, Y., Sun, Z., and Guo, X., “Topology Optimization with Multiple Materials via Moving Morphable Component (MMC) method,” International Journal for Numerical Methods in Engineering, Vol. 113, pp.1653–1675. (2018)
Yu, M., Ruan, S., Wang, X., Li, Z. and Shen, C., “Topology Optimization of Thermal-Fluid Problem Using the MMC-Based Approach,” Structural and Multidisciplinary Optimization, Vol. 60, pp.151–165. (2019)
Saxena, A., “Synthesis of Compliant Mechanisms for Path Generation using Genetic Algorithm,” Journal of Mechanical Design, Vol. 127, pp.745–752 (2005)
Wang, N.F. and Tai, K., “Design of Grip-and-Move Manipulators Using Symmetric Path Generating Compliant Mechanisms,” Journal of Mechanical Design, Vol. 130, p.112305. (2008)
Wu, C.Y. and Tseng, K.Y., “Topology Optimization of Structures Using Modified Binary Differential Evolution,” Structural and Multidisciplinary Optimization, Vol. 42, pp.939–953. (2010)
Sigmund, O., “On the Usefulness of Non-Gradient Approaches in Topology Optimization,” Structural and Multidisciplinary Optimization, Vol. 43, pp.589–596. (2011)
Pedersen, C.B.W., Buhl, T. and Sigmund, O., “Topology Synthesis of Large-Displacement Compliant Mechanisms,” International Journal for Numerical Methods in Engineering, Vol. 50, pp.2683–2705. (2001)
Luo, Y., Wang, M.Y. and Kang, Z., “Topology Optimization of Geometrically Nonlinear Structures Based on an Additive Hyperelasticity Technique,” Computer Methods in Applied Mechanics and Engineering, Vol. 286, pp.422–441. (2015)
B-spline Curves: Knot Insertion. Available from: https://reurl.cc/b9zZZl. Accessed May 31, 2023.
Svanberg, K., “The Method of Moving Asymptotes—A New Method for Structural Optimization,” International Journal for Numerical Methods in Engineering, Vol. 24, pp.359–373. (1987)
Alcazar, E., “Exploring the Method of Moving Asymptotes for Various Optimization Applications,” Ph. D. dissertation, Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, U.S.A.. (2021)
Smoptit. Available from: http://www.smoptit.se/. Accessed June 5, 2023.
Svanberg, K. “MMA and GCMMA-Two Methods for Nonlinear Optimization,” Optimization and Systems Theory, KTH, Stockholm, Sweden, Vol. 1, pp. 1-15. (2007)
電子全文 電子全文(網際網路公開日期:20250801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top