|
1.Wu, C.-L., et al., Li-Ni Metal Oxides Processed with Rapid Atmospheric-Pressure-Plasma Jet for Flexible Gel-Electrolyte Li-Ion Hybrid Supercapacitors. ECS Advances, 2023. 2Xu, B., et al., Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordination Chemistry Reviews, 2020. 420: p. 213438. 3Dong, D., Ternary Composite MnO2@MoS2/Polypyrrole from In-situ Synthesis for Binder-free and Flexible Supercapacitor. Journal of Bioresources and Bioproducts, 2019. 4(4): p. 242-250. 4Šedajová, V., et al., Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy & Environmental Science, 2022. 15(2): p. 740-748. 5Poonam, et al., Review of supercapacitors: Materials and devices. Journal of Energy Storage, 2019. 21: p. 801-825. 6Olabi, A.G., et al., Supercapacitors as next generation energy storage devices: Properties and applications. Energy, 2022. 248: p. 123617. 7Reddy, K.R., et al., A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Materialia, 2008. 58(11): p. 1010-1013. 8Vivekchand, S.R.C., et al., Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences, 2008. 120(1): p. 9-13. 9Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature Materials, 2008. 7(11): p. 845-854. 10Li, W., et al., Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni (OH) 2 high-performance electrode for pseudocapacitors. Scientific reports, 2015. 5(1): p. 9277. 11Muzaffar, A., et al., A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews, 2019. 101: p. 123-145. 12Bhattarai, R.M., et al., Activated carbon derived from cherry flower biowaste with a self-doped heteroatom and large specific surface area for supercapacitor and sodium-ion battery applications. Chemosphere, 2022. 303: p. 135290. 13Itoi, H., et al., Non-polymeric hybridization of a TEMPO derivative with activated carbon for high-energy-density aqueous electrochemical capacitor electrodes. Sustainable Energy & Fuels, 2018. 2(3): p. 558-565. 14Heimböckel, R., F. Hoffmann, and M. Fröba, Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Physical Chemistry Chemical Physics, 2019. 21(6): p. 3122-3133. 15Huang, X., et al., Graphene-based composites. Chemical Society Reviews, 2012. 41(2): p. 666-686. 16Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature, 2009. 457(7230): p. 706-710. 17Pumera, M., Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews, 2010. 39(11): p. 4146-4157. 18Lu, W., et al., High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. Journal of Power Sources, 2009. 189(2): p. 1270-1277. 19Rangom, Y., X. Tang, and L.F. Nazar, Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability via Improved Interfacial Impedance. ACS Nano, 2015. 9(7): p. 7248-7255. 20Pint, C.L., et al., Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon, 2011. 49(14): p. 4890-4897. 21Afif, A., et al., Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage, 2019. 25: p. 100852. 22Ortega, P.F.R., et al., LiFePO4/Mesoporous Carbon Hybrid Supercapacitor Based on LiTFSI/Imidazolium Ionic Liquid Electrolyte. The Journal of Physical Chemistry C, 2018. 122(3): p. 1456-1465. 23Singh, M.K. and S.A. Hashmi, Performance of solid-state hybrid supercapacitor with LiFePO4/AC composite cathode and Li4Ti5O12 as anode. Ionics, 2017. 23(10): p. 2931-2942. 24Feng, J., et al., Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-ion battery electrode and activated carbon. Journal of Solid State Electrochemistry, 2018. 22(4): p. 1063-1078. 25Lee, B. and J.R. Yoon, Preparation and characteristics of Li4Ti5O12 with various dopants as anode electrode for hybrid supercapacitor. Current Applied Physics, 2013. 13(7): p. 1350-1353. 26Jung, H.-G., et al., A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. Journal of Power Sources, 2013. 221: p. 266-271. 27Lee, B.-G. and S.-H. Lee, Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density. Journal of Power Sources, 2017. 343: p. 545-549. 28Karuppiah, D., et al., Cobalt‐doped layered lithium nickel oxide as a three‐in‐one electrode for lithium‐ion and sodium‐ion batteries and supercapacitor applications. International Journal of Energy Research, 2020. 44(9): p. 7591-7602. 29Khaja Hussain, S. and J. Su Yu, Cobalt-doped zinc manganese oxide porous nanocubes with controlled morphology as positive electrode for hybrid supercapacitors. Chemical Engineering Journal, 2019. 361: p. 1030-1042. 30Koutavarapu, R., et al., Structural and electrochemical properties of LiNiO2 cathodes prepared by solid state reaction method. Ionics, 2020. 26(12): p. 5991-6002. 31Chang, C.-C., J.Y. Kim, and P.N. Kumta, Implications of reaction mechanism and kinetics on the synthesis of stoichiometric LiNiO2. Journal of The Electrochemical Society, 2002. 149(3): p. A331. 32Kalaiselvi, N., et al., Synthesis of optimized LiNiO2 for lithium ion batteries. Ionics, 2003. 9(5): p. 382-387. 33Xie, P., et al., Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Materials, 2021. 36: p. 56-76. 34Agharezaei, P., H. Abdizadeh, and M.R. Golobostanfard, Flexible supercapacitor electrodes based on TiO2/rGO/TiO2 sandwich type hybrids. Ceramics International, 2018. 44(4): p. 4132-4141. 35Xu, L., et al., Highly Flexible and Durable Graphene Hybrid Film Electrode Modified with Aminated β-Cyclodextrin for Supercapacitor. Journal of The Electrochemical Society, 2019. 166(8): p. A1636. 36Chang, J.-H., et al., Flexible rGO-SnO2 supercapacitors converted from pastes containing SnCl2 liquid precursor using atmospheric-pressure plasma jet. Ceramics International, 2021. 47(2): p. 1651-1659. 37Lai, J.-Y., C.-C. Hsu, and J.-Z. Chen, Comparison between atmospheric-pressure-plasma-jet-processed and furnace-calcined rGO-MnOx nanocomposite electrodes for gel-electrolyte supercapacitors. Journal of Alloys and Compounds, 2022. 911: p. 165006. 38The Magnum Group. The Plasma Torch Guide. Available from: https://themagnumgroup.net/Blog/plasma-torch-guide/. 39Chapman, S. and T.G. Cowling, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. 1990: Cambridge university press. 40Burm, K., Calculation of the Townsend discharge coefficients and the Paschen curve coefficients. Contributions to Plasma Physics, 2007. 47(3): p. 177-182. 41Tabib-Azar, M. and P. Pai, Microplasma field effect transistors. Micromachines, 2017. 8(4): p. 117. 42Eliasson, B. and U. Kogelschatz, Nonequilibrium volume plasma chemical processing. IEEE transactions on plasma science, 1991. 19(6): p. 1063-1077. 43NARLabs國家實驗研究院. 奇妙的電漿與電漿的應用. Available from: https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&qcat=0I164512522332344267&sid=0J123382852944198982. 44Garcıa, A.L.T., Transition metal carbides for high temperature pem water electrolysis. 2013. 45Arnold, T. and G. Böhm, Application of atmospheric plasma jet machining (PJM) for effective surface figuring of SiC. Precision Engineering, 2012. 36(4): p. 546-553. 46Lee, J., et al., Fast and easy disinfection of coronavirus-contaminated face masks using ozone gas produced by a dielectric barrier discharge plasma generator. Environmental Science & Technology Letters, 2021. 8(4): p. 339-344. 47Homola, T., et al., Efficiency of ozone production in coplanar dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 2019. 39: p. 1227-1242. 48Ojah, N., et al., Surface modification of core-shell silk/PVA nanofibers by oxygen dielectric barrier discharge plasma: Studies of physico-chemical properties and drug release behavior. Applied Surface Science, 2019. 475: p. 219-229. 49Knust, S., et al., Surface modification of ZnMgAl-coated steel by dielectric-barrier discharge plasma. RSC advances, 2019. 9(60): p. 35077-35088. 50Butt, F.A., M. Anwar, and U. Unal, Synthesis of metallic copper nanowires using dielectric barrier discharge plasma and their application in hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021. 46(36): p. 18866-18877. 51Mehravani, B., et al., In situ synthesis of copper nanoparticles on dielectric barrier discharge plasma-treated polyester fabrics at different reaction pHs. ACS Applied Polymer Materials, 2022. 4(5): p. 3908-3918. 52Das, S., G. Dalei, and A. Barik. A dielectric barrier discharge (DBD) plasma reactor: An efficient tool to measure the sustainability of non-thermal plasmas through the electrical breakdown of gases. in IOP Conference Series: Materials Science and Engineering. 2018. IOP Publishing. 53Chapter 3 - Material Surface Preparation Techniques, in Adhesives Technology Handbook (Second Edition), S. Ebnesajjad, Editor. 2009, William Andrew Publishing: Norwich, NY. p. 37-46. 54Schutze, A., et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE transactions on plasma science, 1998. 26(6): p. 1685-1694. 55Chang, J.-S., Recent development of plasma pollution control technology: a critical review. Science and Technology of Advanced Materials, 2001. 2(3-4): p. 571. 56Gonzalez-Aguilar, J., et al., A theoretical study of a cutting air plasma torch. IEEE Transactions on plasma science, 1999. 27(1): p. 264-271. 57Trelles, J., et al., Arc plasma torch modeling. Journal of thermal spray technology, 2009. 18: p. 728-752. 58Chu, S. and A. Majumdar, Opportunities and challenges for a sustainable energy future. nature, 2012. 488(7411): p. 294-303. 59Wang, G., L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828. 60Jacobson, M.Z., Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2009. 2(2): p. 148-173. 61Ji, H., et al., Capacitance of carbon-based electrical double-layer capacitors. Nature communications, 2014. 5(1): p. 3317. 62Wang, H. and L. Pilon, Accurate simulations of electric double layer capacitance of ultramicroelectrodes. The Journal of Physical Chemistry C, 2011. 115(33): p. 16711-16719. 63Helmholtz, H.v., Studien über electrische Grenzschichten. Annalen der Physik, 1879. 243(7): p. 337-382. 64Saleem, J., et al., Production and applications of activated carbons as adsorbents from olive stones. Biomass Conversion and Biorefinery, 2019. 9: p. 775-802. 65Fujishige, M., et al., Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material. Journal of Environmental Chemical Engineering, 2017. 5(2): p. 1801-1808. 66Itoi, H., et al., Synthesis of Polynorbornadiene within the Pores of Activated Carbons: Effects on EDLC and Hydrogen Adsorption Performances. Langmuir, 2022. 38(39): p. 12024-12034. 67Wang, H., et al., From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors. Journal of Power Sources, 2007. 169(2): p. 375-380. 68Simon, P. and A. Burke, Nanostructured carbons: double-layer capacitance and more. The electrochemical society interface, 2008. 17(1): p. 38. 69Kim, Y.H., et al., Compact graphene powders with high volumetric capacitance: Microspherical assembly of graphene via surface modification using cyanamide. Energy Storage Materials, 2020. 24: p. 351-361. 70Miller, J.R., R.A. Outlaw, and B.C. Holloway, Graphene electric double layer capacitor with ultra-high-power performance. Electrochimica Acta, 2011. 56(28): p. 10443-10449. 71Garakani, M.A., et al., Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature. Energy Storage Materials, 2021. 34: p. 1-11. 72Wang, X., et al., Transparent carbon films as electrodes in organic solar cells. Angewandte Chemie International Edition, 2008. 47(16): p. 2990-2992. 73Ma, L.-P., et al., Hydrogen adsorption behavior of graphene above critical temperature. International journal of hydrogen energy, 2009. 34(5): p. 2329-2332. 74Wu, Z.S., et al., Field emission of single‐layer graphene films prepared by electrophoretic deposition. Advanced Materials, 2009. 21(17): p. 1756-1760. 75Roberts, M., et al., Continuum plate theory and atomistic modeling to find the flexural rigidity of a graphene sheet interacting with a substrate. Journal of nanotechnology, 2010. 2010. 76Jung, M., et al., EDLC characteristics of CNTs grown on nanoporous alumina templates. Electrochimica Acta, 2004. 50(2): p. 857-862. 77Yoneda, D., et al., Growth of vertically-aligned carbon nanotubes on graphite for electric double-layer capacitors. Materials Research Express, 2019. 6(8): p. 086322. 78Gogotsi, Y. and R.M. Penner, Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like? 2018, ACS Publications. p. 2081-2083. 79Maruyama, T., Chapter 6 - Carbon nanotubes, in Handbook of Carbon-Based Nanomaterials, S. Thomas, et al., Editors. 2021, Elsevier. p. 299-319. 80Chen, M., et al., Controlled Synthesis of Nickel Encapsulated into Nitrogen-Doped Carbon Nanotubes with Covalent Bonded Interfaces: The Structural and Electronic Modulation Strategy for an Efficient Electrocatalyst in Dye-Sensitized Solar Cells. Chemistry of Materials, 2017. 29(22): p. 9680-9694. 81Schroeder, V., et al., Carbon Nanotube Chemical Sensors. Chemical Reviews, 2019. 119(1): p. 599-663. 82Janudin, N., et al., Effect of functionalized carbon nanotubes in the detection of benzene at room temperature. Journal of Nanotechnology, 2018. 2018. 83Fang, Z., et al., Hybrid NiO–CuO mesoporous nanowire array with abundant oxygen vacancies and a hollow structure as a high-performance asymmetric supercapacitor. Journal of Materials Chemistry A, 2018. 6(42): p. 21131-21142. 84Wei, L., et al., Polypyrrole‐derived activated carbons for high‐performance electrical double‐layer capacitors with ionic liquid electrolyte. Advanced Functional Materials, 2012. 22(4): p. 827-834. 85Schütter, C., S. Pohlmann, and A. Balducci, Industrial requirements of materials for electrical double layer capacitors: impact on current and future applications. Advanced Energy Materials, 2019. 9(25): p. 1900334. 86An, G.-H. and H.-J. Ahn, Excellent electrochemical stability of graphite nanosheet-based interlayer for electric double layer capacitors. Applied Surface Science, 2019. 473: p. 77-82. 87Conway, B. and W. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. Journal of Solid State Electrochemistry, 2003. 7: p. 637-644. 88Conway, B.E. and E. Gileadi, Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage. Transactions of the Faraday Society, 1962. 58: p. 2493-2509. 89Srinivasan, S. and E. Gileadi, The potential-sweep method: A theoretical analysis. Electrochimica Acta, 1966. 11(3): p. 321-335. 90Trasatti, S. and G. Buzzanca, Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971. 29(2): p. A1-A5. 91Herrero, E., L.J. Buller, and H.D. Abruña, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chemical Reviews, 2001. 101(7): p. 1897-1930. 92Conway, B. and H. Angerstein-Kozlowska, The electrochemical study of multiple-state adsorption in monolayers. Accounts of Chemical Research, 1981. 14(2): p. 49-56. 93Fleischmann, S., et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chemical Reviews, 2020. 120(14): p. 6738-6782. 94Liu, Y., S.P. Jiang, and Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Materials Today Advances, 2020. 7: p. 100072. 95Lee, C.-Y. and A.M. Bond, Revelation of Multiple Underlying RuO2 Redox Processes Associated with Pseudocapacitance and Electrocatalysis. Langmuir, 2010. 26(20): p. 16155-16162. 96Yan, L., et al., Experimental and theoretical investigation of the effect of oxygen vacancies on the electronic structure and pseudocapacitance of MnO2. ChemSusChem, 2019. 12(15): p. 3571-3581. 97Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614. 98Makkus, R., K. Hemmes, and J. De Wit, A comparative study of NiO (Li), LiFeO2, and LiCoO2 porous cathodes for molten carbonate fuel cells. Journal of the Electrochemical Society, 1994. 141(12): p. 3429. 99Zhong, D., et al., Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using a petaline NiO@ polyaniline-carbon felt anode. Bioresource technology, 2018. 258: p. 125-134. 100Dirksen, J.A., K. Duval, and T.A. Ring, NiO thin-film formaldehyde gas sensor. Sensors and Actuators B: Chemical, 2001. 80(2): p. 106-115. 101Singh, P. and S.K. Shukla, Opto-chemical glucose sensing over NiO/polyaniline hybrid matrix using optical fiber approach. Optik, 2018. 165: p. 94-101. 102Xia, X.-h., et al., Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011. 21(3): p. 671-679. 103Zhu, Z.-z., et al., Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochimica Acta, 2011. 56(3): p. 1366-1372. 104Shafi, P.M., et al., Sr- and Fe-substituted LaMnO3 Perovskite: Fundamental insight and possible use in asymmetric hybrid supercapacitor. Energy Storage Materials, 2022. 45: p. 119-129. 105Chatterjee, D.P. and A.K. Nandi, A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 2021. 9(29): p. 15880-15918. 106Najib, S. and E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Advances, 2019. 1(8): p. 2817-2827. 107Jansen, A.N., et al., Development of a high-power lithium-ion battery. Journal of Power Sources, 1999. 81-82: p. 902-905. 108Ohzuku, T., A. Ueda, and N. Yamamoto, Zero‐strain insertion material of Li [Li1/3Ti5/3] O 4 for rechargeable lithium cells. Journal of the Electrochemical Society, 1995. 142(5): p. 1431. 109Tomboc, G.M. and H. Kim, Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: An efficient electrode towards high energy density supercapacitor. Electrochimica Acta, 2019. 318: p. 392-404. 110Naoi, K., et al., High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. Journal of Power Sources, 2010. 195(18): p. 6250-6254. 111Lyu, L., et al., Defect engineering induced heterostructure of Zn-birnessite@ spinel ZnMn2O4 nanocrystal for flexible asymmetric supercapacitor. Chemical Engineering Journal, 2022. 430: p. 133115. 112Javed, M.S., et al., Recent progress in flexible Zn‐ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications. Carbon Energy, 2023. 5(1): p. e271. 113Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539. 114Moses, A.W., et al., Surface properties of LiCoO2, LiNiO2 and LiNi1−xCoxO2. Applied Surface Science, 2007. 253(10): p. 4782-4791. 115Ceder, G., et al., Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 1998. 392(6677): p. 694-696. 116Contestabile, M., S. Panero, and B. Scrosati, Laboratory-scale lithium-ion battery recycling process. Journal of Power Sources, 2001. 92(1-2): p. 65-69. 117Yamada, S., M. Fujiwara, and M. Kanda, Synthesis and properties of LiNiO2 as cathode material for secondary batteries. Journal of Power Sources, 1995. 54(2): p. 209-213. 118Ebner, W., D. Fouchard, and L. Xie, The LiNiO2/carbon lithium-ion battery. Solid State Ionics, 1994. 69(3): p. 238-256. 119Delmas, C., et al., On the behavior of the LixNiO2 system: an electrochemical and structural overview. Journal of Power Sources, 1997. 68(1): p. 120-125. 120Rougier, A., et al., Effect of cobalt substitution on cationic distribution in LiNi1− y CoyO2 electrode materials. Solid State Ionics, 1996. 90(1-4): p. 83-90. 121Rougier, A., P. Gravereau, and C. Delmas, Optimization of the composition of the Li1− z Ni1+ z O 2 electrode materials: structural, magnetic, and electrochemical studies. Journal of The Electrochemical Society, 1996. 143(4): p. 1168. 122Thomas, M., W. I. F. David, JB Goodenough and P. Groves. Mat. Res. Bull, 1985. 20: p. 1137. 123Bianchini, M., et al., There and back again—the journey of LiNiO2 as a cathode active material. Angewandte Chemie International Edition, 2019. 58(31): p. 10434-10458. 124Kanno, R., et al., Phase relationship and lithium deintercalation in lithium nickel oxides. Journal of Solid State Chemistry, 1994. 110(2): p. 216-225. 125Tomchenko, A.A., Printed Chemical Sensors: From Screen-Printing to Microprinting∗. Encycl. Sens, 2006. 10: p. 279-290. 126Asynt Ltd. Rotary Evaporator. Available from: https://www.asynt.com/blog/what-is-a-rotary-evaporator/. 127Elgrishi, N., et al., A practical beginner’s guide to cyclic voltammetry. Journal of chemical education, 2018. 95(2): p. 197-206. 128Kim, T., et al., Applications of voltammetry in lithium ion battery research. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 14-25. 129Eleri, O.E., F. Lou, and Z. Yu, Characterization Methods for Supercapacitors, in Nanostructured Materials for Supercapacitors. 2022, Springer. p. 101-128. 130Licht, F., M.A. Davis, and H.A. Andreas, Charge redistribution and electrode history impact galvanostatic charging/discharging and associated figures of merit. Journal of Power Sources, 2020. 446: p. 227354. 131Zhao, J. and A.F. Burke, Electrochemical capacitors: performance metrics and evaluation by testing and analysis. Advanced Energy Materials, 2021. 11(1): p. 2002192. 132Zhou, S., et al., An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film. Nanoscale, 2020. 12(16): p. 8934-8941. 133Wang, J., et al., Construction of hierarchical Co9S8@ NiO synergistic microstructure for high-performance asymmetric supercapacitor. Journal of Colloid and Interface Science, 2021. 603: p. 440-449. 134Li, Z., et al., Facile Synthesis and Outstanding Supercapacitor Performance of Ternary Nanocomposite of Silver Particles Decorated N/S Dual-Doped Graphene and MoS2 Microspheres Stabilized by Graphene Quantum Dots. Journal of The Electrochemical Society, 2022. 169(2): p. 020525. 135Hebbar, R., A. Isloor, and A. Ismail, Contact angle measurements, in Membrane characterization. 2017, Elsevier. p. 219-255. 136Huhtamäki, T., et al., Surface-wetting characterization using contact-angle measurements. Nature protocols, 2018. 13(7): p. 1521-1538. 137Drelich, J. and E. Chibowski, Superhydrophilic and superwetting surfaces: definition and mechanisms of control. Langmuir, 2010. 26(24): p. 18621-18623. 138Drelich, J. and A. Marmur, Physics and applications of superhydrophobic and superhydrophilic surfaces and coatings. Surface Innovations, 2014. 2(4): p. 211-227. 139Jeevahan, J., et al., Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research, 2018. 15: p. 231-250. 140kctech Ltd. SEM. Available from: https://www.kctech.com.tw/what-is-sem/. 141Sudhanshu, R., X-ray Photoelectron Spectroscopy (XPS) Technology. 2020, ResearchGate. 142科學 Online. XPS. Available from: https://highscope.ch.ntu.edu.tw/wordpress/?p=72999. 143Stan, C.V., et al., X-ray diffraction under extreme conditions at the Advanced Light Source. Quantum Beam Science, 2018. 2(1): p. 4. 144PhysicsOpenLab. Power Diffraction. Available from: https://physicsopenlab.org/2018/01/18/laue-diffraction/. 145Bunaciu, A.A., E.G. UdriŞTioiu, and H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 2015. 45(4): p. 289-299. 146Lin, Y., et al., A naturally tailored small molecule for the preparation of ethyl cellulose supramolecular composite film. Cellulose, 2021. 28(1): p. 289-300. 147Kim, B.-H., et al., Electrochemical properties of LiNiO2 cathode material synthesized by the emulsion method. Ceramics international, 2007. 33(5): p. 837-841. 148Ouarga, A., et al., Development of anti-corrosion coating based on phosphorylated ethyl cellulose microcapsules. Progress in Organic Coatings, 2020. 148: p. 105885. 149Wei, Y., et al., Hierarchical molybdenum disulfide nanosheet arrays stemmed from nickel-cobalt layered double hydroxide/carbon cloth for highly-efficient hydrogen evolution reaction. Journal of Energy Chemistry, 2021. 57: p. 587-592. 150Yu, T., et al., Zn 2 GeO 4 nanorods grown on carbon cloth as high performance flexible lithium-ion battery anodes. RSC advances, 2017. 7(82): p. 51807-51813. 151Hirano, A., et al., Relationship between non-stoichiometry and physical properties in LiNiO2. Solid State Ionics, 1995. 78(1): p. 123-131. 152Kalyani, P. and N. Kalaiselvi, Various aspects of LiNiO2 chemistry: A review. Science and technology of advanced materials, 2005. 6(6): p. 689. 153Sun, H., et al., Recycling of carbon fibers from carbon fiber reinforced polymer using electrochemical method. Composites Part A: Applied Science and Manufacturing, 2015. 78: p. 10-17. 154Todea, M., et al., XPS investigation of new solid forms of 5-fluorouracil with piperazine. Journal of Molecular Structure, 2018. 1165: p. 120-125. 155Liao, C.-Y., et al., Low-Temperature-Annealed Reduced Graphene Oxide–Polyaniline Nanocomposites for Supercapacitor Applications. Journal of Electronic Materials, 2018. 47: p. 3861-3868. 156Philippe, B., et al., Photoelectron spectroscopy for lithium battery interface studies. Journal of The Electrochemical Society, 2015. 163(2): p. A178. 157Guczi, L., et al., Methane dry reforming with CO2: A study on surface carbon species. Applied Catalysis A: General, 2010. 375(2): p. 236-246. 158Oswald, S., Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations. Applied Surface Science, 2015. 351: p. 492-503. 159Cherkashinin, G., D. Ensling, and W. Jaegermann, LiMO 2 (M= Ni, Co) thin film cathode materials: a correlation between the valence state of transition metals and the electrochemical properties. Journal of Materials Chemistry A, 2014. 2(10): p. 3571-3580. 160Bondarchuk, O., et al., On the X-ray photoelectron spectroscopy analysis of LiNixMnyCozO2 material and electrodes. Applied Surface Science, 2021. 535: p. 147699. 161Wang, J., et al., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. The Journal of Physical Chemistry C, 2007. 111(40): p. 14925-14931. 162Kaus, M., J. Kowal, and D.U. Sauer, Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochimica Acta, 2010. 55(25): p. 7516-7523. 163Graydon, J.W., M. Panjehshahi, and D.W. Kirk, Charge redistribution and ionic mobility in the micropores of supercapacitors. Journal of Power Sources, 2014. 245: p. 822-829.
|