跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/23 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鮑力誠
研究生(外文):Li-Cheng Pao
論文名稱:分樑法與非齊性特徵值解於溫克勒地基模型與多重負載的歐拉-伯努力樑之應用
論文名稱(外文):Application of Split Beam Method and Non-Homogeneous Eigenvalue Solution in Winkler Foundation Model and Euler-Bernoulli Beam with Multiple Loads
指導教授:趙聖德趙聖德引用關係
指導教授(外文):Sheng-Der Chao
口試委員:舒貽忠陳志鴻施博仁張書瑋
口試委員(外文):Yi-Chung ShuChih-Hung ChenPo-Jen ShihShu-Wei Chang
口試日期:2023-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:95
中文關鍵詞:歐拉-伯努力樑方程問題分樑法溫克勒地基模型模態振型函數非齊性特徵值解瑞利-里茲方法
外文關鍵詞:Euler-Bernoulli Beam EquationSplit Beam MethodWinkler Foundation Modelmode shape functionnonhomogeneous eigenvalue solutionRayleigh-Ritz Method
DOI:10.6342/NTU202301968
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文延續實驗室發展的新方法__分樑法(Split Beam Method),用於更加快速地解決在承受多種負載情況下的歐拉-伯努力樑方程(Euler-Bernoulli Beam Equation)問題。分樑法原理是對楊氏模量(Young's modulus)進行分解,分解後的楊氏模量分別對應不同的負載形成基函數方程式,將這些方程式求解得出基函數,再將基函數做線性疊加代回原歐拉-伯努力樑方程並利用瑞利-里茲方法(Rayleigh-Ritz Method)與非齊性特徵值公式求出特徵值及線性疊加的係數,最後將係數代回即得樑方程的模態振型函數(Mode shape function)。
然後用兩個模型去示範分樑法的應用及特性。第一個模型選用溫克勒地基模型(Winkler Foundation Model),我們把此模型的彈簧當成負載來分解,分解成兩個或多個只作用於一點的彈簧,這些彈簧的彈性係數依照分解出的基函數方程數量去做平分,然後把分解的數量慢慢增加來觀察模態振型函數及特徵值的收斂情況,能發現分解成四個以上之後,便能有與溫克勒地基模型解析解不到百分之一的誤差,也代表著我們用四個彈簧就能模擬出無限個彈簧對樑之影響。而第二個模型放了三個不同大小的單點外力,然後把這三個外力大小加總並平均分成四個或八個單點力放置於樑的各處,隨後調整組合外力之位置,以觀察係數之變化,隨著組合外力慢慢右移,可以看出放在較左邊的基函數係數也隨之變小而右邊的基函數係數則反之,從係數的變化中能清楚地看出樑在各位置受力的變化。從兩個例子中能證實比起傅立葉展開法能用更少的基函數就能達到很好的精準度,並且在分解負載時能依照不同情況去作改變,並從係數結果得到不同的物理意義。
This article continues the development of a new method in the laboratory called the Split Beam Method, which is used to solve the Euler-Bernoulli Beam Equation more rapidly under multiple load conditions. The principle of the Split Beam Method involves decomposing the Young's modulus and forming separate basic function equations corresponding to different loads. These equations are solved to obtain the basic functions, which are then linearly combined and substituted back into the original Euler-Bernoulli Beam Equation. The Rayleigh-Ritz Method and the non-homogeneous eigenvalue formula are used to calculate the eigenvalues and the coefficients of the linear combination. Finally, the coefficients are substituted back to obtain the mode shape function of the beam equation.
Two models are used to demonstrate the application and characteristics of the Split Beam Method. In the first model, the Winkler Foundation Model is chosen, and the springs in this model are decomposed to represent the loads. The springs are decomposed into two or more springs that act on a single point. The elastic coefficients of these springs are evenly distributed based on the number of decomposed basic function equations. By gradually increasing the number of decompositions, the convergence of the mode shape function and eigenvalues can be observed. It is found that when decomposed into four or more springs, the error is less than a certain percentage compared to the analytical solution of the Winkler Foundation Model. This means that using only four springs can simulate the influence of an infinite number of springs on the beam.
In the second model, three different point forces of varying magnitudes are applied to the beam. The sum of these three forces is divided equally into four or eight point forces placed at different positions on the beam. The positions of the three forces are adjusted to observe the changes in the coefficients. As the combined forces gradually move to the right, it can be observed that the coefficients of the basic functions on the left decrease, while those on the right increase. The changes in the coefficients clearly reflect the variations in the forces acting on the beam at different positions.
These two examples demonstrate that the Split Beam Method can achieve high accuracy with fewer basic functions compared to the Fourier Expansion Method. Furthermore, the Split Beam Method allows for adjustments in the load decomposition according to different situations, and the coefficient results provide different physical interpretations.
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 XI
緒論 1
1.1 研究背景 1
第二章 理論介紹 4
2.1 歐拉-伯努力樑理論 4
2.2 樑法理論介紹 8
第三章 模型範例一 13
3.1 模型範例一架構 13
3.1.1 求解基函數Xn(x) 15
3.1.2 分樑法模態振型函數Xs(x) 17
3.1.3 溫克勒地基模型模態振型函數X(x) 19
3.2 模型範例一參數 21
3.3 結果討論 23
第四章 模型範例二 48
4.1 模型範例二架構 48
4.1.1 求解基函數Xn(x) 50
4.1.2 分樑法模態振型函數Xs(x) 52
4.1.3 受三個單點外力歐拉-伯努力之樑模態振型函數X(x) 53
4.2 模型範例二參數 56
4.3 結果討論 58
第五章 結論與未來展望 88
5.1 結論 88
5.2 未來展望 89
參考文獻 90
附錄[A] 93
附錄[B] 95
D. Gayen, R. Tiwari, and D. Chakraborty, "Thermo-mechanical analysis of a rotor-bearing system having a functionally graded shaft with transverse breathing cracks," in Proceedings of the 6th National Symposium on Rotor Dynamics: NSRD 2019, 2021: Springer, pp. 93-104.
I. Bennamia, A. Badereddine, and T. Zebbiche, "Measurement of vibrations of composite wings using high-order finite element beam," Journal of measurements in engineering, vol. 6, no. 3, pp. 143-154, 2018.
J.-S. Zhao, J.-Y. Wang, F.-L. Chu, Z.-J. Feng, and J. S. Dai, "Structural dynamics of the foldable stairs," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 226, no. 10, pp. 2549-2572, 2012.
M. Eltaher, A. E. Alshorbagy, and F. Mahmoud, "Vibration analysis of Euler–Bernoulli nanobeams by using finite element method," Applied Mathematical Modelling, vol. 37, no. 7, pp. 4787-4797, 2013.
H. Shang, R. Machado, and J. Abdalla Filho, "Dynamic analysis of Euler–Bernoulli beam problems using the generalized finite element method," Computers & Structures, vol. 173, pp. 109-122, 2016.
Y. Wang, Y. Ju, Z. Zhuang, and C. Li, "Adaptive finite element analysis for damage detection of non-uniform Euler–Bernoulli beams with multiple cracks based on natural frequencies," Engineering Computations, 2018.
M. Abu-Hilal, "Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions," Journal of sound and vibration, vol. 267, no. 2, pp. 191-207, 2003.
X. Zhao, Y. Zhao, X. Gao, X. Li, and Y. Li, "Green׳ s functions for the forced vibrations of cracked Euler–Bernoulli beams," Mechanical Systems and Signal Processing, vol. 68, pp. 155-175, 2016.
M. Klanner and K. Ellermann, "Steady-state linear harmonic vibrations of multiple-stepped Euler-Bernoulli beams under arbitrarily distributed loads carrying any number of concentrated elements," Applied and Computational Mechanics, vol. 14, no. 1, 2020.
S. Motaghian, M. Mofid, and J. Akin, "A New Fourier series solution for free vibration of non-uniform beams, resting on variable elastic foundation," Scientia Iranica, vol. 25, no. 6, pp. 2967-2979, 2018.
S. Wang, W. Zhao, G. Zhang, F. Li, and Y. Du, "Fourier series approach for the vibration of Euler–Bernoulli beam under moving distributed force: Application to train gust," Shock and Vibration, vol. 2019, pp. 1-21.
J.-J. Li, S.-F. Chiu, and S. D. Chao, "Split beam method for determining mode shapes of cantilever beams under multiple loading conditions," Journal of Vibration and Control, vol. 28, no. 21-22, pp. 3207-3217, 2022.
Y.-H. Chen and S. D. Chao, "The kinetic energy partition method applied to quantum eigenvalue problems with many harmonic-oscillator potentials," Journal of Mathematical Chemistry, vol. 55, pp. 1322-1341, 2017.
Y.-H. Chen and S. D. Chao, "The kinetic energy partition method applied to a confined quantum harmonic oscillator in a one-dimensional box," Chinese journal of physics, vol. 56, no. 2, pp. 584-592, 2018.
P. Hagedorn and A. DasGupta, Vibrations and waves in continuous mechanical systems. John Wiley & Sons, 2007.
W. Clough Ray and J. Penzien, "Dynamics of structures," Computers & Structures, Inc, 1995.
W. L. Craver Jr and D. Egle, "A method for selection of significant terms in the assumed solution in a Rayleigh-Ritz analysis," Journal of Sound and Vibration, vol. 22, no. 2, pp. 133-142, 1972.
J. E. Penny and J. R. Reed, "An integral equation approach to the fundamental frequency of vibrating beams," Journal of Sound Vibration, vol. 19, pp. 393-400, December 01, 1971, doi: 10.1016/0022-460x(71)90610-9.
G. Temple, W. Bickley, and M. Abramowitz, "Rayleigh's Principle and its Applications to Engineering," Physics Today, vol. 10, no. 3, p. 46, 1957.
F. F. Cap, "An inhomogeneous eigenvalue problem," Journal of Computational and Applied Mathematics, vol. 167, no. 1, pp. 243-249, 2004/05/01/ 2004, doi: https://doi.org/10.1016/j.cam.2003.09.002.
R. M. Mattheij and G. Söderlind, "On inhomogeneous eigenvalue problems. I," Linear Algebra and its Applications, vol. 88, pp. 507-531, 1987.
L. Ying and C. Dayong, "Inhomogeneous eigenvalue problems," Tsinghua Science and Technology, vol. 3, no. 4, pp. 1260-1264, 1998.
A. E. Abouelregal, "Thermoelastic fractional derivative model for exciting viscoelastic microbeam resting on Winkler foundation," Journal of vibration and control, vol. 27, no. 17-18, pp. 2123-2135, 2021.
A. E. Abouelregal, H. Ahmad, S. K. Badr, B. Almutairi, and B. Almohsen, "Viscoelastic stressed microbeam analysis based on Moore–Gibson–Thompson heat equation and laser excitation resting on Winkler foundation," Journal of Low Frequency Noise, Vibration and Active Control, vol. 41, no. 1, pp. 118-139, 2022.
D. A. Dillard, B. Mukherjee, P. Karnal, R. C. Batra, and J. Frechette, "A review of Winkler's foundation and its profound influence on adhesion and soft matter applications," Soft matter, vol. 14, no. 19, pp. 3669-3683, 2018.
M. A. Darabi, S. Kazemirad, and M. H. Ghayesh, "Free vibrations of beam-mass-spring systems: analytical analysis with numerical confirmation," Acta Mechanica Sinica, vol. 28, pp. 468-481, April 01, 2012, doi: 10.1007/s10409-012-0010-1.
J. Wang and P. Qiao, "Vibration of beams with arbitrary discontinuities and boundary conditions," Journal of Sound and Vibration, vol. 308, no. 1-2, pp. 12-27, 2007.
O. H. Mahrenholtz, "Beam on viscoelastic foundation: an extension of Winkler’s model," Archive of Applied Mechanics, vol. 80, pp. 93-102, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top