跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡佳璇
研究生(外文):Jia-Shiuan Tsai
論文名稱:氮氣大氣電漿噴流特性探討
論文名稱(外文):Analysis of Nitrogen Atmospheric Pressure Plasma Jet
指導教授:陳建彰陳建彰引用關係
指導教授(外文):Jian-Zhang Chen
口試委員:陳奕君陳建甫許聿翔陳志鴻
口試委員(外文):I-Chun ChengChien-Fu ChenYu-Hsiang HsuChih-Hung Chen
口試日期:2023-05-12
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:92
中文關鍵詞:大氣電漿噴流氮氣電漿數值模擬
外文關鍵詞:atmospheric pressure jet (APPJ)nitrogen plasmasimulation
DOI:10.6342/NTU202300831
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
  本研究探討氮氣大氣電漿噴流特性,藉由建立包含流體力學、熱傳輸、粒子擴散的多物理耦合數值模型,計算並討論其流場、溫度、粒子分佈等特性,並透過工作平台上的量測實驗設計做比對驗證。再藉由改變實驗參數及基材材料,分析系統受影響後各特性的變化。
研究使用含石英管的氮氣大氣電漿系統,藉由數值模型可以觀察到石英管內的流場會形成兩個渦旋,隨著流場往下游溫度及氮氣激態粒子逐漸降低,氧氣及氮氧化物則是沿著下游逐漸增加。而在工作平板上的溫度分佈,數值模型及實驗量測上有很好的吻合。
改變實驗參數的模擬結果顯示,參數的調整會表現在大氣電漿噴流的不同特性上。在大氣電漿氮氣源摻雜氧氣雜質增加時,由於氧氣增加的影響,會造成大氣電漿噴流的氮氣激態粒子減少,氧原子、臭氧及氮氧化物增加。增加氣體流量則會使得大氣電漿噴流的溫度明顯降低,氮氣激態粒子增加,影響其他粒子分佈及濃度。加大石英管下方至工作平台間隙高度則會增加下游溢入的空氣量,使得下游溫度降低且氮氣激態粒子減少、氮氧化物增加。在康寧玻璃、藍寶石晶圓及碳布三種基材進行數值模擬及溫度量測實驗的結果亦有良好對照。
利用數值模型的建立,可以對於氮氣大氣電漿噴流有特性上的了解,並提供實驗應用上調整參數的參考依據。例如輸入氣體在濃度差異及流量調整上都會影響電漿輸出的不同特性,也可以藉由控制石英管下方的間隙高度增減氣體的混合效率,進而達到改變基態粒子濃度的調整。
  This research presents analyses of the nitrogen atmospheric pressure plasma jet (APPJ). Multi-physics numerical models with fluid dynamics, heat transfer, and species transfer were developed to simulate the fluid field, temperature, and species distribution of APPJ. Furthermore, experiments of temperature measurement were set up to verify the temperature characteristics on the working platform. Then, the influences of different inlet gas impurity, flow rate, the gap between the quartz tube and the working plate, and the type of the substrate were discussed.
Based on the numerical model, the flow of APPJ would form two vortices in the quartz tube. The temperature and nitrogen excited state species decreased along the stream, while oxygen and NOx-related species increased. In addition, the temperature profile on the working plate were validated by experimental measurement data.
The numerical results showed that the adjustment of experimental parameters would contribute to APPJ characteristics. When adding oxygen impurity, the nitrogen excited state species decreased, and oxygen and NOx-related species increased. With a larger flow rate, the temperature of APPJ obviously decreased, nitrogen excited state species increased, and other species distribution were also varied. While enlarging the gap between quartz tube and the working plate, the temperature and nitrogen excited state species decreased and NOx-related species increased downstream because of more air mixture. Moreover, the temperature distribution on different substrates of Corning EXG glass, sapphire wafer, and Carbon cloth were also in accordance with experimental data.
In summary, with the assistance of the numerical model, the characteristics of APPJ could be specified, and this study could be a reference for experimental adjustment for APPJ application. For example, the APPJ output characteristic could be influenced by the inlet gas impurity and flow rate, and one can adjust the excited species concentration by controlling the gap under the quartz cylinder to vary the gas mixture efficiency.
口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xiii
符號說明 xiv
第一章 緒論 1
1.1 研究背景 1
1.1.1 電漿原理 3
1.1.2 氮氣電漿 6
1.1.3 大氣電漿噴流應用 8
1.2 文獻回顧 10
1.2.1 大氣電漿模擬 10
1.2.2 氣體濃度對於電漿特性的影響 12
1.2.3 噴流流速對於大氣電漿噴流特性的影響 15
1.2.4 含石英管之氮氣大氣電漿噴流研究 16
1.3 研究架構 18
第二章 研究方法 19
2.1 數值模型 19
2.1.1 統御方程式 21
2.1.2 區域及邊界條件設定 25
2.1.3 計算流程 32
2.2 實驗量測 33
2.3 研究設計 35
第三章 大氣電漿噴流特性 37
3.1 流場特性 37
3.2 溫度特性 39
3.2.1 石英管內之溫度特性 39
3.2.2 工作平台上溫度特性及實驗驗證 41
3.3 粒子分佈特性 43
3.3.1 主要氣體分佈特性 43
3.3.2 氮氣激態分子及氮氣原子分佈特性 45
3.3.3 氧原子、臭氧及氮氧化物分佈特性 48
第四章 實驗參數影響大氣電漿噴流特性 51
4.1 氮氣源摻雜氧氣雜質的影響 51
4.2 調整氮氣源氣體流量的影響 57
4.3 調整石英管下方至工作平板間隙高度的影響 63
第五章 基材於大氣電漿噴流作用下之溫度特性 69
5.1 實驗設計 69
5.1.1 康寧玻璃 70
5.1.2 藍寶石晶圓 71
5.1.3 碳布 72
5.2 結果討論 73
第六章 結論 75
參考文獻 77
附錄A 材料參數 84
A.1 氣體參數 84
A.1.1. 紊流及熱傳方程式使用之氣體材料參數 84
A.1.2. 擴散方程式使用之氣體材料參數 86
A.2 固體材料參數 89
A.2.1. 不鏽鋼 89
A.2.2. 石英管 89
A.2.3. 康寧玻璃 90
A.2.4. 藍寶石晶圓 91
A.2.5. 碳布 92
1.Schutze, A., et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 1998. 26(6): p. 1685-1694.
2Tendero, C., et al., Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B-Atomic Spectroscopy, 2006. 61(1): p. 2-30.
3Winter, J., R. Brandenburg, and K.D. Weltmann, Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Science & Technology, 2015. 24(6).
4Lu, X., et al., Nonequilibrium Atmospheric Pressure Plasma Jets: Fundamentals, Diagnostics, and Medical Applications. 2019.
5Selwyn, G.S., et al., Materials Processing Using an Atmospheric Pressure, RF-Generated Plasma Source. Contributions to Plasma Physics, 2001. 41(6): p. 610-619.
6Yáñez-Pacios, A. and J. Martín-Martínez, Comparative Adhesion, Ageing Resistance, and Surface Properties of Wood Plastic Composite Treated with Low Pressure Plasma and Atmospheric Pressure Plasma Jet. Polymers, 2018. 10(6): p. 643.
7Kong, J., et al., Surface Physical and Chemical Modification of Pure Iron by Using Atmospheric Pressure Plasma Treatment. Materials, 2020. 13(21): p. 4775.
8Tsai, J.-H., et al., DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application. Journal of Physics D: Applied Physics, 2018. 51(2): p. 025502.
9Cheng, P.-Y., et al., Surface Modification of FeCoNiCr Medium-Entropy Alloy (MEA) Using Octadecyltrichlorosilane and Atmospheric-Pressure Plasma Jet. Polymers, 2020. 12(4): p. 788.
10Stryczewska, H.D. and O. Boiko, Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. Applied Sciences, 2022. 12(9): p. 4405.
11Zhou, Y., et al., Effect of an Atmospheric Pressure Plasma Jet on the Structure and Physicochemical Properties of Waxy and Normal Maize Starch. Polymers, 2018. 11(1): p. 8.
12Cordaro, L., et al., The Role of Thermal Effects in Plasma Medical Applications: Biological and Calorimetric Analysis. Applied Sciences, 2019. 9(24): p. 5560.
13Domonkos, M., et al., Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Applied Sciences, 2021. 11(11): p. 4809.
14Riccardo d'Agostino, et al., Advanced Plasma Technology. 2008: Wiley-VCH.
15Mario Capitelli , et al., Plasma Kinetics in Atmospheric Gases. Springer Series on Atomic, Optical, and Plasma Physics. 2000: Springer Berlin, Heidelberg. X, 300.
16Lu, P., P.J. Cullen, and K. Ostrikov, Chapter 4 - Atmospheric Pressure Nonthermal Plasma Sources, in Cold Plasma in Food and Agriculture, N.N. Misra, O. Schlüter, and P.J. Cullen, Editors. 2016, Academic Press: San Diego. p. 83-116.
17Paul K. Chu, X.L., Low Temperature Plasma Technology. Methods and Applications. 2014: CRC Press.
18Tachibana, K., Current status of microplasma research. IEEJ Transactions on Electrical and Electronic Engineering, 2006. 1(2): p. 145-155.
19施漢章. 電漿製程技術. Apr. 19, 2023]; Available from: https://www.mse.nchu.edu.tw/uploads/bulletin_file/file/5f3615791d41c80133000036/2363_627c1fc0.pdf.
20Roth, J.R., Industrial Plasma Engineering. 1st ed. Volume 1: Principles. 1995, Boca Raton: CRC Press.
21Chvyreva, A., et al., Raether–Meek criterion for prediction of electrodeless discharge inception on a dielectric surface in different gases. Journal of Physics D: Applied Physics, 2018. 51(11): p. 115202.
22Montijn, C. and U. Ebert, Diffusion correction to the Raether–Meek criterion for the avalanche-to-streamer transition. Journal of Physics D: Applied Physics, 2006. 39(14): p. 2979.
23Fisher, L.H. and G.L. Weissler, The Apparent Breakdown of Meek's Streamer Criterion in Divergent Gaps due to the Failure of Townsend's Ionization Function. Physical Review, 1944. 66(5-6): p. 95-102.
24Lieberman, M.A. and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. 2005: John Wiley & Sons, Inc.
25Husain, E. and R.S. Nema, Analysis of Paschen Curves for air, N2 and SF6 Using the Townsend Breakdown Equation. IEEE Transactions on Electrical Insulation, 1982. EI-17: p. 350-353.
26Eliasson, B. and U. Kogelschatz, Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science, 1991. 19(6): p. 1063-1077.
27Yonker, J.D., Contribution of the First Electronically Excited State of Molecular Nitrogen to Thermospheric Nitric Oxide, in Physics. 2013, Virginia Polytechnic Institute and State University.
28Lofthus, A. and P.H. Krupenie, The spectrum of molecular nitrogen. Journal of Physical and Chemical Reference Data, 1977. 6(1): p. 113-307.
29Boivin, R.F. and E.E. Scime, Control of nitrogen species in helicon plasmas. Plasma Sources Science and Technology, 2005. 14(2): p. 283.
30Staack, D., et al., Characterization of a dc atmospheric pressure normal glow discharge. Plasma Sources Science and Technology, 2005. 14(4): p. 700.
31Hays, G.N. and H.J. Oskam. Population of N2 (B3Pg) by N2 (A3Su+) during the nitrogen afterglow. 1973.
32Mintoussov, E.I., et al., Fast gas heating in nitrogen–oxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures. Journal of Physics D: Applied Physics, 2011. 44(28): p. 285202.
33Liu, X., et al., Characteristic and Application Study of Cold Atmospheric-Pressure Nitrogen Plasma Jet. IEEE Transactions on Plasma Science, 2015. 43(6): p. 1959-1968.
34Fierro, A., G. Laity, and A. Neuber, Optical emission spectroscopy study in the VUV–VIS regimes of a developing low-temperature plasma in nitrogen gas. Journal of Physics D: Applied Physics, 2012. 45(49): p. 495202.
35Graves, D.B., Low temperature plasma biomedicine: A tutorial review. Physics of Plasmas, 2014. 21(8): p. 080901.
36Dubey, S.K., et al., Cold atmospheric plasma therapy in wound healing. Process Biochemistry, 2022. 112: p. 112-123.
37Duarte, S. and B.H.D. Panariello, Comprehensive biomedical applications of low temperature plasmas. Archives of Biochemistry and Biophysics, 2020. 693: p. 108560.
38Niemi, K., T. Gans, and D. O'Connell, Comparison of a global model to semi-kinetic fluid simulations for atmospheric pressure radio-frequency plasmas. Plasma Sources Science & Technology, 2013. 22(3).
39Greb, A., et al., Improved fluid simulations of radio-frequency plasmas using energy dependent ion mobilities. Physics of Plasmas, 2013. 20(5): p. 053502.
40Naidis, G.V., Modelling of plasma bullet propagation along a helium jet in ambient air. Journal of Physics D-Applied Physics, 2011. 44(21).
41Naidis, G.V., Modeling of Streamer Dynamics in Atmospheric-Pressure Air Plasma Jets. Plasma Processes and Polymers, 2017. 14(4-5): p. 1600127.
42Naidis, G.V. and N.Y. Babaeva, Modeling of streamer dynamics in helium plasma jets driven by modulated voltage pulses. Physics of Plasmas, 2019. 26(9): p. 094501.
43Passaras, D.N., Simulation of atmospheric pressure plasma jets with a global model, in DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS. 2016, NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS.
44Schäfer, J., et al., Searching for order in atmospheric pressure plasma jets. Plasma Physics and Controlled Fusion, 2018. 60(1): p. 014038.
45Tochikubo, F., N. Shirai, and S. Uchida, Simulation of Atmospheric Pressure Direct Current Glow Discharge along a Miniature Helium Flow in Nitrogen. Applied Physics Express, 2011. 4(5): p. 056001.
46Kuzenov, V.V. and S.V. Ryzhkov, Evaluation of the possibility of ignition of a hydrogen-oxygen mixture by erosive flame of the impulse laser. Laser Physics, 2019. 29(9).
47Kuzenov, V.V. and S.V. Ryzhkov, Calculation of plasma dynamic parameters of the magneto-inertial fusion target with combined exposure. Physics of Plasmas, 2019. 26(9): p. 092704.
48Kuzenov, V.V., S.V. Ryzhkov, and A.V. Starostin, Pulsed Jets for Dense Plasma Generation in an External Magnetic Field. Russian Physics Journal, 2020. 62(11): p. 2041-2045.
49Sakiyama, Y., et al., Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. Journal of Physics D: Applied Physics, 2012. 45(42): p. 425201.
50Asghar, A.H. and A.R. Galaly, The Effect of Oxygen Admixture with Argon Discharges on the Impact Parameters of Atmospheric Pressure Plasma Jet Characteristics. Applied Sciences, 2021. 11(15): p. 6870.
51Nascimento, F., K. Petroski, and K. Kostov, Effects of O2 Addition on the Discharge Parameters and Production of Reactive Species of a Transferred Atmospheric Pressure Plasma Jet. Applied Sciences, 2021. 11(14): p. 6311.
52Komin, O.V. and O.V. Pelipasov, Effect of O2 in plasma gas on parameters of nitrogen MIP-OES. Journal of Analytical Atomic Spectrometry, 2022. 37(7): p. 1573-1577.
53Tochikubo, F., et al., Numerical Simulation of NO Oxidation in Dielectric Barrier Discharge with Microdischarge Formation. Japanese Journal of Applied Physics, 2009. 48(7): p. 076507.
54Nikiforov, A.Y., A. Sarani, and C. Leys, The influence of water vapor content on electrical and spectral properties of an atmospheric pressure plasma jet. Plasma Sources Science & Technology, 2011. 20(1).
55Lin, K.M., et al., A parallel hybrid numerical algorithm for simulating gas flow and gas discharge of an atmospheric-pressure plasma jet. Computer Physics Communications, 2012. 183(12): p. 2550-2560.
56Lin, K.-M., Development of Parallel Hybrid Simulation of Gas Discharge and Gas Flow and Its Application in the Modeling of Atmospheric-Pressure Helium Dielectric Barrier Discharge Jet Considering Impurities, in Department of Mechanical Engineering. 2012, National Chiao Tung University.
57Lin, K.M., et al., Development of a semi-empirical 1.5D plasma fluid model for a single microdischarge in atmospheric pressure dielectric barrier discharges. Plasma Sources Science & Technology, 2019. 28(11).
58Lin, K.M., et al., Thermal characterization of a single microdischarge in atmospheric pressure air dielectric barrier discharges. Plasma Sources Science & Technology, 2020. 29(7).
59Cheng, K.-W., Fluid Modeling of Parallel-plate Nitrogen-based Dielectric Barrier Discharge Driven by a Realistic Distorted Sinusoidal AC Power Source, in Department of Mechanical Engineering. 2012, National Chiao Tung University.
60Murakami, T., et al., Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities. Plasma Sources Science & Technology, 2013. 22(1).
61Schröter, S., et al., Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity. Plasma Physics and Controlled Fusion, 2018. 60(1): p. 014035.
62Begum, A., M. Laroussi, and M.R. Pervez, Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon. AIP Advances, 2013. 3(6): p. 062117.
63Logothetis, D.K., et al., Numerical simulation of the interaction between helium jet flow and an atmospheric-pressure "plasma jet". Computers & Fluids, 2016. 140: p. 11-18.
64Hsu, C.C. and Y.J. Yang, The Increase of the Jet Size of an Atmospheric-Pressure Plasma Jet by Ambient Air Control. IEEE Transactions on Plasma Science, 2010. 38(3): p. 496-499.
65Tsai, J.-H., C.-M. Hsu, and C.-C. Hsu, Numerical Simulation of Downstream Kinetics of an Atmospheric Pressure Nitrogen Plasma Jet Using Laminar, Modified Laminar, and Turbulent Models. Plasma Chemistry and Plasma Processing, 2013. 33(6): p. 1121-1135.
66CFD Module User's Guide. 2007, COMSOL 5.3a.
67Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994. 32(8): p. 1598-1605.
68Menter, F.R., M. Kuntz, and R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model, in Turbulence, heat and mass transfer 2003, Begell House: Antalya, Turkey. p. 625-632.
69Ruhl, C. Tips for Using the Wall Distance Interface. 2014 April 21, 2014 May 11, 2023]; Available from: https://www.comsol.com/blogs/tips-using-wall-distance-interface/.
70Massman, W.J., A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmospheric Environment, 1998. 32(6): p. 1111-1127.
71Zumdahl, S.S. and D.J. DeCoste, Chemical Principles. 8th ed. 2017, USA: Cengage Learning.
72Itikawa, Y., Cross sections for electron collisions with nitrogen molecules. Journal of Physical and Chemical Reference Data, 2006. 35(1): p. 31-53.
73Tsai, I.H. and C.C. Hsu, Numerical Simulation of Downstream Kinetics of an Atmospheric-Pressure Nitrogen Plasma Jet. Ieee Transactions on Plasma Science, 2010. 38(12): p. 3387-3392.
74Moravej, M., et al., Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma. Plasma Sources Science & Technology, 2006. 15(2): p. 204-210.
75Babayan, S.E., et al., Characterization of the active species in the afterglow of a nitrogen and helium atmospheric-pressure plasma. Plasma Chemistry and Plasma Processing, 2002. 22(2): p. 255-269.
76Kossyi, I.A., et al., Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science & Technology, 1992. 1(3): p. 207-220.
77Piper, L.G., State‐to‐state N2(A 3Σ+u) energy‐pooling reactions. I. The formation of N2(C 3Πu) and the Herman infrared system. The Journal of Chemical Physics, 1988. 88(1): p. 231-239.
78Uhm, H.S., et al., Influence of oxygen on generation of reactive chemicals from nitrogen plasma jet. Sci Rep, 2018. 8(1): p. 9318.
79Herron, J.T., Evaluated Chemical Kinetics Data for Reactions of N(2D), N(2P), and N2(A 3Σu+) in the Gas Phase. Journal of Physical and Chemical Reference Data, 1999. 28(5): p. 1453-1483.
80NI-9211 Specifications. 2023 Mar. 15, 2023 Mar. 21, 2023]; Available from: https://www.ni.com/docs/en-US/bundle/ni-9211-specs/page/specifications.html.
81Çengel, Y.A., Heat and Mass Transfer. 3rd ed. 2006: The McGraw-Hill Companies.
82Specifications of Carbon Cloth. Apr. 14 2023]; Available from: http://www.ce-tech.com.tw/products.php?func=p_detail&p_id=14&pc_parent=2.
83Morgan, J.E. and H.I. Schiff, Diffusion Coefficients of O + N Atoms in Inert Gases. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1964. 42(10): p. 2300-&.
84Rudich, Y., et al., Uptake of NO3 on KI solutions: rate coefficient for the NO3 + I− reaction and gas-phase diffusion coefficients for NO3. Chemical Physics Letters, 1996. 261: p. 467-473.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top