跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳采萱
研究生(外文):Tsai-Hsuan Chen
論文名稱:新穎液流式電池去離子技術於高效能脫鹽之研究:從電雙層電荷儲存到法拉第反應分離
論文名稱(外文):Redox-flow battery desalination for high-efficient desalination: from double-layer charge storage to Faradaic ion separation
指導教授:侯嘉洪王大銘
指導教授(外文):Chia-Hung HouDa-Ming Wang
口試委員:蔣本基顧洋林逸彬陳威翔陳雨農
口試委員(外文):Pen-Chi ChiangYoung KuYi-Pin LinWei-Hsiang ChenYu-Nung Chen
口試日期:2023-06-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:122
中文關鍵詞:多通道電化學系統液流式電池去離子法拉第反應高效脫鹽新穎電極材料
外文關鍵詞:Multi-chamber electrochemical ion separationRedox-flow battery desalinationFaradaic reactionHigh-efficient desalinationAdvanced electrode material
DOI:10.6342/NTU202302519
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因應台灣水資源發展的挑戰與困境,具低能耗、高效率的新型電化學水處理技術成為開發多元化水源的途徑之一,可應用於廢水再生與海水淡化等領域。本研究首先選定三通道電化學系統,藉由多孔性碳電極與離子交換薄膜之排列,控制通道之間的離子移動,利用充電階段碳電極的電雙層電荷儲存與放電階段的透析分離機制,達到連續脫鹽與濃縮之成效。相比典型電容去離子系統,此三通道的結構不僅克服的半連續產水限制,其脫鹽量亦於選定之操作電壓範圍(1.0~2.5 V)中顯著提高至少3倍。然而,採用多孔碳電極的電容透析系統仍舊受限於充電與放電的兩段式操作。
為實現多通道電化學技術的連續操作,本研究建構具四通道的新穎液流式電池去離子系統,引入具法拉第反應特性的液流式電池材料電解液:鐵氰化鉀/亞鐵氰化鉀。在外部電場(0.2~0.8 V)的作用下,亞鐵氰化鉀於陽極流道氧化成鐵氰化鉀,並循環至陰極流道後再被還原成亞鐵氰化鉀,利用其連續的法拉第反應及多通道的系統結構實現液流式電池去離子系統的同步脫鹽與濃縮。於此基礎上,結合靜電紡絲碳纖維材料,並藉由調控氮氣環境下的碳化溫度(700~900℃)控制其材料特性。經900℃的碳化處理後,電紡碳纖維展示高石墨化(Id/Ig=0.92)、高石墨氮比(72%)以及低材料電阻(37 Ω)。證實高碳化溫度直接提升電紡碳纖維的材料導電性。並且在循環伏安曲線中呈現明顯的氧化還原峰與高反應電流,佐證電紡碳電極維持了鐵氰化鉀/亞鐵氰化鉀之間良好的電化學可逆性以及顯著提高其法拉第反應活性。因此,將碳化控制後的靜電紡絲碳纖維作為液流式電池去離子系統之電極材料,其高導電特性在提升法拉第反應活性以促進其電荷傳輸速率的同時有效降低系統整體電阻,大幅提升系統脫鹽效能與能源表現。在0.4 V的操作電壓下處理100 mM的氯化鈉溶液,碳纖維電極將液流式電池去離子的脫鹽速率提升1.4倍、達到97.5 μg/min/cm2,並在維持96%高電荷利用效率的前提下降低脫鹽能耗(0.012 kWh/mol)。進階選擇廢水再生與海水淡化等兩大標的進行實驗室規模之實際水樣脫鹽測試,不僅其脫鹽速率分別達148.3 μg/min/cm2與 81.6 μg/min/cm2,更只需以0.013與0.016 kWh/mol的能耗成功去除98%以上的水中離子,達到低能耗高效脫鹽的目標。
進一步透過生命週期評估法檢視液流式電池去離子技術的環境影響,結果顯示其標準化衝擊(1.61×102)遠低於典型薄膜電容去離子技術(4.97×103),凸顯液流式電池去離子技術的發展前景。然而,該技術之衝擊則略高於液流式電容去離子技術(1.61×101),主要可歸因於系統材料與電池材料對的選擇。因此,未來可選用低環境衝擊之材料以提升本技術之環境友善性,期可藉由本研究成果推動液流式電池去離子技術之發展,滿足零排放水處理技術之願景。
Water scarcity and energy crisis are expanding human-related conditions that should be included in risk assessment. To date, electro-driven ion separation technology is one of the key research topics for high-efficient desalination. This study aims at proposing electrochemical ion separation technology with use of advanced electrode materials in multi-chamber system for high-efficient desalination.
A three-chamber membrane stack configuration based on an integrated capacitive-electrodialysis process (CapED) was firstly proposed for continuous and energy-efficient desalination. The three chambers between two capacitive electrodes were separated by a CEM and an AEM, which enabled simultaneous and continuous generation of desalinated and concentrated solutions. During charging, capacitive electrosorption and electrodialytic separation accounted for desalination. During discharging, the energy stored by capacitive electrosorption was utilized for desalination through dialytic separation. Therefore, continuous desalination could be achieved by a cyclic charging/discharging process. In addition, the salt removal amount was enhanced by increasing the voltage with respect to the different capacitive and electrodialytic contributions. However, the CapED system using capacitive electrodes was still limited by the two-stage operation of charging and discharging.
To achieve one-stage continuous ion separation, a redox-flow battery desalination (FBD) was developed, utilizing the reversible redox reactions of the Fe(CN)63−/4− electrolyte. The electrospun carbon fiber (CF) with tailor-made properties was developed with a carbonization temperature of 900℃ for enhancing FBD system performance. With a carbonization temperature of 900℃, the CF (CF-900) showed a high degree of graphitization (Id/Ig = 0.92), highest graphitic-N content (72%) and low electrode resistance. The cyclic voltammetry curve of CF-900 was composed of evident redox peaks with a high current level, revealing good electrochemical reversibility and high electrochemical activity of the redox reactions. At 0.4 V, high average salt removal rate (ASRR) of 97.5 μg/min/cm2 was achieved while desalinating 10 mM NaCl with addition of CF-900 electrode, which was 1.4-fold higher than in the absence of the CF electrode. The addition of CF-900 greatly improved the charge efficiency (96%) with a relatively lower energy consumption of 0.0112 kWh/mol. Moreover, the application of high-conductivity CF-900 electrode demonstrated high ASRR (148.3 μg/min/cm2 for wastewater reclamation and 81.6 μg/min/cm2 for seawater desalination) with low energy consumption, making the strategy promising for achieving an efficient FBD process.
In addition, a comprehensive life cycle assessment was conducted to evaluate the environmental impact of the FBD process. The assessment considered factors such as applied voltage and influent concentration, which were found to significantly influence the deionization performance. The findings highlighted the wide salinity working range and superior performance of FBD in comparison to membrane capacitive deionization (MCDI) and flow-electrode capacitive deionization (FCDI). Notably, the normalized impact assessment revealed that FBD (1.61×102) exhibited significantly lower environmental impact compared to MCDI (4.97×103), indicating promising prospects for the development of FBD. However, it should be noted that FBD's impact results were slightly higher than those of FCDI (1.61×101), primarily attributed to the choice of components and redox materials. Therefore, the materials with low environmental impact can be chosen for FBD to enhance the environmental friendliness of this technology.
Overall, this research contributes significant insights into the technological and environmental aspects of FBD, promoting the development of sustainable and highly efficient desalination technology for environmental sustainability.
ACKNOWLEDGEMENT I
摘要 III
ABSTRACT V
CONTENTS VIII
LIST OF TABLES X
LIST OF FIGURES XI
LIST OF SYMBOLS AND ABBREVIATIONS XV
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Research objectives 3
1.3 Organization of thesis 5
CHAPTER 2 LITERATURE REVIEW 8
2.1 Current development of low-energy desalination 8
2.1.1 Water desalination technologies 8
2.1.2 (M)CDI for low-energy desalination 9
2.2 Single-chamber electrochemical cell for desalination 12
2.2.1 Capacitive deionization with porous carbon 12
2.2.2 Battery deionization with redox material 16
2.2.3 Comparison between BDI and CDI 19
2.3 Multi-chamber electrochemical cell for desalination 26
2.3.1 Electrodialysis 26
2.3.2 Flow-electrode capacitive deionization 27
2.3.3 Redox-flow battery desalination 28
CHAPTER 3 MATERIALS AND METHODS 31
3.1 Chemicals and materials 31
3.2 Equipment 32
3.2.1 Physical and structural characterization 32
3.2.2 Electrochemical characterization 33
3.2.3 Desalination experiments 33
3.2.4 Water quality analysis 33
3.3 Experimental methods 33
3.3.1 Electrode preparation 33
3.3.2 Setup of electrochemical cell 35
3.4 Performance indicators 38
3.5 Life cycle assessment 40
3.5.1 Goal and scope definition 40
3.5.2 Inventory analysis 42
3.5.3 Life cycle impact assessment 42
CHAPTER 4 INTEGRATED CAPACITIVE-ELECTRODIALYSIS PROCESS 43
4.1 Desalination performance 43
4.2 Key operating parameters 45
4.3 Mechanisms of CapED process 52
4.4 Summary 56
CHAPTER 5 REDOX-FLOW BATTERY DESALINATION USING ELECTROSPUN CARBON FIBER ELECTRODE 58
5.1 Physical and structural characterization of the electrospun CF electrode 59
5.2 Electrochemical characterization of electrospun CF elecrode 64
5.3 Effect of carbonization temperature on electrospun CF electrode 67
5.4 Effect of influent concentration on desalination performance 72
5.5 FBD demonstration for wastewater reclamation and seawater desalination 74
5.6 Summary 78
CHAPTER 6 COMPARATIVE EVALUATION AND LIFE CYCLE ASSESSMENT OF FBD SYSTEM 80
6.1 Ion separation performance in electromembrane cell 81
6.2 Effect of applied voltage 83
6.3 Effect of influent concentration 87
6.4 Environmental impacts of electrochemical cell 89
6.5 Summary 98
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 99
7.1 Conclusions 99
7.2 Recommendations 101
REFERENCES 103
LIST OF PUBLICATION 121
Achilli, A., Prante, J. L., Hancock, N. T., Maxwell, E. B., & Childress, A. E. (2014). Experimental results from RO-PRO: a next generation system for low-energy desalination. Environmental Science & Technology, 48(11), 6437-6443.
Al-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., & Hasan, H. A. (2020). Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal, 380, 122231.
AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., & Hilal, N. (2014). Application of capacitive deionisation in water desalination: a review. Desalination, 342, 3-15.
Aly, N. H., & El-Figi, A. K. (2003). Mechanical vapor compression desalination systems—a case study. Desalination, 158(1-3), 143-150.
Amores, M. J., Meneses, M., Pasqualino, J., Antón, A., & Castells, F. (2013). Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. Journal of cleaner production, 43, 84-92.
Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R. V., Missimer, T., & Lattemann, S. (2017). Membrane-based seawater desalination: Present and future prospects. Desalination, 401, 16-21.
Asano, T., Burton, F., & Leverenz, H. (2007). Water reuse: issues, technologies, and applications. McGraw-Hill Education.
Bales, C., Kovalsky, P., Fletcher, J., & Waite, T. D. (2019). Low cost desalination of brackish groundwaters by Capacitive Deionization (CDI)–Implications for irrigated agriculture. Desalination, 453, 37-53.
Bittencourt, S. D., Marder, L., Benvenuti, T., Ferreira, J. Z., & Bernardes, A. M. (2017). Analysis of different current density conditions in the electrodialysis of zinc electroplating process solution. Separation Science and Technology, 52(13), 2079-2089.
Bunani, S., Arda, M., Kabay, N., Yoshizuka, K., & Nishihama, S. (2017). Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED). Desalination, 416, 10-15.
Bundschuh, J., Ghaffour, N., Mahmoudi, H., Goosen, M., Mushtaq, S., & Hoinkis, J. (2015). Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes. Renewable and Sustainable Energy Review, 43, 196-206.
Campione, A., Gurreri, L., Ciofalo, M., Micale, G., Tamburini, A., & Cipollina, A. (2018). Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination. 2018, 434, 121-160.
Cao, J., Wang, Y., Chen, C., Yu, F., & Ma, J. (2018). A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization. Journal of Colloid and Interface Science. 2018, 518, 69-75.
Cen, B., Yang, R., Li, K., Lv, C., & Liang, B. (2021). Covalently-bonded quaternized activated carbon for selective removal of NO3– in capacitive deionization. Chemical Engineering Journal, 425, 130573.
Cerón, M. R., Aydin, F., Hawks, S. A., Oyarzun, D. I., Loeb, C. K., Deinhart, A., Zhan, C., Pham, T. A., Stadermann, M., Campbell, P. G. (2020). Cation selectivity in capacitive deionization: elucidating the role of pore size, electrode potential, and ion dehydration. ACS Applied Materials & Interfaces, 12(38), 42644-42652.
Chang, J., Duan, F., Cao, H., Tang, K., Su, C., & Li, Y. (2019). Superiority of a novel flow-electrode capacitive deionization (FCDI) based on a battery material at high applied voltage. Desalination, 468, 114080.
Chang, L., Li, J., Duan, X., & Liu, W. (2015). Porous carbon derived from Metal–organic framework (MOF) for capacitive deionization electrode. Electrochimica Acta, 176, 956-964.
Chen, F., Wang, J., Feng, C., Ma, J., & Waite, T. D. (2020). Low energy consumption and mechanism study of redox flow desalination. Chemical Engineering Journal, 401, 126111.
Chen, S., & Chen, B. (2016). Urban energy–water nexus: a network perspective. Applied Energy, 184, 905-914.
Chen, T. H., Cuong, D. V., Jang, Y., Khu, N. Z., Chung, E., & Hou, C. H. (2022). Cation selectivity of activated carbon and nickel hexacyanoferrate electrode materials in capacitive deionization: A comparison study. Chemosphere, 307, 135613.
Chen, T. H., Tsai, S. K., Chang, J. Y., Chung, E., & Hou, C. H. (2023). Achieving an efficient redox-flow battery with high-conductivity electrospun carbon fiber for wastewater reclamation and seawater desalination. Desalination, 558, 116616.
Chen, T. H., Yeh, K. H., Lin, C. F., Lee, M., & Hou, C. H. (2022). Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: From tap water purification to wastewater reclamation for water sustainability. Resources, Conservation and Recycling, 177, 106012.
Chen, K., Liu, F., Xue, D., & Komarneni, S. (2015). Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale, 7(2), 432-439.
Chen, Y. W., Chen, J. F., Lin, C. H., & Hou, C. H. (2019). Integrating a supercapacitor with capacitive deionization for direct energy recovery from the desalination of brackish water. Applied Energy, 252, 113417.
Cheng, C. Y., Chen, T. H., Chen, K. Y., Ma, J., & Hou, C. H. (2022). Redox-flow battery with four-channel architecture for continuous and efficient desalination over a wide salinity working range. Desalination, 534, 115783.
Cheng, D., Li, Y., Zhang, J., Tian, M., Wang, B., He, Z., Dai, L., & Wang, L. (2020). Recent advances in electrospun carbon fiber electrode for vanadium redox flow battery: properties, structures, and perspectives. Carbon, 170, 527-542.
Cheng, Y., Hao, Z., Hao, C., Deng, Y., Li, X., Li, K., Zhao, Y. (2019). A review of modification of carbon electrode material in capacitive deionization. RSC Advances, 9(42), 24401-24419.
Choi, S., Chang, B., Kim, S., Lee, J., Yoon, J., & Choi, J. W. (2018). Battery electrode materials with omnivalent cation storage for fast and charge‐efficient ion removal of asymmetric capacitive deionization. Advanced Functional Materials, 28(35), 1802665.
Choi, W., Shin, H. C., Kim, J. M., Choi, J. Y., & Yoon, W. S. (2020). Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 11(1), 1-13.
Dahiya, S., & Mishra, B. K. (2020). Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress. Separation and Purification Technology, 240, 116660.
Ding, X., Shao, J., Lv, L., Zhu, Y., Jiang, Y., Shi, Q., Qu, Q., & Zheng, H. (2022). Yolk‐Shell Sb2S3@C hollow microspheres with controllable interiors for high space utilization and structural stability of Na‐storage. ChemNanoMat, 8(3), e202100515.
Ding, Z., Xu, X., Li, Y., Wang, K., Lu, T., Pan, L. (2019). Significantly improved stability of hybrid capacitive deionization using nickel hexacyanoferrate/reduced graphene oxide cathode at low voltage operation. Desalination, 468, 114078.
Długołecki, P., & van der Wal, A. (2013). Energy recovery in membrane capacitive deionization. Environmental science & technology, 47(9), 4904-4910.
Dong, Q., Wang, G., Wu, T. T., Peng, S. P., & Qiu, J. S. (2015). Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes. Journal of Colloid and Interface Science, 446, 373-378.
Doornbusch, G. J., Tedesco, M., Post, J. W., Borneman, Z., & Nijmeijer, K. (2019). Experimental investigation of multistage electrodialysis for seawater desalination. Desalination, 464, 105-114.
Dykstra, J. E., Porada, S., Van Der Wal, A., & Biesheuvel, P. M. (2018). Energy consumption in capacitive deionization–Constant current versus constant voltage operation. Water Research, 143, 367-375.
Forner-Cuenca, A., Penn, E. E., Oliveira, A. M., & Brushett, F. R. (2019). Exploring the role of electrode microstructure on the performance of non-aqueous redox flow batteries. Journal of The Electrochemical Society, 166(10), A2230.
García-Quismondo, E., Santos, C., Palma, J., & Anderson, M. A. (2016). On the challenge of developing wastewater treatment processes: capacitive deionization. Desalination and Water Treatment, 57(5), 2315-2324.
Galama, A. H., Saakes, M., Bruning, H., Rijnaarts, H. H. M., & Post, J. W. (2014). Seawater predesalination with electrodialysis. Desalination, 342, 61-69.
Gendel, Y., Rommerskirchen, A. K. E., David, O., & Wessling, M. (2014). Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochemistry Communications, 46, 152-156.
Gogotsi, Y., Penner, R. M. (2018). Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like?. ACS Nano, 12, 2081-2083.
Goren, A. Y., & Okten, H. E. (2021). Energy production from treatment of industrial wastewater and boron removal in aqueous solutions using microbial desalination cell. Chemosphere, 285, 131370.
Hashemi, S. A., Mousavi, S. M., Bahrani, S., Ramakrishna, S., Babapoor, A., & Chiang, W. H. (2020). Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Analytica Chimica Acta, 1107, 183-192.
He, J., Chen, T. H., Yang, K., Luo, L., Hou, C. H., & Ma, J. (2023). Stop-flow discharge operation aggravates spacer scaling in CDI treating brackish hard water. Desalination, 552, 116422.
Hou, C. H. (2008). Electrical double layer formation in nanoporous carbon materials. Doctoral dissertation, Georgia Institute of Technology.
Hou, C. H., & Huang, C. Y. (2013). A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314, 124-129.
Hou, X., Liang, Q., Hu, X., Zhou, Y., Ru, Q., Chen, F., & Hu, S. (2018). Coupling desalination and energy storage with redox flow electrodes. Nanoscale, 10(26), 12308-12314.
Huang, M., Kong, L., & Gao, Y. (2016). An Analysis of the Resistance of Commercial Lithium Ion Pouch Cells Based on Two Practical Thermal Performance Tests. ECS Transactions, 73(1), 319.
Iranmanesh, T., Foroughi, M. M., Jahani, S., Zandi, M. S., & Nadiki, H. H. (2020). Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta, 207, 120318.
ISO. 14040-Environmental management—Life cycle assessment—Principles and framework. international standards organization: Geneva (2006).
ISO. 14044-Environmental management—Life cycle assessment—Life cycle impact assessment. international standards organization: Geneva (2006).
Jin, D., Xi, R., Xu, S., Wang, P., & Wu, X. (2021). Numerical simulation of salinity gradient power generation using reverse electrodialysis. Desalination, 512, 115132.
Jin, X., Huang, L., Yu, S., Ye, M., Yuan, J., Shen, J., Fang, K., Weng, X. (2019). Selective electrochemical removal of cesium ion based on nickel hexacyanoferrate/reduced graphene oxide hybrids. Separation and Purification Technology, 209, 65-72.
Kalogirou, S. A. (2005). Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science, 31(3), 242-281.
Khorshidi, M., Lu, N., & Khorshidi, A. (2016). Intrinsic relationship between matric potential and cation hydration. Vadose Zone Journal, 15(11), 1-12.
Kim, N., Jeon, J., Elbert, J., Kim, C., & Su, X. (2022). Redox-mediated electrochemical desalination for waste valorization in dairy production. Chemical Engineering Journal, 428, 131082.
Kim, N., Hong, S. P., Lee, J., Kim, C., & Yoon, J. (2019). High-desalination performance via redox couple reaction in the multichannel capacitive deionization system. ACS Sustainable Chemistry & Engineering, 7(19), 16182-16189.
Kim, T., Gorski, C. A., & Logan, B. E. (2017). Low energy desalination using battery electrode deionization. Environmental Science & Technology Letters, 4(10), 444-449.
Kim, T., Gorski, C. A., & Logan, B. E. (2008). Ammonium removal from domestic wastewater using selective battery electrodes. Environmental Science & Technology Letter, 5(9), 578-583.
Landsman, M. R., Lawler, D. F., & Katz, L. E. (2020). Application of electrodialysis pretreatment to enhance boron removal and reduce fouling during desalination by nanofiltration/reverse osmosis. Desalination, 491, 114563.
Lee, M., Fan, C. S., Chen, Y. W., Chang, K. C., Chiueh, P. T., & Hou, C. H. (2019)歐Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents. Chemosphere, 235, 413-422.
Lee, M., Keller, A. A., Chiang, P. C., Den, W., Wang, H., Hou, C. H., Wu, J., Wang, X., & Yan, J. (2017). Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied Energy, 205, 589-601.
Lee, J., Kim, S., Kim, C., & Yoon, J. (2014). Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy & Environmental Science, 7(11), 3683-3689.
Li, Q., Zheng, Y., Xiao, D., Or, T., Gao, R., Li, Z., Feng, M., Shui, L., Zhou, G., Wang, X., & Chen, Z. (2020). Faradaic electrodes open a new era for capacitive deionization. Advanced Science, 7(22), 2002213.
Li, H., & Zou, L. (2011). Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination, 275(1-3), 62-66.
Li, Y., Zhang, C., Jiang, Y., Wang, T. J., & Wang, H. (2016). Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination, 399, 171-177.
Liu, R., Wang, Y., Wu, G., Luo, J., & Wang, S. (2017). Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chemical Engineering Journal, 322, 224-233.
Lopes, T. A., Queiroz, L. M., Torres, E. A., & Kiperstok, A. (2020). Low complexity wastewater treatment process in developing countries: A LCA approach to evaluate environmental gains. Science of The Total Environment, 720, 137593.
Lu, K., Song, B., Zhang, J., Ma, H. (2016). A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. Journal of Power Sources, 321, 257-263.
Luo, K., Niu, Q., Zhu, Y., Song, B., Zeng, G., Tang, W., Ye, S., Zhang, J., Duan, M., & Xing, W. (2020). Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes. Chemical Engineering Journal, 389, 124051.
Ma, J., He, C., He, D., Zhang, C., & Waite, T. D. (2018). Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. Water Research, 144, 296-303.
Ma, J., Shen, G., Zhang, R., Niu, J., Zhang, J., Wang, X., Liu, J., Li, X., & Liu, C. (2022). Small particle size activated carbon enhanced flow electrode capacitive deionization desalination performances by reducing the interfacial concentration difference. Electrochimica Acta, 431, 140971.
Ma, X., Chen, Y. A., Zhou, K., Wu, P. C., Hou, C. H. (2019). Enhanced desalination performance via mixed capacitive-Faradaic ion storage using RuO2-activated carbon composite electrodes. Electrochimica Acta, 295, 769-777.
Marcus, Y. (1991). Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. Journal of the Chemical Society, Faraday Transactions, 87(18), 2995-2999.
Mohandass, G., Chen, W., Krishnan, S., & Kim, T. (2022). Asymmetric and symmetric redox flow batteries for energy-efficient, high-recovery water desalination. Environmental Science & Technology, 56(7), 4477-4488.
Nativ, P., Badash, Y., & Gendel, Y. (2017). New insights into the mechanism of flow-electrode capacitive deionization. Electrochemistry Communications, 76, 24-28.
Palakkal, V. M., Rubio, J. E., Lin, Y. J., & Arges, C. G. (2018). Low-resistant ion-exchange membranes for energy efficient membrane capacitive deionization. ACS Sustainable Chemistry & Engineering, 6(11), 13778-13786.
Patel, S. K., Qin, M., Walker, W. S., & Elimelech, M. (2020). Energy efficiency of electro-driven brackish water desalination: Electrodialysis significantly outperforms membrane capacitive deionization. Environmental science & technology, 54(6), 3663-3677.
Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J. S., Keesman, K. J., Kaskel, S., Biesheuvel, P. M., & Presser, V. (2013). Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy & Environmental Science, 6(12), 3700-3712.
Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in materials science, 58(8), 1388-1442.
Qin, M., Deshmukh, A., Epsztein, R., Patel, S. K., Owoseni, O. M., Walker, W. S., & Elimelech, M. (2019). Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination, 455, 100-114.
Qureshi, B. A., & Zubair, S. M. (2016). Exergy and sensitivity analysis of electrodialysis reversal desalination plants. Desalination, 394, 195-203.
Rehman, R., Peng, J., Yi, H., Shen, Y., Yin, J., Li, C., Fang, C., Li, Q., Han, J. (2020). Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. RSC Advances, 10(45), 27033-27041.
Saebea, D., Chaiburi, C., & Authayanun, S. (2019). Model based evaluation of alkaline anion exchange membrane fuel cells with water management. Chemical Engineering Journal, 374, 721-729.
Salas, B. V., & Wiener, M. S. (2009). Corrosion engineering: principles and practice. Corrosion Engineering, Science, and Technology, 44(1), 8.
Sanchez, J. L., Pinto, D., & Laberty-Robert, C. (2021). Electrospun carbon fibers for microbial fuel cells: A novel bioanode design applied to wastewater treatment. Electrochimica Acta, 373, 137864.
Sánchez-Romate, X. F., Del Bosque, A., Artigas-Arnaudas, J., Muñoz, B. K., Sánchez, M., & Ureña, A. (2021). A proof of concept of a structural supercapacitor made of graphene coated woven carbon fibers: EIS study and mechanical performance. Electrochimica Acta, 370, 137746.
Schneider, P. (1995). Adsorption isotherms of microporous-mesoporous solids revisited. Applied Catalysis A: General, 129(2), 157-165.
Sebti, E., Besli, M. M., Metzger, M., Hellstrom, S., Schultz-Neu, M. J., Alvarado, J., ... & Subban, C. V. (2020). Removal of Na+ and Ca2+ with Prussian blue analogue electrodes for brackish water desalination. Desalination, 487, 114479.
Seo, S. J., Jeon, H., Lee, J. K., Kim, G. Y., Park, D., Nojima, H., Lee, J., & Moon, S. H. (2010). Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research, 44(7), 2267-2275.
Shen, L., Jiang, Y., Liu, Y., Ma, J., Sun, T., Zhu, N. (2020). High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chemical Engineering Journal, 388, 124228.
Shen, Y. Y., Hsu, C. C., Tsai, S. W., & Hou, C. H. (2021). Enhanced electrosorption selectivity of phosphate using an anion-exchange resin-coated activated carbon electrode. Journal of Colloid and Interface Science, 600, 199-208.
Shen, Y. Y., Sun, S. H., Tsai, S. W., Chen, T. H., & Hou, C. H. (2021). Development of a membrane capacitive deionization stack for domestic wastewater reclamation: A pilot-scale feasibility study. Desalination, 500, 114851.
Shen, Y. Y., Wu, S. W., & Hou, C. H. (2021). Exploring the electrosorption selectivity and recovery of indium ions with capacitive deionization in acidic solution. Journal of Colloid and Interface Science, 586, 819-829.
Sheng, L., Jiang, L., Wei, T., Zhou, Q., Jiang, Y., Jiang, Z., ... & Fan, Z. (2018). Fe(CN)63− ion-modified MnO2/graphene nanoribbons enabling high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 6(17), 7649-7658.
Shi, W., Nie, P., Zhu, G., Hu, B., Yang, J., & Liu, J. (2020). Self-supporting Prussian blue@ CNF based battery-capacitor with superhigh adsorption capacity and selectivity for potassium recovery. Chemical Engineering Journal, 388, 124162.
Shiu, H. Y., Lee, M., Chao, Y., Chang, K. C., Hou, C. H., & Chiueh, P. T. (2019). Hotspot analysis and improvement schemes for capacitive deionization (CDI) using life cycle assessment. Desalination, 468, 114087.
Shoaib-ul-Hasan, S., Roci, M., Asif, F. M., Salehi, N., & Rashid, A. (2021). Analyzing temporal variability in inventory data for life cycle assessment: Implications in the context of circular economy. Sustainability, 13(1), 344.
Silva, D. A. L., Nunes, A. O., Piekarski, C. M., da Silva Moris, V. A., de Souza, L. S. M., & Rodrigues, T. O. (2019). Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustainable Production and Consumption, 20, 304-315.
Silva, V., Poiesz, E., & van der Heijden, P. (2013). Industrial wastewater desalination using electrodialysis: evaluation and plant design. Journal of Applied Electrochemistry, 43(11), 1057-1067.
Singh, K., Porada, S., de Gier, H. D., Biesheuvel, P. M., & de Smet, L. C. P. M. (2019). Timeline on the application of intercalation materials in Capacitive Deionization. Desalination, 455, 115-134.
Singh, K., Qian, Z., Biesheuvel, P. M., Zuilhof, H., Porada, S., de Smet, L. C. (2020). Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization. Desalination, 481, 114346.
Singh, K., Zhang, L., Zuilhof, H., & de Smet, L. C. P. M. (2020). Water desalination with nickel hexacyanoferrate electrodes in capacitive deionization: Experiment, model and comparison with carbon. Desalination, 496, 114647.
Srimuk, P., Su, X., Yoon, J., Aurbach, D., Presser, V. (2020). Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials, 5(7), 517-538.
Strathmann, H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3), 268-288.
Strathmann, H. (2016). Electrodialysis. Encyclopedia of Membranes, 632-633.
Sufiani, O., Tanaka, H., Teshima, K., Machunda, R. L., & Jande, Y. A. (2020). Enhanced electrosorption capacity of activated carbon electrodes for deionized water production through capacitive deionization. Separation and Purification Technology, 247, 116998.
Suss, M. E., & Presser, V. (2018). Water desalination with energy storage electrode materials. Joule, 2(1), 10-15.
Tan, C., He, C., Fletcher, J., & Waite, T. D. (2020). Energy recovery in pilot scale membrane CDI treatment of brackish waters. Water research, 168, 115146.
Tang, W., He, D., Zhang, C., Kovalsky, P., & Waite, T. D. (2017). Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Research, 120, 229-237.
Tristán, C., Rumayor, M., Dominguez-Ramos, A., Fallanza, M., Ibáñez, R., & Ortiz, I. (2020). Life cycle assessment of salinity gradient energy recovery by reverse electrodialysis in a seawater reverse osmosis desalination plant. Sustainable Energy & Fuels, 4(8), 4273-4284.
Tsai, S. W., Hackl, L., Kumar, A., & Hou, C. H. (2021). Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI). Desalination, 497, 114764.
Tsai, W. S., Huang, C., Huang, C. C., Yang, C. C., & Lee, M. (2023). Environmental trade-offs and externalities of electrochemical-based batteries: Quantitative analysis between lithium-ion and vanadium redox flow units. Journal of Environmental Management, 326, 116807.
Wang, C., Ren, G., Yuan, B., Zhang, W., Lu, M., Liu, J., Li, K., Lin, Y. (2020). Enhancing Enzyme-like Activities of Prussian Blue Analog Nanocages by Molybdenum Doping: Toward Cytoprotecting and Online Optical Hydrogen Sulfide Monitoring. Analytical Chemistry, 92(11), 7822-7830.
Wang, Y., Vazquez-Rodriguez, I., Santos, C., Garcia-Quismondo, E., Palma, J., Anderson, M. A., & Lado, J. J. (2020). Graphite felt 3D framework composites as an easy to scale capacitive deionization electrode for brackish water desalination. Chemical Engineering Journal, 392, 123698.
Ward, A. J., Arola, K., Brewster, E. T., Mehta, C. M., & Batstone, D. J. (2018). Nutrient recovery from wastewater through pilot scale electrodialysis. Water Research, 135, 57-65.
Water Resources Agency (2019). Capacitive deionization: A progress towards commercialization, dissemination, and application, Water Resources Agency, Ministry of Economic Affairs, Taiwan (In Chinese).
Welgemoed, T. J., & Schutte, C. F. (2005). Capacitive deionization technology™: an alternative desalination solution. Desalination, 183(1-3), 327-340.
Wu, J. C., Chuang, Y. H., Liou, S. Y. H., Li, Q., & Hou, C. H. (2022). In situ engineering of highly conductive TiO2/carbon heterostructure fibers for enhanced electrocatalytic degradation of water pollutants. Journal of Hazardous Materials, 429, 128328.
Wu, H., Hu, J., Li, H., Li, H., 2013. A novel photo-electrochemical sensor for determination of hydroquinone based on copper hexacyanoferrate and platinum films modified n-silicon electrode. Sensors and Actuators B: Chemical, 182, 802-808.
Wu, Y., Xu, Y., Li, Y., Lyu, P., Wen, J., Zhang, C., Zhou, M., Fang, Y., Zhao, H., Kaiser, U., & Lei, Y. (2019). Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Research, 12(12), 2997-3002.
Xu, X., He, Q., Ma, G., Wang, H., Nirmalakhandan, N., & Xu, P. (2018). Selective separation of mono-and di-valent cations in electrodialysis during brackish water desalination: Bench and pilot-scale studies. Desalination, 428, 146-160.
Yang, F., He, Y., Rosentsvit, L., Suss, M. E., Zhang, X., Gao, T., & Liang, P. (2021). Flow-electrode capacitive deionization: A review and new perspectives. Water Research, 200, 117222.
Yan, G., Tan, H., Wang, Y., Li, Y. (2019). Amorphous quaternary alloy phosphide hierarchical nanoarrays with pagoda-like structure grown on Ni foam as pH-universal electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 489, 519-527.
Yang, S., Choi, J., Yeo, J. G., Jeon, S. I., Park, H. R., & Kim, D. K. (2016). Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration. Environmental Science & Technology, 50(11), 5892-5899.
Yang, T., Sang, L., Ding, F., Zhang, J., & Liu, X. (2012). Three-and four-electrode EIS analysis of water stable lithium electrode with solid electrolyte plate. Electrochimica Acta, 81, 179-185.
Yoon, H., Lee, J., Kim, S., Yoon, J. (2019). Review of concepts and applications of electrochemical ion separation (EIONS) process. Separation and Purification Technology, 215, 190-207.
Yu, J., Jo, K., Kim, T., Lee, J., Yoon, J., 2018. Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization. Desalination, 439, 188-195.
Yue, Y., Binder, A. J., Guo, B., Zhang, Z., Qiao, Z. A., Tian, C., Dai, S. (2014). Mesoporous prussian blue analogues: Template‐free synthesis and sodium‐ion battery applications. Angewandte Chemie International Edition, 53(12), 3134-3137.
Zhang, C., He, D., Ma, J., Tang, W., Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review. Water Research, 128, 314-330.
Zhang, C., He, D., Ma, J., Tang, W., Waite, T. D. (2019). Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochimica Acta, 299, 727-735.
Zhang, C., Ma, J., He, D., & Waite, T. D. (2017). Capacitive membrane stripping for ammonia recovery (CapAmm) from dilute wastewaters. Environmental Science & Technology Letters, 5(1), 43-49.
Zhang, C., Ma, J., Song, J., He, C., & Waite, T. D. (2018). Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system. Environmental Science & Technology, 52(24), 14275-14285.
Zhang, J., Wang, X., Liang, M., Han, M., Dai, J., Wei, Q., Zaw Oo, T., Aung, S. H., Hui, K. N. & Chen, F. (2022). High-performance photoelectrochemical desalination based on the dye-sensitized Bi2O3 anode. ACS Applied Materials & Interfaces, 14(29), 33024-33031.
Zourmand, Z., Faridirad, F., Kasiri, N., & Mohammadi, T. (2015). Mass transfer modeling of desalination through an electrodialysis cell. Desalination, 359, 41-51.
Zuo, K., Kim, J., Jain, A., Wang, T., Verduzco, R., Long, M., & Li, Q. (2018). Novel composite electrodes for selective removal of sulfate by the capacitive deionization process. Environmental Science & Technology, 52(16), 9486-9494.
電子全文 電子全文(網際網路公開日期:20280807)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top