|
Achilli, A., Prante, J. L., Hancock, N. T., Maxwell, E. B., & Childress, A. E. (2014). Experimental results from RO-PRO: a next generation system for low-energy desalination. Environmental Science & Technology, 48(11), 6437-6443. Al-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., & Hasan, H. A. (2020). Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal, 380, 122231. AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., & Hilal, N. (2014). Application of capacitive deionisation in water desalination: a review. Desalination, 342, 3-15. Aly, N. H., & El-Figi, A. K. (2003). Mechanical vapor compression desalination systems—a case study. Desalination, 158(1-3), 143-150. Amores, M. J., Meneses, M., Pasqualino, J., Antón, A., & Castells, F. (2013). Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. Journal of cleaner production, 43, 84-92. Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R. V., Missimer, T., & Lattemann, S. (2017). Membrane-based seawater desalination: Present and future prospects. Desalination, 401, 16-21. Asano, T., Burton, F., & Leverenz, H. (2007). Water reuse: issues, technologies, and applications. McGraw-Hill Education. Bales, C., Kovalsky, P., Fletcher, J., & Waite, T. D. (2019). Low cost desalination of brackish groundwaters by Capacitive Deionization (CDI)–Implications for irrigated agriculture. Desalination, 453, 37-53. Bittencourt, S. D., Marder, L., Benvenuti, T., Ferreira, J. Z., & Bernardes, A. M. (2017). Analysis of different current density conditions in the electrodialysis of zinc electroplating process solution. Separation Science and Technology, 52(13), 2079-2089. Bunani, S., Arda, M., Kabay, N., Yoshizuka, K., & Nishihama, S. (2017). Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED). Desalination, 416, 10-15. Bundschuh, J., Ghaffour, N., Mahmoudi, H., Goosen, M., Mushtaq, S., & Hoinkis, J. (2015). Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes. Renewable and Sustainable Energy Review, 43, 196-206. Campione, A., Gurreri, L., Ciofalo, M., Micale, G., Tamburini, A., & Cipollina, A. (2018). Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination. 2018, 434, 121-160. Cao, J., Wang, Y., Chen, C., Yu, F., & Ma, J. (2018). A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization. Journal of Colloid and Interface Science. 2018, 518, 69-75. Cen, B., Yang, R., Li, K., Lv, C., & Liang, B. (2021). Covalently-bonded quaternized activated carbon for selective removal of NO3– in capacitive deionization. Chemical Engineering Journal, 425, 130573. Cerón, M. R., Aydin, F., Hawks, S. A., Oyarzun, D. I., Loeb, C. K., Deinhart, A., Zhan, C., Pham, T. A., Stadermann, M., Campbell, P. G. (2020). Cation selectivity in capacitive deionization: elucidating the role of pore size, electrode potential, and ion dehydration. ACS Applied Materials & Interfaces, 12(38), 42644-42652. Chang, J., Duan, F., Cao, H., Tang, K., Su, C., & Li, Y. (2019). Superiority of a novel flow-electrode capacitive deionization (FCDI) based on a battery material at high applied voltage. Desalination, 468, 114080. Chang, L., Li, J., Duan, X., & Liu, W. (2015). Porous carbon derived from Metal–organic framework (MOF) for capacitive deionization electrode. Electrochimica Acta, 176, 956-964. Chen, F., Wang, J., Feng, C., Ma, J., & Waite, T. D. (2020). Low energy consumption and mechanism study of redox flow desalination. Chemical Engineering Journal, 401, 126111. Chen, S., & Chen, B. (2016). Urban energy–water nexus: a network perspective. Applied Energy, 184, 905-914. Chen, T. H., Cuong, D. V., Jang, Y., Khu, N. Z., Chung, E., & Hou, C. H. (2022). Cation selectivity of activated carbon and nickel hexacyanoferrate electrode materials in capacitive deionization: A comparison study. Chemosphere, 307, 135613. Chen, T. H., Tsai, S. K., Chang, J. Y., Chung, E., & Hou, C. H. (2023). Achieving an efficient redox-flow battery with high-conductivity electrospun carbon fiber for wastewater reclamation and seawater desalination. Desalination, 558, 116616. Chen, T. H., Yeh, K. H., Lin, C. F., Lee, M., & Hou, C. H. (2022). Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: From tap water purification to wastewater reclamation for water sustainability. Resources, Conservation and Recycling, 177, 106012. Chen, K., Liu, F., Xue, D., & Komarneni, S. (2015). Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale, 7(2), 432-439. Chen, Y. W., Chen, J. F., Lin, C. H., & Hou, C. H. (2019). Integrating a supercapacitor with capacitive deionization for direct energy recovery from the desalination of brackish water. Applied Energy, 252, 113417. Cheng, C. Y., Chen, T. H., Chen, K. Y., Ma, J., & Hou, C. H. (2022). Redox-flow battery with four-channel architecture for continuous and efficient desalination over a wide salinity working range. Desalination, 534, 115783. Cheng, D., Li, Y., Zhang, J., Tian, M., Wang, B., He, Z., Dai, L., & Wang, L. (2020). Recent advances in electrospun carbon fiber electrode for vanadium redox flow battery: properties, structures, and perspectives. Carbon, 170, 527-542. Cheng, Y., Hao, Z., Hao, C., Deng, Y., Li, X., Li, K., Zhao, Y. (2019). A review of modification of carbon electrode material in capacitive deionization. RSC Advances, 9(42), 24401-24419. Choi, S., Chang, B., Kim, S., Lee, J., Yoon, J., & Choi, J. W. (2018). Battery electrode materials with omnivalent cation storage for fast and charge‐efficient ion removal of asymmetric capacitive deionization. Advanced Functional Materials, 28(35), 1802665. Choi, W., Shin, H. C., Kim, J. M., Choi, J. Y., & Yoon, W. S. (2020). Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 11(1), 1-13. Dahiya, S., & Mishra, B. K. (2020). Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress. Separation and Purification Technology, 240, 116660. Ding, X., Shao, J., Lv, L., Zhu, Y., Jiang, Y., Shi, Q., Qu, Q., & Zheng, H. (2022). Yolk‐Shell Sb2S3@C hollow microspheres with controllable interiors for high space utilization and structural stability of Na‐storage. ChemNanoMat, 8(3), e202100515. Ding, Z., Xu, X., Li, Y., Wang, K., Lu, T., Pan, L. (2019). Significantly improved stability of hybrid capacitive deionization using nickel hexacyanoferrate/reduced graphene oxide cathode at low voltage operation. Desalination, 468, 114078. Długołecki, P., & van der Wal, A. (2013). Energy recovery in membrane capacitive deionization. Environmental science & technology, 47(9), 4904-4910. Dong, Q., Wang, G., Wu, T. T., Peng, S. P., & Qiu, J. S. (2015). Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes. Journal of Colloid and Interface Science, 446, 373-378. Doornbusch, G. J., Tedesco, M., Post, J. W., Borneman, Z., & Nijmeijer, K. (2019). Experimental investigation of multistage electrodialysis for seawater desalination. Desalination, 464, 105-114. Dykstra, J. E., Porada, S., Van Der Wal, A., & Biesheuvel, P. M. (2018). Energy consumption in capacitive deionization–Constant current versus constant voltage operation. Water Research, 143, 367-375. Forner-Cuenca, A., Penn, E. E., Oliveira, A. M., & Brushett, F. R. (2019). Exploring the role of electrode microstructure on the performance of non-aqueous redox flow batteries. Journal of The Electrochemical Society, 166(10), A2230. García-Quismondo, E., Santos, C., Palma, J., & Anderson, M. A. (2016). On the challenge of developing wastewater treatment processes: capacitive deionization. Desalination and Water Treatment, 57(5), 2315-2324. Galama, A. H., Saakes, M., Bruning, H., Rijnaarts, H. H. M., & Post, J. W. (2014). Seawater predesalination with electrodialysis. Desalination, 342, 61-69. Gendel, Y., Rommerskirchen, A. K. E., David, O., & Wessling, M. (2014). Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochemistry Communications, 46, 152-156. Gogotsi, Y., Penner, R. M. (2018). Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like?. ACS Nano, 12, 2081-2083. Goren, A. Y., & Okten, H. E. (2021). Energy production from treatment of industrial wastewater and boron removal in aqueous solutions using microbial desalination cell. Chemosphere, 285, 131370. Hashemi, S. A., Mousavi, S. M., Bahrani, S., Ramakrishna, S., Babapoor, A., & Chiang, W. H. (2020). Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Analytica Chimica Acta, 1107, 183-192. He, J., Chen, T. H., Yang, K., Luo, L., Hou, C. H., & Ma, J. (2023). Stop-flow discharge operation aggravates spacer scaling in CDI treating brackish hard water. Desalination, 552, 116422. Hou, C. H. (2008). Electrical double layer formation in nanoporous carbon materials. Doctoral dissertation, Georgia Institute of Technology. Hou, C. H., & Huang, C. Y. (2013). A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314, 124-129. Hou, X., Liang, Q., Hu, X., Zhou, Y., Ru, Q., Chen, F., & Hu, S. (2018). Coupling desalination and energy storage with redox flow electrodes. Nanoscale, 10(26), 12308-12314. Huang, M., Kong, L., & Gao, Y. (2016). An Analysis of the Resistance of Commercial Lithium Ion Pouch Cells Based on Two Practical Thermal Performance Tests. ECS Transactions, 73(1), 319. Iranmanesh, T., Foroughi, M. M., Jahani, S., Zandi, M. S., & Nadiki, H. H. (2020). Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta, 207, 120318. ISO. 14040-Environmental management—Life cycle assessment—Principles and framework. international standards organization: Geneva (2006). ISO. 14044-Environmental management—Life cycle assessment—Life cycle impact assessment. international standards organization: Geneva (2006). Jin, D., Xi, R., Xu, S., Wang, P., & Wu, X. (2021). Numerical simulation of salinity gradient power generation using reverse electrodialysis. Desalination, 512, 115132. Jin, X., Huang, L., Yu, S., Ye, M., Yuan, J., Shen, J., Fang, K., Weng, X. (2019). Selective electrochemical removal of cesium ion based on nickel hexacyanoferrate/reduced graphene oxide hybrids. Separation and Purification Technology, 209, 65-72. Kalogirou, S. A. (2005). Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science, 31(3), 242-281. Khorshidi, M., Lu, N., & Khorshidi, A. (2016). Intrinsic relationship between matric potential and cation hydration. Vadose Zone Journal, 15(11), 1-12. Kim, N., Jeon, J., Elbert, J., Kim, C., & Su, X. (2022). Redox-mediated electrochemical desalination for waste valorization in dairy production. Chemical Engineering Journal, 428, 131082. Kim, N., Hong, S. P., Lee, J., Kim, C., & Yoon, J. (2019). High-desalination performance via redox couple reaction in the multichannel capacitive deionization system. ACS Sustainable Chemistry & Engineering, 7(19), 16182-16189. Kim, T., Gorski, C. A., & Logan, B. E. (2017). Low energy desalination using battery electrode deionization. Environmental Science & Technology Letters, 4(10), 444-449. Kim, T., Gorski, C. A., & Logan, B. E. (2008). Ammonium removal from domestic wastewater using selective battery electrodes. Environmental Science & Technology Letter, 5(9), 578-583. Landsman, M. R., Lawler, D. F., & Katz, L. E. (2020). Application of electrodialysis pretreatment to enhance boron removal and reduce fouling during desalination by nanofiltration/reverse osmosis. Desalination, 491, 114563. Lee, M., Fan, C. S., Chen, Y. W., Chang, K. C., Chiueh, P. T., & Hou, C. H. (2019)歐Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents. Chemosphere, 235, 413-422. Lee, M., Keller, A. A., Chiang, P. C., Den, W., Wang, H., Hou, C. H., Wu, J., Wang, X., & Yan, J. (2017). Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied Energy, 205, 589-601. Lee, J., Kim, S., Kim, C., & Yoon, J. (2014). Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy & Environmental Science, 7(11), 3683-3689. Li, Q., Zheng, Y., Xiao, D., Or, T., Gao, R., Li, Z., Feng, M., Shui, L., Zhou, G., Wang, X., & Chen, Z. (2020). Faradaic electrodes open a new era for capacitive deionization. Advanced Science, 7(22), 2002213. Li, H., & Zou, L. (2011). Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination, 275(1-3), 62-66. Li, Y., Zhang, C., Jiang, Y., Wang, T. J., & Wang, H. (2016). Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination, 399, 171-177. Liu, R., Wang, Y., Wu, G., Luo, J., & Wang, S. (2017). Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chemical Engineering Journal, 322, 224-233. Lopes, T. A., Queiroz, L. M., Torres, E. A., & Kiperstok, A. (2020). Low complexity wastewater treatment process in developing countries: A LCA approach to evaluate environmental gains. Science of The Total Environment, 720, 137593. Lu, K., Song, B., Zhang, J., Ma, H. (2016). A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. Journal of Power Sources, 321, 257-263. Luo, K., Niu, Q., Zhu, Y., Song, B., Zeng, G., Tang, W., Ye, S., Zhang, J., Duan, M., & Xing, W. (2020). Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes. Chemical Engineering Journal, 389, 124051. Ma, J., He, C., He, D., Zhang, C., & Waite, T. D. (2018). Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. Water Research, 144, 296-303. Ma, J., Shen, G., Zhang, R., Niu, J., Zhang, J., Wang, X., Liu, J., Li, X., & Liu, C. (2022). Small particle size activated carbon enhanced flow electrode capacitive deionization desalination performances by reducing the interfacial concentration difference. Electrochimica Acta, 431, 140971. Ma, X., Chen, Y. A., Zhou, K., Wu, P. C., Hou, C. H. (2019). Enhanced desalination performance via mixed capacitive-Faradaic ion storage using RuO2-activated carbon composite electrodes. Electrochimica Acta, 295, 769-777. Marcus, Y. (1991). Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. Journal of the Chemical Society, Faraday Transactions, 87(18), 2995-2999. Mohandass, G., Chen, W., Krishnan, S., & Kim, T. (2022). Asymmetric and symmetric redox flow batteries for energy-efficient, high-recovery water desalination. Environmental Science & Technology, 56(7), 4477-4488. Nativ, P., Badash, Y., & Gendel, Y. (2017). New insights into the mechanism of flow-electrode capacitive deionization. Electrochemistry Communications, 76, 24-28. Palakkal, V. M., Rubio, J. E., Lin, Y. J., & Arges, C. G. (2018). Low-resistant ion-exchange membranes for energy efficient membrane capacitive deionization. ACS Sustainable Chemistry & Engineering, 6(11), 13778-13786. Patel, S. K., Qin, M., Walker, W. S., & Elimelech, M. (2020). Energy efficiency of electro-driven brackish water desalination: Electrodialysis significantly outperforms membrane capacitive deionization. Environmental science & technology, 54(6), 3663-3677. Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J. S., Keesman, K. J., Kaskel, S., Biesheuvel, P. M., & Presser, V. (2013). Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy & Environmental Science, 6(12), 3700-3712. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in materials science, 58(8), 1388-1442. Qin, M., Deshmukh, A., Epsztein, R., Patel, S. K., Owoseni, O. M., Walker, W. S., & Elimelech, M. (2019). Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination, 455, 100-114. Qureshi, B. A., & Zubair, S. M. (2016). Exergy and sensitivity analysis of electrodialysis reversal desalination plants. Desalination, 394, 195-203. Rehman, R., Peng, J., Yi, H., Shen, Y., Yin, J., Li, C., Fang, C., Li, Q., Han, J. (2020). Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. RSC Advances, 10(45), 27033-27041. Saebea, D., Chaiburi, C., & Authayanun, S. (2019). Model based evaluation of alkaline anion exchange membrane fuel cells with water management. Chemical Engineering Journal, 374, 721-729. Salas, B. V., & Wiener, M. S. (2009). Corrosion engineering: principles and practice. Corrosion Engineering, Science, and Technology, 44(1), 8. Sanchez, J. L., Pinto, D., & Laberty-Robert, C. (2021). Electrospun carbon fibers for microbial fuel cells: A novel bioanode design applied to wastewater treatment. Electrochimica Acta, 373, 137864. Sánchez-Romate, X. F., Del Bosque, A., Artigas-Arnaudas, J., Muñoz, B. K., Sánchez, M., & Ureña, A. (2021). A proof of concept of a structural supercapacitor made of graphene coated woven carbon fibers: EIS study and mechanical performance. Electrochimica Acta, 370, 137746. Schneider, P. (1995). Adsorption isotherms of microporous-mesoporous solids revisited. Applied Catalysis A: General, 129(2), 157-165. Sebti, E., Besli, M. M., Metzger, M., Hellstrom, S., Schultz-Neu, M. J., Alvarado, J., ... & Subban, C. V. (2020). Removal of Na+ and Ca2+ with Prussian blue analogue electrodes for brackish water desalination. Desalination, 487, 114479. Seo, S. J., Jeon, H., Lee, J. K., Kim, G. Y., Park, D., Nojima, H., Lee, J., & Moon, S. H. (2010). Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research, 44(7), 2267-2275. Shen, L., Jiang, Y., Liu, Y., Ma, J., Sun, T., Zhu, N. (2020). High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chemical Engineering Journal, 388, 124228. Shen, Y. Y., Hsu, C. C., Tsai, S. W., & Hou, C. H. (2021). Enhanced electrosorption selectivity of phosphate using an anion-exchange resin-coated activated carbon electrode. Journal of Colloid and Interface Science, 600, 199-208. Shen, Y. Y., Sun, S. H., Tsai, S. W., Chen, T. H., & Hou, C. H. (2021). Development of a membrane capacitive deionization stack for domestic wastewater reclamation: A pilot-scale feasibility study. Desalination, 500, 114851. Shen, Y. Y., Wu, S. W., & Hou, C. H. (2021). Exploring the electrosorption selectivity and recovery of indium ions with capacitive deionization in acidic solution. Journal of Colloid and Interface Science, 586, 819-829. Sheng, L., Jiang, L., Wei, T., Zhou, Q., Jiang, Y., Jiang, Z., ... & Fan, Z. (2018). Fe(CN)63− ion-modified MnO2/graphene nanoribbons enabling high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 6(17), 7649-7658. Shi, W., Nie, P., Zhu, G., Hu, B., Yang, J., & Liu, J. (2020). Self-supporting Prussian blue@ CNF based battery-capacitor with superhigh adsorption capacity and selectivity for potassium recovery. Chemical Engineering Journal, 388, 124162. Shiu, H. Y., Lee, M., Chao, Y., Chang, K. C., Hou, C. H., & Chiueh, P. T. (2019). Hotspot analysis and improvement schemes for capacitive deionization (CDI) using life cycle assessment. Desalination, 468, 114087. Shoaib-ul-Hasan, S., Roci, M., Asif, F. M., Salehi, N., & Rashid, A. (2021). Analyzing temporal variability in inventory data for life cycle assessment: Implications in the context of circular economy. Sustainability, 13(1), 344. Silva, D. A. L., Nunes, A. O., Piekarski, C. M., da Silva Moris, V. A., de Souza, L. S. M., & Rodrigues, T. O. (2019). Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustainable Production and Consumption, 20, 304-315. Silva, V., Poiesz, E., & van der Heijden, P. (2013). Industrial wastewater desalination using electrodialysis: evaluation and plant design. Journal of Applied Electrochemistry, 43(11), 1057-1067. Singh, K., Porada, S., de Gier, H. D., Biesheuvel, P. M., & de Smet, L. C. P. M. (2019). Timeline on the application of intercalation materials in Capacitive Deionization. Desalination, 455, 115-134. Singh, K., Qian, Z., Biesheuvel, P. M., Zuilhof, H., Porada, S., de Smet, L. C. (2020). Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization. Desalination, 481, 114346. Singh, K., Zhang, L., Zuilhof, H., & de Smet, L. C. P. M. (2020). Water desalination with nickel hexacyanoferrate electrodes in capacitive deionization: Experiment, model and comparison with carbon. Desalination, 496, 114647. Srimuk, P., Su, X., Yoon, J., Aurbach, D., Presser, V. (2020). Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials, 5(7), 517-538. Strathmann, H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3), 268-288. Strathmann, H. (2016). Electrodialysis. Encyclopedia of Membranes, 632-633. Sufiani, O., Tanaka, H., Teshima, K., Machunda, R. L., & Jande, Y. A. (2020). Enhanced electrosorption capacity of activated carbon electrodes for deionized water production through capacitive deionization. Separation and Purification Technology, 247, 116998. Suss, M. E., & Presser, V. (2018). Water desalination with energy storage electrode materials. Joule, 2(1), 10-15. Tan, C., He, C., Fletcher, J., & Waite, T. D. (2020). Energy recovery in pilot scale membrane CDI treatment of brackish waters. Water research, 168, 115146. Tang, W., He, D., Zhang, C., Kovalsky, P., & Waite, T. D. (2017). Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Research, 120, 229-237. Tristán, C., Rumayor, M., Dominguez-Ramos, A., Fallanza, M., Ibáñez, R., & Ortiz, I. (2020). Life cycle assessment of salinity gradient energy recovery by reverse electrodialysis in a seawater reverse osmosis desalination plant. Sustainable Energy & Fuels, 4(8), 4273-4284. Tsai, S. W., Hackl, L., Kumar, A., & Hou, C. H. (2021). Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI). Desalination, 497, 114764. Tsai, W. S., Huang, C., Huang, C. C., Yang, C. C., & Lee, M. (2023). Environmental trade-offs and externalities of electrochemical-based batteries: Quantitative analysis between lithium-ion and vanadium redox flow units. Journal of Environmental Management, 326, 116807. Wang, C., Ren, G., Yuan, B., Zhang, W., Lu, M., Liu, J., Li, K., Lin, Y. (2020). Enhancing Enzyme-like Activities of Prussian Blue Analog Nanocages by Molybdenum Doping: Toward Cytoprotecting and Online Optical Hydrogen Sulfide Monitoring. Analytical Chemistry, 92(11), 7822-7830. Wang, Y., Vazquez-Rodriguez, I., Santos, C., Garcia-Quismondo, E., Palma, J., Anderson, M. A., & Lado, J. J. (2020). Graphite felt 3D framework composites as an easy to scale capacitive deionization electrode for brackish water desalination. Chemical Engineering Journal, 392, 123698. Ward, A. J., Arola, K., Brewster, E. T., Mehta, C. M., & Batstone, D. J. (2018). Nutrient recovery from wastewater through pilot scale electrodialysis. Water Research, 135, 57-65. Water Resources Agency (2019). Capacitive deionization: A progress towards commercialization, dissemination, and application, Water Resources Agency, Ministry of Economic Affairs, Taiwan (In Chinese). Welgemoed, T. J., & Schutte, C. F. (2005). Capacitive deionization technology™: an alternative desalination solution. Desalination, 183(1-3), 327-340. Wu, J. C., Chuang, Y. H., Liou, S. Y. H., Li, Q., & Hou, C. H. (2022). In situ engineering of highly conductive TiO2/carbon heterostructure fibers for enhanced electrocatalytic degradation of water pollutants. Journal of Hazardous Materials, 429, 128328. Wu, H., Hu, J., Li, H., Li, H., 2013. A novel photo-electrochemical sensor for determination of hydroquinone based on copper hexacyanoferrate and platinum films modified n-silicon electrode. Sensors and Actuators B: Chemical, 182, 802-808. Wu, Y., Xu, Y., Li, Y., Lyu, P., Wen, J., Zhang, C., Zhou, M., Fang, Y., Zhao, H., Kaiser, U., & Lei, Y. (2019). Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Research, 12(12), 2997-3002. Xu, X., He, Q., Ma, G., Wang, H., Nirmalakhandan, N., & Xu, P. (2018). Selective separation of mono-and di-valent cations in electrodialysis during brackish water desalination: Bench and pilot-scale studies. Desalination, 428, 146-160. Yang, F., He, Y., Rosentsvit, L., Suss, M. E., Zhang, X., Gao, T., & Liang, P. (2021). Flow-electrode capacitive deionization: A review and new perspectives. Water Research, 200, 117222. Yan, G., Tan, H., Wang, Y., Li, Y. (2019). Amorphous quaternary alloy phosphide hierarchical nanoarrays with pagoda-like structure grown on Ni foam as pH-universal electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 489, 519-527. Yang, S., Choi, J., Yeo, J. G., Jeon, S. I., Park, H. R., & Kim, D. K. (2016). Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration. Environmental Science & Technology, 50(11), 5892-5899. Yang, T., Sang, L., Ding, F., Zhang, J., & Liu, X. (2012). Three-and four-electrode EIS analysis of water stable lithium electrode with solid electrolyte plate. Electrochimica Acta, 81, 179-185. Yoon, H., Lee, J., Kim, S., Yoon, J. (2019). Review of concepts and applications of electrochemical ion separation (EIONS) process. Separation and Purification Technology, 215, 190-207. Yu, J., Jo, K., Kim, T., Lee, J., Yoon, J., 2018. Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization. Desalination, 439, 188-195. Yue, Y., Binder, A. J., Guo, B., Zhang, Z., Qiao, Z. A., Tian, C., Dai, S. (2014). Mesoporous prussian blue analogues: Template‐free synthesis and sodium‐ion battery applications. Angewandte Chemie International Edition, 53(12), 3134-3137. Zhang, C., He, D., Ma, J., Tang, W., Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review. Water Research, 128, 314-330. Zhang, C., He, D., Ma, J., Tang, W., Waite, T. D. (2019). Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochimica Acta, 299, 727-735. Zhang, C., Ma, J., He, D., & Waite, T. D. (2017). Capacitive membrane stripping for ammonia recovery (CapAmm) from dilute wastewaters. Environmental Science & Technology Letters, 5(1), 43-49. Zhang, C., Ma, J., Song, J., He, C., & Waite, T. D. (2018). Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system. Environmental Science & Technology, 52(24), 14275-14285. Zhang, J., Wang, X., Liang, M., Han, M., Dai, J., Wei, Q., Zaw Oo, T., Aung, S. H., Hui, K. N. & Chen, F. (2022). High-performance photoelectrochemical desalination based on the dye-sensitized Bi2O3 anode. ACS Applied Materials & Interfaces, 14(29), 33024-33031. Zourmand, Z., Faridirad, F., Kasiri, N., & Mohammadi, T. (2015). Mass transfer modeling of desalination through an electrodialysis cell. Desalination, 359, 41-51. Zuo, K., Kim, J., Jain, A., Wang, T., Verduzco, R., Long, M., & Li, Q. (2018). Novel composite electrodes for selective removal of sulfate by the capacitive deionization process. Environmental Science & Technology, 52(16), 9486-9494.
|