|
Chang, F. C., & Lin, Y. P. (2019). Survey of Lead Concentration in Tap Water on a University Campus. Environmental Science and Pollution Research, 26(24), 25275-25285. doi:10.1007/s11356-019-05771-1 Cuenya, B. R. (2010). Synthesis and Catalytic Properties of Metal Nanoparticles: Size, Shape, Support, Composition, and Oxidation State Effects. Thin Solid Films, 518(12), 3127-3150. Dan, Y., Zhang, W., Xue, R., Ma, X., Stephan, C., & Shi, H. (2015). Characterization of Gold Nanoparticle Uptake by Tomato Plants Using Enzymatic Extraction Followed by Single-Particle Inductively Coupled Plasma-Mass Spectrometry Analysis. Environmental Science & Technology, 49(5), 3007-3014. doi:10.1021/es506179e Degueldre, C., & Favarger, P. Y. (2003). Colloid Analysis by Single Particle Inductively Coupled Plasma-Mass Spectroscopy: A Feasibility Study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217(1-3), 137-142. doi:10.1016/s0927-7757(02)00568-x Elzey, S., Tsai, D. H., Yu, L. L., Winchester, M. R., Kelley, M. E., & Hackley, V. A. (2013). Real-Time Size Discrimination and Elemental Analysis of Gold Nanoparticles Using Es-Dma Coupled to Icp-Ms. Analytical and Bioanalytical Chemistry, 405(7), 2279-2288. doi:10.1007/s00216-012-6617-z Fabricius, A. L., Duester, L., Meermann, B., & Ternes, T. A. (2014). Icp-Ms-Based Characterization of Inorganic Nanoparticles--Sample Preparation and Off-Line Fractionation Strategies. Analytical and Bioanalytical Chemistry, 406(2), 467-479. doi:10.1007/s00216-013-7480-2 Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative Toxicity of Nanoparticulate Zno, Bulk Zno, and Zncl2 to a Freshwater Microalga (Pseudokirchneriella Subcapitata): The Importance of Particle Solubility. Environmental Science & Technology, 41(24), 8484-8490. Hadioui, M., Merdzan, V., & Wilkinson, K. J. (2015). Detection and Characterization of Zno Nanoparticles in Surface and Waste Waters Using Single Particle Icpms. Environmental Science & Technology, 49(10), 6141-6148. doi:10.1021/acs.est.5b00681 Hadioui, M., Peyrot, C., & Wilkinson, K. J. (2014). Improvements to Single Particle Icpms by the Online Coupling of Ion Exchange Resins. Analytical Chemistry, 86(10), 4668-4674. doi:10.1021/ac5004932 Handy, R. D., Von der Kammer, F., Lead, J. R., Hassellöv, M., Owen, R., & Crane, M. (2008). The Ecotoxicology and Chemistry of Manufactured Nanoparticles. Ecotoxicology, 17(4), 287-314. doi:10.1007/s10646-008-0199-8 Hassan, P. A., Rana, S., & Verma, G. (2015). Making Sense of Brownian Motion: Colloid Characterization by Dynamic Light Scattering. Langmuir, 31(1), 3-12. doi:10.1021/la501789z Hess, A., Tarik, M., & Ludwig, C. (2015). A Hyphenated Smps–Icpms Coupling Setup: Size-Resolved Element Specific Analysis of Airborne Nanoparticles. Journal of Aerosol Science, 88, 109-118. doi:10.1016/j.jaerosci.2015.05.016 Howell, K. A., Achterberg, E. P., Tappin, A. D., & Worsfold, P. J. (2006). Colloidal Metals in the Tamar Estuary and Their Influence on Metal Fractionation by Membrane Filtration. Environmental Chemistry, 3(3), 199-207. Hsieh, Y.-C., Lin, Y.-P., Hsiao, T.-C., & Hou, W.-C. (2022). A Two-Dimensional Nanoparticle Characterization Method Combining Differential Mobility Analyzer and Single-Particle Inductively Coupled Plasma-Mass Spectrometry with an Atomizer-Enabled Sample Introduction (Atm-Dma-Spicp-Ms): Toward the Analysis of Heteroaggregated Nanoparticles in Wastewater. Science of The Total Environment, 838, 156444. Iskandar, F., Gradon, L., & Okuyama, K. (2003). Control of the Morphology of Nanostructured Particles Prepared by the Spray Drying of a Nanoparticle Sol. Journal of Colloid and Interface Science, 265(2), 296-303. doi:10.1016/s0021-9797(03)00519-8 Joudeh, N., & Linke, D. (2022). Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J Nanobiotechnology, 20(1), 262. doi:10.1186/s12951-022-01477-8 Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, Applications and Toxicities. Arabian journal of chemistry, 12(7), 908-931. Kittler, S., Greulich, C., Diendorf, J., Köller, M., & Epple, M. (2010). Toxicity of Silver Nanoparticles Increases During Storage Because of Slow Dissolution under Release of Silver Ions. Chemistry of materials, 22(16), 4548-4554. doi:10.1021/cm100023p Kálomista, I., Kéri, A., & Galbács, G. (2016). On the Applicability and Performance of the Single Particle Icp-Ms Nano-Dispersion Characterization Method in Cases Complicated by Spectral Interferences. Journal of Analytical Atomic Spectrometry, 31(5), 1112-1122. doi:10.1039/c5ja00501a Korshin, G., & Liu, H. (2019). Preventing the Colloidal Dispersion of Pb (Iv) Corrosion Scales and Lead Release in Drinking Water Distribution Systems. Environmental Science: Water Research & Technology, 5(7), 1262-1269. Laborda, F., Bolea, E., & Jiménez-Lamana, J. (2016). Single Particle Inductively Coupled Plasma Mass Spectrometry for the Analysis of Inorganic Engineered Nanoparticles in Environmental Samples. Trends in Environmental Analytical Chemistry, 9, 15-23. doi:10.1016/j.teac.2016.02.001 Laborda, F., Bolea, E., & Jimenez-Lamana, J. (2014). Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Analytical Chemistry, 86(5), 2270-2278. doi:10.1021/ac402980q Laborda, F., Bolea, E., & Jimenez-Lamana, J. (2014). Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. In: ACS Publications. Laborda, F., Jiménez-Lamana, J., Bolea, E., & Castillo, J. R. (2013). Critical Considerations for the Determination of Nanoparticle Number Concentrations, Size and Number Size Distributions by Single Particle Icp-Ms. Journal of Analytical Atomic Spectrometry, 28(8), 1220-1232. doi:10.1039/C3JA50100K Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D., & Dai, H. (2001). Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes. The Journal of Physical Chemistry B, 105(46), 11424-11431. doi:10.1021/jp012085b Liu, J., Sonshine, D. A., Shervani, S., & Hurt, R. H. (2010). Controlled Release of Biologically Active Silver from Nanosilver Surfaces. ACS nano, 4(11), 6903-6913. Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of Nanomaterials in the Environment. Environmental Science & Technology, 46(13), 6893-6899. doi:10.1021/es300839e Meermann, B., & Nischwitz, V. (2018). Icp-Ms for the Analysis at the Nanoscale – a Tutorial Review. Journal of Analytical Atomic Spectrometry, 33(9), 1432-1468. doi:10.1039/c8ja00037a Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N., & Valsami-Jones, E. (2012). The Complexity of Nanoparticle Dissolution and Its Importance in Nanotoxicological Studies. Science of The Total Environment, 438, 225-232. doi:10.1016/j.scitotenv.2012.08.066 Modena, M. M., Rühle, B., Burg, T. P., & Wuttke, S. (2019). Nanoparticle Characterization: What to Measure? Advanced Materials, 31(32), 1901556. Montaño, M. D., von der Kammer, F., Cuss, C. W., & Ranville, J. F. (2019). Opportunities for Examining the Natural Nanogeochemical Environment Using Recent Advances in Nanoparticle Analysis. Journal of Analytical Atomic Spectrometry, 34(9), 1768-1772. doi:10.1039/C9JA00168A Mu, L., & Sprando, R. L. (2010). Application of Nanotechnology in Cosmetics. Pharmaceutical research, 27(8), 1746-1749. doi:10.1007/s11095-010-0139-1 Ng, D. Q., Chen, C. Y., & Lin, Y. P. (2018). A New Scenario of Lead Contamination in Potable Water Distribution Systems: Galvanic Corrosion between Lead and Stainless Steel. Science of The Total Environment, 637-638, 1423-1431. doi:10.1016/j.scitotenv.2018.05.114 Ng, D. Q., Strathmann, T. J., & Lin, Y. P. (2012). Role of Orthophosphate as a Corrosion Inhibitor in Chloraminated Solutions Containing Tetravalent Lead Corrosion Product Pbo2. Environmental Science & Technology, 46(20), 11062-11069. doi:10.1021/es302220t Pace, H. E., Rogers, N. J., Jarolimek, C., Coleman, V. A., Higgins, C. P., & Ranville, J. F. (2011). Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles Via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 83(24), 9361-9369. doi:10.1021/ac201952t Peng, Y. C., Lu, Y. F., & Lin, Y. P. (2022). Release of Particulate Lead from Four Lead Corrosion Products in Drinking Water: A Laboratory Study Coupled with Microscopic Observations and Computational Fluid Dynamics. Environmental Science & Technology, 56(17), 12218-12227. doi:10.1021/acs.est.2c02461 Petermann, N., Stein, N., Schierning, G., Theissmann, R., Stoib, B., Brandt, M. S., . . . Wiggers, H. (2011). Plasma Synthesis of Nanostructures for Improved Thermoelectric Properties. Journal of Physics D: Applied Physics, 44(17), 174034. doi:10.1088/0022-3727/44/17/174034 Rades, S., Hodoroaba, V.-D., Salge, T., Wirth, T., Lobera, M. P., Labrador, R. H., . . . Unger, W. E. (2014). High-Resolution Imaging with Sem/T-Sem, Edx and Sam as a Combined Methodical Approach for Morphological and Elemental Analyses of Single Engineered Nanoparticles. RSC advances, 4(91), 49577-49587. doi:10.1039/C4RA05092D Raj, S., Jose, S., Sumod, U., & Sabitha, M. (2012). Nanotechnology in Cosmetics: Opportunities and Challenges. Journal of pharmacy & bioallied sciences, 4(3), 186. doi:10.4103/0975-7406.99016 Sarin, P., Snoeyink, V., Bebee, J., Jim, K., Beckett, M., Kriven, W., & Clement, J. (2004). Iron Release from Corroded Iron Pipes in Drinking Water Distribution Systems: Effect of Dissolved Oxygen. Water research, 38(5), 1259-1269. Sebastian, V., Arruebo, M., & Santamaria, J. (2014). Reaction Engineering Strategies for the Production of Inorganic Nanomaterials. Small, 10(5), 835-853. Shoults-Wilson, W. A., Reinsch, B. C., Tsyusko, O. V., Bertsch, P. M., Lowry, G. V., & Unrine, J. M. (2011). Effect of Silver Nanoparticle Surface Coating on Bioaccumulation and Reproductive Toxicity in Earthworms (Eisenia Fetida). Nanotoxicology, 5(3), 432-444. doi:10.3109/17435390.2010.537382 Simon, U., & Schön, G. (2000). Electrical Properties of Chemically Tailored Nanoparticles and Their Application in Microelectronics. In Handbook of Nanostructured Materials and Nanotechnology (pp. 131-178): Elsevier. Tan, J., Liu, J., Li, M., El Hadri, H., Hackley, V. A., & Zachariah, M. R. (2016). Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates. Analytical Chemistry, 88(17), 8548-8555. doi:10.1021/acs.analchem.6b01544 Tan, J., Yang, Y., El Hadri, H., Li, M., Hackley, V. A., & Zachariah, M. R. (2019). Fast Quantification of Nanorod Geometry by Dma-Spicp-Ms. Analyst, 144(7), 2275-2283. doi:10.1039/c8an02250j Tiede, K., Boxall, A. B., Tiede, D., Tear, S. P., David, H., & Lewis, J. (2009). A Robust Size-Characterisation Methodology for Studying Nanoparticle Behaviour in ‘Real’environmental Samples, Using Hydrodynamic Chromatography Coupled to Icp-Ms. Journal of Analytical Atomic Spectrometry, 24(7), 964-972. doi:10.1039/B822409A Triantafyllidou, S., Parks, J., & Edwards, M. (2007). Lead Particles in Potable Water. Journal‐American Water Works Association, 99(6), 107-117. Trueman, B. F., & Gagnon, G. A. (2016). Understanding the Role of Particulate Iron in Lead Release to Drinking Water. Environmental Science & Technology, 50(17), 9053-9060. Trueman, B. F., Gregory, B. S., McCormick, N. E., Gao, Y., Gora, S., Anaviapik-Soucie, T., . . . Gagnon, G. A. (2019). Manganese Increases Lead Release to Drinking Water. Environmental Science & Technology, 53(9), 4803-4812. Tsai, D., Zangmeister, R., Pease Iii, L., Tarlov, M., & Zachariah, M. (2008). Gas-Phase Ion-Mobility Characterization of Sam-Functionalized Au Nanoparticles. Langmuir, 24(16), 8483-8490. Tsai, D. H., DelRio, F. W., Pettibone, J. M., Lin, P. A., Tan, J., Zachariah, M. R., & Hackley, V. A. (2013). Temperature-Programmed Electrospray-Differential Mobility Analysis for Characterization of Ligated Nanoparticles in Complex Media. Langmuir, 29(36), 11267-11274. doi:10.1021/la402311c Wang, J.-w. (2021). Development of Hyphenated Differential Mobility Analyzer-Spicp-Ms Method for Size-Resolved Analysis of Metallic Nanoparticles in Water. doi:10.6342/NTU202102361 Wang, L., Wu, W.-M., Bolan, N. S., Tsang, D. C., Li, Y., Qin, M., & Hou, D. (2021). Environmental Fate, Toxicity and Risk Management Strategies of Nanoplastics in the Environment: Current Status and Future Perspectives. Journal of hazardous materials, 401, 123415. doi:10.1016/j.jhazmat.2020.123415 Yang, F., Shi, B., Gu, J., Wang, D., & Yang, M. (2012). Morphological and Physicochemical Characteristics of Iron Corrosion Scales Formed under Different Water Source Histories in a Drinking Water Distribution System. Water research, 46(16), 5423-5433. Zahin, N., Anwar, R., Tewari, D., Kabir, M., Sajid, A., Mathew, B., . . . Abdel-Daim, M. M. (2020). Nanoparticles and Its Biomedical Applications in Health and Diseases: Special Focus on Drug Delivery. Environmental Science and Pollution Research, 27(16), 19151-19168. doi:10.1007/s11356-019-05211-0 Zhang, Y., & Lin, Y.-P. (2011). Determination of Pbo2 Formation Kinetics from the Chlorination of Pb (Ii) Carbonate Solids Via Direct Pbo2 Measurement. Environmental Science & Technology, 45(6), 2338-2344.
|